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First we guess it. Then we compute the consequences of the guess to see

what would be implied if the law we guess is right. Then we compare the

result of the computation to nature, with experiment or experience, compare

it directly with observation to see if it works. If it disagrees with experiment

it is wrong. In that simple statement is the key to science. It does not make

any difference how beautiful your guess is. It does not make any difference

how smart you are, who made the guess, or what your name is-if it disagrees

with experiment it is wrong. That is all there is to it.

Richard Feynman
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1. Introduction

The discovery of superconductivity at high critical temperature (Bednorz

and Müller, 1986) in ceramic copper oxides (cuprates) changed the history

of a phenomenon previously confined to very low temperatures.

In spite of the intense activity in the field of the cuprates the question

of the mechanism that causes the onset of superconductivity is still open.

Among the various theoretical models suggested so far, some authors [34]

proposed that a BCS-like pairing mechanism, with a very strong electron-

boson coupling, could make the cuprates superconductors.

Many experimental works have been accomplished, in order to study the

electron-phonon coupling in the high Tc superconductors [27] [28]. A time-

resolved optical experiment is able to detect directly the femtosecond dy-

namics, which is the fingerprint of the electron-phonon interaction. However

in the superconducting state this kind of measurement has never been per-

formed, because the electron dynamics is covered by the superconducting

recovery process.
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In this work we report the results of an experimental observation in a

superconducting cuprate, performed with optical technique. We noticed

a femtosecond dynamics in our data, which we interpreted as due to the

electron-phonon coupling.

The measurement was possible thanks to the tunability of the laser source,

in the infrared region of the spectrum.



2. High-temperature superconductiv-

ity

In this chapter we introduce the subject of high temperature superconductiv-

ity. First we report the original discovery and some experimental evidences

common to all the cuprates that make them different to the standard BCS

superconductors. Second we describe the approach of this work, by stat-

ing the goal of the experimental activity. We finally describe the physics of

these materials: we analyze the lattice structure, the phase diagram and the

electronic properties.

2.1 The coming of a new era

The phenomenon of superconductivity was observed for the first time in 1911

at the Leiden laboratories. While studying the temperature dependance of

electrical resistivity of mercury, H. Kamerlingh-Onnes discovered that at a

temperature Tc (critical temperature) in the proximity of 4 K the resistance

of the sample suddenly dropped to zero.
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Figure 2.1: First experimental evidence of the superconducting transition. Figure from

[1].

The outcome of this experiment is reported in figure (2.1). The theoreti-

cal description of this phenomenon was provided only in 1957 [3] by Bardeen,

Cooper and Schrieffer (BCS). According to BCS theory, the key process oc-

curring in superconductors is the pairing of electrons: the conducting elec-

trons in a superconducting metal form pairs (they are bound states), known

as Cooper pairs.

The origin of the pairing is an attraction between electrons, strong enough

to overcome the Coulomb repulsion; this attraction is provided by the electron-

lattice interaction or, in a quantum mechanical picture, by the electron-

phonon coupling.

In 1986 the 75th anniversary of superconductivity was marked by the

discovery of a new class of superconducting materials, namely, high-Tc copper

oxides (usually called cuprates). Bednorz and Müller discovered that the

LaBaCuO compound became superconducting with a critical temperature

Tc ∼ 30 K.
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This experimental work opened the era of high Tc superconductivity,

changing the history of a phenomenon that had before been confined to very

low temperature (until 1986 the maximum value of Tc was limited to the

23.2 K observed in Nb3Ge).

This unexpected result prompted intense activity in the field of copper

oxides and led to the synthesis of compounds with increasingly higher Tc.

The most studied cuprates are YBa2Cu3O6+x (YBCO), which has maxi-

mum Tc ∼ 93 K, and Bi2Sr2Ca1Cu2O8+x with maximum Tc ∼ 95 K. At

present, the highest observed value of Tc is about 150 K and is for the

HgBa2Ca2Cu3O8+x compound under pressure.

The structure and the features of the cuprates are described in the follow-

ing section; for the moment we just mention that they are strong correlated

systems, hence the single-particle approach of the quantum theory of solids

(in the form of one-electron band theory) cannot be the right theoretical

framework of the high Tc superconductivity.

The experimental evidences common for all the cuprates, and different

from the BCS materials, are:

• d-wave symmetry of the superconducting gap, revealed by Angle Re-

solved Photoemission Spectrocopy (ARPES) [19].

• occuring of a phase called pseudogap [19], in which there is a gap but

the system does not exhibit superconductivity.

The BCS model doesn’t account for high-Tc superconductivity, since it

relies on the Fermi-liquid [37] theory which cannot be applied to the cuprates

in their normal state.
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Nonetheless electron-phonon coupling has a significant role in the physics

of the cuprates. The BCS theory was developed in the weak-coupling limit

(i.e. λ � 1, where λ is the electron-phonon coupling constant), and it

was later extended to the strong coupling case [31] [32]. In the high Tc

superconductors strong electronic correlation occur and, according to some

authors [34], the electron-phonon interaction is in the strong coupling regime.

Since (section 3.2) the glue function is far from vanishing above 100 meV,

which is the upper energy limit for the phonons in the cuprates, in this work

we will consider the electron-boson coupling, instead of the electron-phonon

coupling.

Some theoretical model and some experimental evidences [34] suggest that

the high temperature superconductivity involves electron pairs formation.

So far. the mechanism that provides the pairing (so the glue mechanism) is

unknown.

Among all the suggested possibilities that can be found in the literature,

we pinpoint two main streams: a group of theoretical works rely on the

idea that the electronic correlations are fundamental in the onset of the

superconductivity; whereas the others are based on a BCS like bosonic glue

mechanism.

We mention the model of Anderson [33], namely the Resonating Valence

Bond (RVB) [20] as representative of the first group. From the second group

we quote the Colloquium of Kresin and Wolf [34], where they discuss the

possibility that a strong electron-phonon coupling is the main process (but

maybe not the only one) that leads to the pairs formation. In this scenario

the phase transition is driven by a gain in potential energy as in BCS.
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2.2 Our approach

The goal of this work is to study the electron-boson coupling in the supercon-

ducting cuprates, in particular we analyzed Bi2Sr2Ca0.92Y0.08Cu2O8+x opti-

mally doped (Y-Bi2212 OP). We performed a pump and probe (section 5.1)

measurement with ultrashort (on the order of 100 fs) laser pulses. This tech-

nique allows to study the non-equilibrium dynamics in the sub-picosecond

regime, by the detection of the reflectivity variation. The measure quantity

is

∆R

R
=
Rexc −Req

Req

(2.1)

as discussed in section (5.1). This non-equilibrium dynamics is properly

described by the three-temperature model (section 7.2), which provides a

direct connection between the duration of the electronic relaxation process

and the electron-phonon coupling constant. This means that it is possible to

measure directly this coupling constant by performing an optical experiment.

This model can be applied to high Tc superconductors in normal state.

The response of the system is different in the superconducting state: in

this case a slow dynamics, on the order of 1 ps, is observed (which is called

bottleneck). This behavior dominates over the dynamics related to the elec-

tronic thermalization with the phonon heat bath. This means that a direct

optical measurement of the electron-phonon coupling constant, in the super-

conducting state, cannot be performed. Different experimental techniques

can achieve this task [28] [27]. The phenomenological model proposed by
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Rothwarf and Taylor (section 7.3) accounts for the bottleneck dynamics.

In the present work we will report a pump and probe experiment per-

formed with spectral resolution (1200-2400 nm) on the superconducting

Y-Bi2212 OP (Tc= 95 K): this system is slightly different from common

Bi2212. The Yttrium doping makes the critical temperature higher, by min-

imizing Sr site disorder at the expense of Ca site disorder [38]. We decided

to probe the optical response of the sample in this frequency range because,

from a theoretical prediction reported in chapter 4, the fast electronic dy-

namics should be observable in the infrared region.

In our experimental activity we actually observed this behavior. From

our data it is possible to give an estimation of the electron-phonon coupling

constant: this information can provide a hint to understand the origin of the

glue mechanism.
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2.3 Physics of the cuprates

In this section we are going to describe some features common to all the

cuprates. First we analyze the lattice structure of these compounds; second

we discuss the phase diagram and the doping properties. Finally we introduce

the theoretical description of the electronic properties.

2.3.1 Lattice structure

In figure (2.2) we report a schematic representation of the unit cell of the

insulating Bi2Sr2Ca1Cu2O8 (Bi2212).

As we can see from the figure the lattice structure is tetragonal. Each

copper atom is surrounded by six oxygens atoms, four in the Cu-O2 plane

and two out of plane (which are called apical oxygens) forming octahedra

(fig. 2.2).

The lattice feature common to all the cuprates is the presence of copper-

oxygens (Cu-O2) layers, forming single-layer or multi-layer blocks separated

from each other by the so-called charge reservoir layers (Bi/Sr in fig. 2.2).

The cuprates can be classified according to the number N of CuO2 planes con-

tained within the characteristics block (N is also the number of Cu ions per

formula unit). Hence there are single layer compound (e.g. LSCO), bilayer

compounds (e.g. YBa2Cu3O7+x and Bi2Sr2Ca1Cu2O8+x) and trilayer com-

pounds (Bi2Sr2Ca2Cu3O10+x). There is general agreement that the copper-

oxygens layers plays a fundamental role in the physics of the cuprates.
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Figure 2.2: Unit cell of Bi2Sr2Ca1Cu2O8+δ.

2.3.2 Phase diagram

The lattice structure previously described corresponds to an insulator anti-

ferromagnetic ground state. The physical properties of the cuprates can be

strongly changed by injecting additional charges (electrons or holes) in these

systems. This process is called doping. There are mainly two ways of doping

charge carriers into the CuO2 planes: by substituting different elements in
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the reservoir layers or by varying the oxygen contents.

The variation of the physical properties depending on the doping con-

centration and temperature is expressed in the phase diagram, reported in

figure (2.3) where x is the added charges concentration. By doping a cuprate

electrons or holes can be added to the copper-oxygen planes, so the two sides

of the phase-diagram can be explored.

Figure 2.3: Phase diagram of n- and p-type superconductors, showing superconductivity

(SC), antiferromagnetic (AF), pseudogap and normal-metal regions. Figure from [19]. The

electron doped side is the left panel, while the hole doped is the right one.

Let us look at the hole doped side of figure (2.3): the antiferromagnetic

order is rapidly suppressed and is completely quenched by a 3 − 5 % hole

concentration. Almost immediately after the suppression of the antiferro-

magnetic phase, superconductivity appears, ranging from x = 6−25 %. The

dome-shaped Tc is characteristic of all hole-doped cuprates, even though the

maximum Tc can significantly vary for different compounds (e.g. Tc=40 K

for LSCO, Tc=95 K for BiSCO).

In the electron-doped side the antiferromagnetic phase survives up to

x = 0.14, beyond which a region of superconductivity arises. Most of the



2. High-temperature superconductivity 16

studies on the cuprates are performed on hole-doped samples. In fact the

larger extent of the AF zone covers some peculiar features of the high-Tc

superconductivity, that appear clearly in the hole-doped side of figure (2.3).

The region in the phase diagram with doping x smaller than that corre-

sponding to the maximum Tc is the underdoped region. The metallic state

above Tc exhibits many unusual properties not encountered before in any

other metal: this region is the pseudogap phase. Actually it is not a well

defined phase, because a definite temperature phase-boundary has not been

found yet. The value of doping concentration corresponding to the maximum

Tc represents the optimally doped condition.

Beyond optimal doping there is the overdoped region: the normal state

in this zone show a behavior closer to a Fermi-liquid [37].

2.3.3 Electronic properties

It is generally agreed that the physics of the high-Tc superconductivity is

that of the copper-oxygen layer, which is shown in figure (2.4).

Undoped compound Let us considered an undoped cuprate (which is

called the parent compound, for example La2CuO4 is the parent compound

of LSCO): in this system the formal valence of Cu is 2+, which means that

the electronic state is in the d 9 configuration. The copper is surrounded by

six oxygens in an octahedral environment (the apical oxygens lying above

and below Cu are not shown in fig. 2.4). The apical oxygens are shifted

from a perfect octahedral symmetry since the Jahn-Teller effect occurs. This

phenomenon, combined with the crystal field, causes the splitting of the eg

level so that the highest partially occupied d orbital is x2−y2 (as it is reported
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Figure 2.4: Left panel: Crystal field and Jahn-Teller splitting giving rise to the Cu-O

bands. Right panel: a copper-oxygen layer, nearest neighbor copper atoms hopping (tij),

charge transfer and Zhang-Rice singlet are put in evidence.

in fig. 2.4). The lobes of this orbital point directly to the p orbitals of the

neighboring oxygen, forming a strong covalent bond with a large hopping

integral tpd.

The properties of the parent compound cannot be described by band

theory: in fact in the copper-oxygen layer there is an odd number of electrons

per Cu atom. According to band theory, the band is half-filled and the system

must be metallic. On the contrary in the normal state the parent compound

is an antiferromagnetic insulator. The reason of the band theory’s failure

lies in the electronic correlations (Coulombian repulsion), which make the

single-particle approach unsuitable.

Electron correlations are considered within the Mott-Hubbard model. This

theoretical framework can account for the strong repulsive energy cost of

putting two electrons (or holes) on the same ion. When this energy (usu-

ally called U) dominates over the hopping energy t, the ground state is an

insulator due to strong correlation effects.

In the Mott-Hubbard insulators the conduction band (so the antibonding

band for the cuprates, see fig. 2.5 (c)) splits into lower and upper Hubbard
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Figure 2.5: Band structure of a strongly correlated material: (c) The system is metallic

in the absence of electronic correlations (3 bands: bonding, non bonding, anti-bonding);

becomes (d) a Mott insulator or (e) a charge transfer insulator respectively for ∆ >U and

U> ∆; in the latter case (f) the bonding band splits into triplet and Zhang-Rice singlet.

bands (fig. 2.5 (d)) and these compounds are rather good insulators with an

optical gap U of a few eV between the two Hubbard bands.

In the cuprates the description is even more difficult, because of the pres-

ence of the oxygen atoms (not accounted for in the Mott-Hubbard frame-

work). The d 9 configuration is represented by energy level Ed of the Cu

atom (fig.2.6) occupied by a single hole, whereas the oxygen p orbital is

empty of holes and lies at energy Ep. The energy to doubly occupy Ed is U ,

as aforementioned, which is very large. The lowest-energy excitation is the

charge-transfer excitation in which the hole hops from Cu d to O p. The

charge-transfer energy ∆ (∆ = Ep − Ed) is smaller than on-site Coulomb

repulsion U (fig. 2.5 (e)).

If ∆ is larger than the charge-transfer integral tpd, the hole will localize

on the copper atom. These compounds are called charge-transfer insulator

[36]. Experimentally an energy gap of 2 eV is observed and interpreted as

the charge-transfer transition [20].
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Figure 2.6: Copper d and oxygen p orbital in the hole picture. A single hole occupies

the copper d orbital. The upper dashed line represents the energy level of another copper

atom, the hopping requires enegy Ud.

The antiferromagnetic character of the charge-transfer insulator comes

from the fact that local moments on nearest neighbor Cu prefer antiferro-

magnetic alignment. Thus both spins can virtually hop to the oxygen p

orbital; for the Pauli principle hopping is forbidden for parallel spins. The

virtual hopping process leads to an exchange interaction JS1 · S2, where the

exchange integral has value [20]

J =
t4pd
∆3

(2.2)

which is different from the Mott-Hubbard insulator result, namely

J = 4t2/U .

Single-hole doped compound We have considered up to now undoped

systems; upon doping additional holes are introduced in the CuO2 layers. Let

us consider one additional hole; it is primarily on the oxygen sites (Cu 3d 9
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O 2p 5) and not on the copper atom, cause of the strong Coulomb repulsion.

The doped hole resonates on the four oxygens sites surrounding a Cu; the

spin of the hole combines with the spin of the Cu to form a spin singlet. This

is known as the Zhang-Rice singlet [18].

The formation of such a singlet is somewhat unusual, since normally one

would expect the triplet states (the spins of the two holes are parallel) to be

the lowest in energy based on Hund’s first rule for a Cu 3d 8 configuration.

The singlet nature is therefore the result of the unusual properties of these

materials. Zhang and Rice have proofed that the singlet configuration is the

lowest energy one, by second order calculation in perturbation theory [18].

The singlet then moves through the lattice of Cu 2+ ions, without perturbing

the antiferromagnetic spin ordering of Cu-O2 planes. This is the reason why

some authors [18] suggested to describe the cuprates with an effective single

band hamiltonian. In principle the theoretical approach should be based on

a three bands hamiltonian, in order to describe to contribution of the oxygen

p and copper dx2−y2 orbitals.

The single-band theory is based on the idea that the physics of the

cuprates can be described by the one band Hubbard model. In this approach

the Zhang-Rice band plays the role of the lower Hubbard band and an in-

plane Cu band corresponds to the upper Hubbard band. The Hamiltonian

contains a single kinetic-energy term proportional to the nearest-neighbor

hopping amplitude t, in addition to the Hubbard U term

H = −t
∑
<ij>,σ

(c†iσcjσ +H.c.) + U
∑
i

ni↑ni↓ (2.3)
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Here c†iσ (ciσ) creates (annihilates) an electron or hole on site i with spin

σ, < ij > pinpoints nearest-neighbor pairs and niσ = c†iσciσ is the number

operator.

The Hubbard model simplifies into the t-J model, by projecting out the

doubly occupied states at large U . The outcome Hamiltonian is more com-

monly used in studying the strong coupling limit (U � t) at half filling (i.e.

x=0, one electron per Cu site in a 3dx2−y2 orbital). It results

H = −t
∑
<ij>,σ

(c̃†iσ c̃jσ +H.c.) + J
∑
<ij>

(
Si · Sj −

ninj
4

)
(2.4)

where the operator c̃iσ = ciσ(1 − ni−σ) excludes double occupancy, J =

4t2/U is the antiferromagnetic exchange coupling constant and Si is the spin

operator.

Multi-hole doped compound Away from half filling, the t-J model de-

scribes a so-called doped antiferromagnet, namely a system of interacting

spins and mobile holes. The single-band approach is based on the Zhang-

Rice singlet located in single clusters (i.e. a Cu atom surrounded by four

oxygen atoms), which doesn’t necessarily mean that the same physics applies

on the 2D Cu-O planes. In fact band formation and doping could destroy

the stability of the local singlets in favor of other spin states. Recently an

experiment performed on Bi2212 has strengthen the foundations of this the-

oretical structures. In fact a direct observation of the Zhang-Rice singlet is

reported [21], the measurement was performed both in normal state and in

superconducting state. This evidence is far from trivial.



3. Statical Optical Properties

In this chapter we introduce the equilibrium optical properties of cuprates.

First we report the classical models used to describe interband and in-

traband transitions, i.e. the Lorentz and Drude models. Then we con-

sider the extended Drude model that accounts for the equilibrium reflectiv-

ity of the high-Tc superconductors. Finally we report the reflectivity data

of Bi2Sr2Ca0.92Y0.08Cu2O8+x optimally doped (Y-Bi2212 OP) in the three

phases (normal state, pseudogap and superconducting state). We perform

the fit to the data, using the previously described models. We comment some

interesting and peculiar features of this reflectivity spectra.
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3.1 Classical models

The classical theory of absorption and dispersion of light is due mainly to

Lorentz and Drude. The Lorentz model is applicable to insulators, since it

describes all direct interband transitions; i.e. all transitions for which the

final state of an electron lies in a different band but with no change in k-

vector in the reduced zone scheme.

The Drude model mimic the behavior of free-electron in metals, describing

the intraband transitions, i.e. all the transitions within the same band which

involve a change in the k-vector in the reduced zone scheme.

3.1.1 Lorentz model

Let us consider an atom with electrons bound to the nucleus in the same way

as a small mass can be bound to a large mass by a spring: this is the Lorentz

model. The motion of an electron bound to the nucleus is described by 1

m
d2r

dt2
+mΓ

dr

dt
+mω 2

0 r = −eEloc (3.1)

where m is the electronic mass and e is the magnitude of electronic charge.

The field Eloc is the local electric field acting on the electron as a driving

force and it is due to a light wave incident on the atom. The term mΓdr/dt

represents viscous damping and represents an energy loss mechanism.

1Bold letters represent vectors
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For a free atom the actual loss mechanism is the radiation damping, while

in a solid the radiation damping is related to various scattering mechanisms.

The rate of these processes is Γ, so we can pinpoint the mean free time

between electronic collisions with τ = 1/Γ. The term mω 2
0 r is a Hooke’s law

restoring force.

In the context of a classical model, there are two approximations in eq.

(3.1). The nucleus is assumed to have an infinite mass, otherwise the reduced

mass should have been used. We also have neglected the small Lorentz force

F = −ev×B/c arising from the interaction of the electron with the magnetic

field of the light wave. It is negligible because the velocity of the electron is

small compared with c.

The local field can be assumed to vary in time as e−iωt; thus the solution

of eq. (3.1) is

r =
−eEloc/m

(ω 2
0 − ω2)− iΓω

(3.2)

and the induced dipole moment is

p = −er =
e2Eloc

m

1

(ω 2
0 − ω2)− iΓω

(3.3)

We now assume that the displacement r is sufficiently small that a linear

relationship exists between p and Eloc, namely

p = α(ω)Eloc (3.4)
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where α(ω) is the frequency dependent atomic polarizability. From eqs.

(3.3) and (3.4), the polarizability for a one-electron atom is

α(ω) =
e2

m

1

(ω 2
0 − ω2)− iΓω

(3.5)

The polarizability is complex because of the damping term. As a result,

the polarization differs in phase from the local field at all frequencies.

If there are N atoms per unit volume, the macroscopic polarization is

P = N < p >= Nα < Eloc >= χeE (3.6)

where χe is the electric susceptibility. We made another assumption by

considering < Eloc >= E; this equality is far from obvious. 2

We are now ready to get an expression for the dielectric function in terms

of the atomic polarizability; α is a complex quantity due to the presence of

the energy loss mechanism term. This means that the fields E, P, and D are

not in phase.

Let us define the complex displacement D such that

D = εE = E + 4πP (3.7)

2The equality holds only for metals, so strictly speaking it shouldn’t be used in the

Lorentz model. A satisfactory discussion can be found in [8].
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From eqs. (3.6) and (3.7) we get

ε = 1 + 4πNα (3.8)

using eq. (3.5) this becomes

ε = 1 +
4πNe2

m

1

(ω 2
0 − ω2)− iΓω

(3.9)

We can evaluate the real and complex part of the dielectric function

ε1 = 1 +
4πNe2

m

(ω 2
0 − ω2)

(ω 2
0 − ω2)2 + Γ2ω2

(3.10)

ε2 =
4πNe2

m

Γω

(ω 2
0 − ω2)2 + Γ2ω2

(3.11)

If we consider classical atoms with more than one electron, we can extend

the previous results. Let Nj be the density of electrons bound with resonance

frequency ωj. Hence

ε = 1 +
4πNe2

m

∑
J

Nj

(ω 2
j − ω2)2 − iΓjω2

(3.12)

∑
j

Nj = N (3.13)
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A corresponding quantum mechanical equation can be derived [8]. It can

be written as

ε = 1 +
4πe2

m

∑
J

Nfj
(ω 2

j − ω2)2 − iΓjω2
(3.14)

Despite of the formal similarity between eqs. (3.12) and (3.14), the mean-

ings of some corresponding terms are quite different. In eq. (3.12), ωj is the

resonance frequency of a bound electron, whereas in eq. (3.14), it is the tran-

sition frequency of an electron between two atomic states separated in energy

by ~ωj. The parameter fj, called the oscillator strenght, is a measure of the

relative probability of a quantum mechanical transition. For free atoms it

satisfies the sum rule

∑
j

fj = 1 (3.15)

which is the quantum mechanical analog of eq. (3.13). All the optical

constants can be derived from ε1 and ε2, as it is shown in appendix A; the

most important relation is the connection between ε(ω) and the refractive

index n(ω), namely n2(ω) = ε(ω) The reflectivity of solids at normal incidence

is given by

R =
(n1 − 1)2 + n 2

2

(n1 + 1)2 + n 2
2

(3.16)



3. Statical Optical Properties 28

where n1 and n2 are the real and imaginary part of the refractive index

n. This result is also reported in appendix A.

Let us define another important quantity: the frequency at which ε1 = 0

is called the plasma frequency (ωp). From eq. (3.10), assuming ω � ω0 � Γ,

it follows straightforwardly that

ω 2
p =

4πNe2

m
(3.17)

The Lorentz model is a highly idealized description of the behavior of

an insulator.The optical response of real materials can be reproduced with a

collection of Lorentz oscillators with different frequencies.

Finally it is worth to mention the global oscillator strength sum rule which

is

∫ ∞
0

ωε2(ω)dω =
1

2
πω2

p (3.18)

the evaluation of this integral is reported in appendix A. Let us show the

physical origin of this sum rule: the rate of energy absorption (Ẽ) per unit

volume from an electric field is

dẼ

dt
= Re

(
E · ∂

∂t
D

)
= Re

[
E · (ε1 + iε2)

∂

∂t
E

]
(3.19)
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The field E has a time dependence e−iωt, so it follows that

dẼ

dt
= ωε2|E|2 (3.20)

Thus the integral

∫ ∞
0

ωε2(ω)dω (3.21)

is a measure of the energy absorption for all frequencies. This quantity

is proportional to the ratio n/m (number of electrons versus the electronic

bare mass) which is contained in the plasma frequency.

The sum rule can be expressed in terms of optical conductivity, by making

use of the relation (A.10) we get

∫ ∞
0

4πσ1(ω)dω (3.22)

so

∫ ∞
0

σ1(ω)dω =
ω2
p

8
(3.23)
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Usually a partial sum rule is considered, because in experiments the con-

ductivity is measured up to a certain frequency cutoff (ωc). So we define the

following quantity

W =

∫ ωc

0

σ1(ω)dω (3.24)

which is called spectral weight. This sum rule no longer depends on the

total number of the electrons, because of the presence of the cutoff, but it is

proportional to an effective number of electrons.

3.1.2 Drude Model

The Drude model is directly obtained from the Lorentz model by equating

the restoring force to zero; in fact the conduction electrons of a metal can be

considered free. From eqs. (3.10) and (3.11), assuming ω0 = 0 we obtain

ε1 = 1− 4πNe2

m

1

ω2 + Γ2
(3.25)

ε2 =
4πNe2

m

Γ

ω(ω2 + Γ2)
(3.26)

The origin of the viscous damping term for a free-electron metal is the

ordinary scattering of electrons. The damping coefficient is related to the

mean free time between collisions by Γ = 1/τ , as already mentioned in the

previous subsection. In general the value of τ is dependent on the tempera-

ture, but in the Drude picture it is frequency independent. This is a major

and important feature of the Drude model.
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We can write the dielectric function (real and imaginary part) using eqs.

(3.25), (3.26) and (3.17); thus we obtain

ε1 = 1−
ω2
pτ

2

(1 + ω2τ 2)
(3.27)

ε2 =
ω2
pτ

ω(1 + ω2τ 2)
(3.28)

The same result can be expressed in terms of optical conductivity σ(ω),

exploiting the eq. (A.8):

σ(ω) =
1

4π

ω2
p

1/τ − iω
(3.29)
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3.2 Extended Drude Model

In the previous section of this chapter the two classical models have been

reported, with the purpose of describing optical spectra of high Tc supercon-

ductors.

In common metals and insulators an optical conductivity composed by a

Drude term and a set of Lorentz oscillators well fits the experimental optical

data (for example reflectivity):

4πσ(ω) =
ω 2
pD

1/τD − iω
+

∑
j ω

2
pjω

i(ω2
j − ω2) + ω/τj

(3.30)

where the subscript D and j are referred to the Drude term and to a

single Lorentz oscillator among the whole set.

For high-Tc superconductors the fit performed with eq. (3.30) doesn’t

account for the spectral features of the data, particularly in the infrared part

of the spectrum (i.e. intraband transitions).

The reason lies on the physical assumptions the Drude model is based on:

it gives a picture of the optical behavior typical of a free-electron metal. In

this work we have studied the class of high-Tc superconductors characterized

by one or more copper-oxygen layers in the unit cell. These systems are

called cuprates, they are strongly correlated systems; besides the interactions

among electrons, a significant electron-boson interaction also occurs. These

features are not described by the Drude model.
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In this context the need for a more suitable model arises: the extended

Drude model, which has been first employed to analyze the infrared con-

ductivity of metals with a strong electron-phonon interaction in the limit of

T → 0 [11] and at finite T [12]. This formalism has been extensively applied

to elemental metals, transition-metal compounds, heavy-fermion systems and

the high Tc cuprates.

The basic idea deals with the mean free time between collisions (τ). As

explained in the subsection (3.1.2) this parameter is independent of frequency

in the Drude model. In the extended Drude model the electron-boson inter-

action is taken into account by assuming τ complex and frequency-dependent

function: 1/τ = M(ω) = M ′(ω)+ iM ′′(ω), where M(ω) is called the memory

function (or optical self energy [14]), which is

M(ω, T ) =
1

τ(ω, T )
− iωλ(ω, T ) (3.31)

The complex conductivity can be expressed in terms of this function, so

that

σ(ω, T ) =
1

4π

ω 2
p

M(ω, T )− iω
(3.32)

=
1

4π

ω 2
p

1/τ(ω, T )− iω[1 + λ(ω, T )]
(3.33)



3. Statical Optical Properties 34

The terms 1/τ(ω, T ) and 1 + λ(ω, T ) describe the frequency dependent

scattering rate and mass enhancement of electronic excitations due to many-

body interactions. These two quantities are related by the Kramers Kronig

transformation, as it is shown in [13].

The expression of the 1/τ(ω) is derived in [12] and it is

1/τ(ω) = 2Γi +
1

ω

∫ ∞
0

dΩ α2(Ω)F (Ω)

[
2ω coth

(
Ω

2T

)
(3.34)

− (ω + Ω) coth

(
ω + Ω

2T

)
+ (ω − Ω) coth

(
ω − Ω

2T

)]

where 2Γi is the impurity contribution, whereas α2(Ω)F (Ω) is the spec-

trum of the interacting bosons, as we will discuss in the following of this

section.

Let us now spend a few words about the physics behind the memory

function. According to many authors and experimental evidences in the

superconducting cuprates the electrons are paired, like in the BCS materials,

even if a general agreement on this issue has not been found yet. So far, the

origin and the mechanism of the electron-pairing has not been determined.

In some models [34] the aforementioned electron-boson coupling is considered

as the glue of the pairing process. The glue is expressed through the spectral

density of the bosons indicated as α2(Ω)F (Ω) for phonons and I2(Ω)χ(Ω) for

spin-fluctuations. Strictly speaking F (Ω) is the phonon density of states (Ω is

the phonon frequency) whereas α2(Ω) is a measure of the phonon frequency-

dependent electron-phonon interaction.
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Similar considerations hold for I2(Ω)χ(Ω); we represent these two kinds

of bosons as the general and dimensionless function Π(Ω).

An important consequence of the electron-boson coupling is that the en-

ergy (ξ) of the quasiparticles (QP) relative to the Fermi level is renormalized

and the lifetime of QPs becomes limited by inelastic decay processes involving

the emission of bosons.

The real and imaginary part of the optical self-energy are the the inverse

lifetime and the term ωλ(ω, T ) (see eq. 3.33), which is a variation of the

dispersion relation of the QPs.

The memory function is related to the single-particle self-energies by the

formula

M(ω)

ω
=

[∫
f(ξ)− f(ξ + ω)

ω + Σ∗(ξ)− Σ(ξ + ω)

]−1

+ 1 (3.35)

which is derived in [11]. The single particle self energy is expressed as

the convolution of the glue function Π(Ω) with a kernel function K(ξ,Ω, T )

which describes the thermal excitations of the glue and the electrons

Σ(ξ) =

∫
L(ξ,Ω, T )Π(Ω)dΩ (3.36)

The general expression for the Kernel function is

L(ξ,Ω, T ) =

∫ [
n(Ω) + f(ε)

ξ − ε+ ω + iδ
+
n(Ω) + 1 + f(ε)

ξ − ε− ω − iδ

]
dε (3.37)
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where n(Ω) and f(ε) are the Bose and Fermi-Dirac distribution functions

respectively [11].

By performing the integration that involves the Fermi-Dirac distribution

[30], the following explicit form for the kernel function can be obtained

L(ξ,Ω) = −2πi

[
n(Ω) +

1

2

]
+ Ψ

(
1

2
+ i

Ω− ξ
2πTe

)
−Ψ

(
1

2
− iΩ + ξ

2πTe

)
(3.38)

where Ψ(x, y) is the digamma function, which is the logarithmic derivative

of the gamma function. This expression of the kernel function depends on

both the electronic temperature Te(t) and the bosonic temperature Tb(t)

through the Bose distribution n(Ω).

Suppose to apply an AC electric field on a cuprate: the effect of the

coupling between the electrons and the bosonic excitations is revealed by

a frequency dependent dissipation (i.e. 1/τ(ω)). This phenomenon can be

understood as arising from processes where a photon is absorbed by the

simultaneous creation of an electron-hole pair and a boson. Hence the optical

conductivity in the normal state is expressed by eq. (3.32).

The central assumption in eq. (3.35) is the validity of the Landau Fermi-

liquid picture for the normal state. This analysis is therefore expected to

work best on the overdoped side of the cuprate phase diagram, where the

state of matter appears to become increasingly Fermi-liquid like.

In order to fit reflectivity data the memory function of the system under

study must be known. This is the reason why we now report the glue func-

tions for some cuprates, which we have used to fit the data (see the following

subsection). These glue functions have been obtained by van Heumen [15],
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Figure 3.1: Electron-boson coupling function Π(Ω) for different cuprates at different

doping levels and temperatures.

from previously published optical spectra, and are shown in figure (3.1).

From these graphs we can note that the bosons involved in the interaction

with the electrons cannot be only phonons. In fact in the cuprates the phonon

energies have an upper limit at about 100 meV; the glue functions have some

spectral features also at higher energies, which means that other bosons (i.e.

spin fluctuations) take part in the interaction.

Two main features can be observed from figure (3.1): a peak at 50 − 60

meV and a broad continuum. There is a clear trend of a contraction of the

continuum to lower energies when the carrier concentration is reduced. The

most striking aspect of the peak at 50 − 60 meV is the fact that its energy

is basically independent of temperature and sample composition. Moreover,

the intensity and the width are essentially temperature independent.
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3.3 Reflectivity Data

We report the in-plane reflectivity data of Y-Bi2212 optimally doped (OP)

in the three different phases: normal state (300 K), pseudogap (100 K) and

superconducting state (20 K). These measurements have been performed by

D. van der Marel’s group by using different techniques, in order to cover all

the spectral range between 50 cm−1 and 36000 cm−1 (in wavelength, from

200 µm to 280 nm). 3

Data between 6000 and 36000 cm−1 have been collected with spectro-

scopic ellipsometry, whereas the infrared region of the spectrum was mea-

sured through reflectivity at normal incidence (as explained and reported in

[6]). The complex dielectric function can be calculated from the reflectivity

(eq. A.17). Thus we show the reflectivity and the dielectric functions of

Y-Bi2212 OP in fig. (3.2) for the normal state, fig. (3.3) for the pseudogap

and fig. (3.4) for the superconducting state.

In all these graphs the solid lines are the fit to the data, let us now explain

how we fitted the data. The right approach to this analysis requires to

consider separately the contributions of intraband and interband transitions.

From the reported data we note that below 10000 cm−1 (∼ 1.25 eV) the

dielectric function is characterized by a Drude-like response. In the high

energy region the interband transitions are overwhelming.

3The conversion in energy is 8064 cm−1 = 1 eV
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Figure 3.2: Y-Bi2212 Op 300 K: reflectivity, real and imaginary parts of the dielectric

functions. Black lines are fit functions.
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Figure 3.3: Y-Bi2212 Op 100 K: reflectivity, real and imaginary parts of the dielectric

functions. Black lines are fit functions.
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Figure 3.4: Y-Bi2212 Op 20 K: reflectivity, real and imaginary parts of the dielectric

functions. Black lines are fit functions.
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The dielectric function ε(ω) has been fitted with a function of the same

kind of eq. (3.30), with the main difference that we used the extended Drude

model in order to describe the intraband transitions.

The electron-boson coupling term used is the glue function represented in

fig. (3.1), which we described mathematically with sigmoid functions (P(x)),

namely

P (x) =
1

1 + e−x
(3.39)

Each sigmoid function involved in the fit procedure has three parameters:

position, maximum value and width of the sigmoid.

The values of all the parameters used for the fit are reported in table

(3.1); in this table we don’t show the parameters of the sigmoid functions,

because we obtained them from figure (3.1).

Provided the glue function, it is possible to fit the optical conductivity

(and all the other optical functions) using eq. (3.32) and eq. (3.33). In the

Kernel function, defined in eq. (3.37), we set Te=Tb=20 K (superconducting

state measurements), 100 K (pseudogap measurement), 300 K (normal state

measurement).

At the top of table (3.1) there are all the parameters that appear in

the extended Drude model. The term εinf takes into account the dielectric

function for an infinite value of the frequency; in principle (by looking at the

formulas 3.13 and 3.14) it should be equal to 1. However we used a different

value, because this allowed us to reduce the number of Lorentz oscillators:

an increasing oscillators number would make εinf approach to 1.
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The interband transitions were described by the eight Lorentz oscillators

(see subsection (3.1.1)) reported in table (3.1); each of these contributions is

characterized by three parameters: position (ω0), plasma frequency (ωp) and

width (γ).

In figure (3.5) we have reported the data of the measurement in supercon-

ducting state with the fit. Besides the contributions to the dielectric function

of some oscillators are shown, it is also clear that the intraband and inter-

band transitions dominate the optical response in different spectral ranges,

separated roughly at 10000 cm−1 (1.25 eV).

Looking at the table (3.1) we note that two oscillators are centered at

4234 and 6490 cm−1; thus they lie in the intraband region of the spectrum.

These oscillators represent a spectral feature typical of the cuprates, called

the mid-infrared peak. This structure appears in doped systems, whereas it is

absent in undoped samples [16]. The mid-infrared peak has typical energy of

0.5 eV, which corresponds barely to 4000 cm−1; this is roughly the spectral

position where we used two oscillators.
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Parameters T=300 K T=100 K T=20 K

εinf 3 3 3

ωp 17418 17392 16901

Γimp 53 155 625

T 20 100 290

ω0 4234 4929 4264

ω 2
p0 10454991 13871222 22041800

γ0 3535 4706 4069

ω0 6490 6959 6789

ω 2
p0 11001998 6489852 8142014

γ0 3519 2949 3925

ω0 11800 11800 11650

ω 2
p0 5560610 7460610 5307060

γ0 3644 3944 3500

ω0 16163 16163 15409

ω 2
p0 40768500 41268500 45542000

γ0 8304 8304 8905

ω0 21947 21947 21300

ω 2
p0 225776000 230776025 223159025

γ0 13998 13898 13898

ω0 31057 31057 30756

ω 2
p0 288626121 288626121 320536896

γ0 6191 6191 6908

ω0 35146 35146 34946

ω 2
p0 217474009 217474009 214474009

γ0 6396 6396 6396

ω0 40421 40421 40421

ω 2
p0 750212100 750212100 756371984

γ0 7518 7518 7518

Table 3.1: Fit Parameters: extended Drude model and Lorentz oscillators.
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Figure 3.5: Dielectric function of optimally-doped Y-Bi2212: the in-plane dielectric

function measured at T=20 K is shown. The black line is the fit to the data obtained by

the sum of the extended Drude model and eight Lorentz oscillators. We put in evidence

the edge (∼ 1.25 eV) of the regions in which intraband (E < 1.25 eV) and interband

(E > 1.25 eV) transitions dominate.

The physical process represented by the mid-IR peak is still debated.

Many suggestions have been done [16] and in particular we mention the one

reported in [17], according to which this spectral feature is the signature

of the transition of the quasiparticles from the lower Hubbard band. This

interpretation allows us to use Lorentz oscillators in order to fit the data.

The other oscillators represent different phenomena, in particular the

first two (11800 and 16163 cm−1, so 1.5 and 2 eV) are related to charge-

transfer transitions. These are transitions of a hole from the Cu d orbital

(in particular dx2−y2) to the O 2p orbital, as it is represented in fig. (3.6).
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Figure 3.6: Representation of the in-plane charge-transfer transitions. The Zhang-Rice

singlet is also shown.

The lowest energy process is expected to involve the so called Zhang-Rice

singlet : it is a state in which a hole is shared by the four oxygen atoms that

surround a copper. The hole’s spin is coupled antiferromagnetically with the

hole in the Cu d orbital. This singlet state represents the ground state of the

undoped cuprates, when a single hole is added (as reported in [18] and [20]).

In fact the undoped parent compounds, as predicted by the Mott-Hubbard

theory [19], have an insulating and antiferromagnetic ground state. This pic-

ture accounts for the AF phase appearing in the phase diagram (fig. 2.3) in

correspondence of the zero-doping regime. Doping the system is equivalent

(as explained in [20] and [19]) to adding holes in the cuprates; these holes are

energetically more favoured to be shared by the oxygen atoms (as demon-

strated by Zhang and Rice in [18]) than being localized on the cooper site

(due to the strong Coulomb repulsion). This explains the antiferromagnetic

coupling between the two holes’ spins. This bound state can now hop from

site to site: however this doesn’t justify the conducting properties of the

normal state doped cuprates. In fact the interactions among more singlets is

not taken into account; besides when the system is doped with many holes

(more than one) the ground state is unknown. The Zhang-Rice singlet has
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been demonstrated to be the ground state only in case of single hole doping.

The physics of the cuprates is more deeply analyzed in section (2.3).

The other higher energy oscillators that appear in the fit function are

related to other transitions, in particular we mention the charge-transfer

processes that involves different orbitals of Cu (not the dx2−y2) and O. These

transitions don’t occur within a single Cu-O plaquette, but they concern

further neighbor coppers (and the surrounding oxygens) and atoms out of

plane.



4. Differential fit

This chapter is they keystone of the whole present work. It contains the

reason why we decided to perform time-resolved reflectivity measurement in

the infrared region of the spectrum.

4.1 Differential fit

In section (3.2) we described the extended Drude model, obtaining an ex-

pression for the optical conductivity (eq. 3.32). We used this result to fit

the equilibrium reflectivity data, as reported in section (3.3). As explained

in section (2.2) the aim of the present work is to study non-equilibrium dy-

namics in Y-Bi2212, so another fit procedure is required to fit the data. The

measurement in fact deals with the reflectivity variation due to the pump

pulse excitation (∆R/Req = (Rexc −Req)/Req).

An important result obtained in the extended Drude model is expressed

in eq. (3.35): the memory function (consequently all the optical functions)

depends on both the electronic temperature Te, via the Fermi-Dirac distri-



4. Differential fit 49

bution, and the bosonic temperature Tb, via the single-particle self-energy.

In particular we recall eq. (3.37) which clearly states that there is a contri-

bution of both Te and Tb (through the Bose distribution n(Ω)) to the Kernel

function. Moreover it is worth to be stressed that the value of the two tem-

peratures are disentangled. Provided the link between the Kernel function

and the single-particle self energy (eq. 3.36), it follows that the memory

function can be calculated considering electronic and bosonic temperatures

different in values.

Thus it becomes possible to evaluate the variation of the dielectric func-

tion due to the pump-induced excitation

δε(ω) = εexc(Te, Tb)− εeq (4.1)

The main subject of this work is the relaxation dynamics, due to the

electronic thermalization with the bosonic heat bath. The dielectric function

variation corresponding to this process can be fitted using eq. (4.1) setting

a Te value bigger than Tb. Our experimental measurement deals with reflec-

tivity, which is obtained from the dielectric function by using eq. (A.17).

In figure (4.1) we report the calculated reflectivity variation of Y-Bi2212

optimally doped in the superconducting state (T=20 K). The green line

was obtained raising the electronic temperature by ∆Te = 20 K. The blue

line describes an increase of both the electronic and bosonic temperatures

∆Te = ∆Tb = 20 K. From this graph it is clear that, in the visible region of

the spectrum, the electronic thermalization dynamics is not detectable.
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Figure 4.1: Calculated reflectivity variation for Y-Bi2212 OP in superconducting state.

The energy value of 1.5 eV is put in evidence. The red box describes the energy range in

which the electronic thermalization dynamics dominates.

In fact it is covered by the relaxation dynamics which involves the bosons:

this means that the bottleneck occurs. All the experimental evidence about

optical measurements reported in the literature, for example [39], are about

single-wavelength experiments performed at 1.5 eV. So far the electronic ther-

malization dynamics in the superconducting state has not been observed in

optical experiments yet. Otherwise other technique let to study the electron-

boson coupling in the superconducting cuprates [28] [27].

The most interesting information in fig. (4.1) is that in a particular

spectral region the electronic dynamics dominates. This region is the infrared

one (enclosed by the red box in the figure); it means that in principle an

optical experiment performed in this spectral range should be able to detect
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the electronic dynamics. Thanks to the time resolution of the laser pulses,

it is possible to study the sub-picosecond processes in the superconducting

state.

Hence the brand new thing presented in this work is a time and spectral

resolved pump and probe measurement, performed on Y-Bi2212 in the su-

perconducting state. The spectral region analyzed is 1200-2400 nm (barely

0.5− 1 eV), which covers the red box zone in figure (4.1).

The direct observation of the electronic thermalization dynamics allows

us to provide an estimation of the electron-phonon coupling constant, in the

superconducting phase.



5. Experimental Set-up

This chapter contains the description of the experimental set-up. This ap-

paratus allowed us to perform pump and probe spectroscopy measurement

in the infrared region of the spectrum. The main features of our set-up are

the repetition rate of the laser system (250 kHz), which let us to work in the

low fluence (less than 50 µJ/cm2) regime avoiding undesired thermal heating

effects, and the tunability of the probe beam, achieved by an Optical Para-

metric Amplifier (OPA) which can tune the output of the laser (800 nm) in

the spectral range 1200-2400 nm.

First we introduce the pump and probe technique, then we describe all

the devices that appear in the set-up in details, especially the laser system.

We also report the characterization of the sample used in the experimental

activity.
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Figure 5.1: Set-up for the infrared measurement

5.1 Set-up and Pump and Probe technique

In this section we briefly introduce the set-up reported in fig. (5.1), a detailed

description of all the devices and instruments that form the apparatus can

be found in the following sections. Then we explain how the experimental

technique works.
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Finally some features of the acquisition system are reported.

Set-up Let us now take a look at the set-up, briefly describing the optical

path of the laser beam. The set-up realized to perform the measurements in

the infrared part of the spectrum is schematically shown in figure (5.1). In

this picture the box named Laser actually represents all the optical cavities

forming the laser source (5.2).

The optical beam produced by the laser system is split into two beams by

a beamsplitter (BS in the figure) 70-30: these are the pump (70 % of the laser

output power) and the probe (30 % of the laser output power). The former

is directed towards the Scan Delay, then it is reflected into the attenuator,

which is a device composed by a rotatable half-wave plate and two mirrors

at the Brewster angle. Finally the pump passes through the chopper and it

is focused on the sample by the lens called L1 (f = 40cm) in figure (5.1).

To obtain the tunability of the probe wavelength, an Optical Parametric

Amplifier is used. The probe beam enters the OPA, that allows us to obtain

tunable coherent pulses in the spectral range of (1200−2400) nm. The output

of the OPA is attenuated by the use of a filter. Finally the probe is focused

on the sample by the spherical mirror SM1 (f = 30 cm), the reflected beam

is collected by the lens L2 (f = 12.5 mm) and then is focused by L3 (f = 5

cm) into a photodiode; this signal is acquired via the lock-in amplifier. The

choice to focus the probe through a spherical mirror is due to the need to

avoid the chromatic aberrations of standard lenses.
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The Pump and Probe technique The goal of this work is to study

the non equilibrium optical properties (i.e. reflectivity and transmission)

of the high Tc superconductors with temporal resolution. In our set-up we

measured the variation in the sample’s reflectivity; the same technique can

be used for the transmission measurements. The technique to achieve this

goal is the pump and probe technique; it gives the temporal resolution to

the measurement, due to the time structure od the laser pulses, that is not

provided by the equilibrium measurements.

The pulses have femtosecond duration, this means that it is possible to

study the dynamics of the optical response out of equilibrium with sub-

picosecond time resolution. In addition the Optical Parametric Amplifier

(OPA, see section 5.2.5) in our set-up allowed us to perform the pump and

probe technique over a broad spectral range (1200-2400 nm, so 0.5-1 eV);

this feature makes our measurement a time-resolved spectroscopy. Another

characteristic of this technique is the high sensitivity: in fact it allows the

detection of very small relative signals (on the order of 10−4).

In our experimental activity we measured the normalized variation of

reflectivity, in order to compensate for intensity fluctuations. So we detected

the quantity

∆R(τ) =
Rexc(τ)−Req

c
(5.1)

where τ is the delay between the two optical beams involved in the mea-

surement, Rexcited(τ) is the reflectivity of the pump excited sample and Req

is the reflectivity in the equilibrium state.
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Figure 5.2: Schematic representation of the pump and probe experiment; the temporal

delay between the two beams is set and controlled by the Scan Delay.

Let us describe how this measurement technique work. The first step of

the pump and probe technique consists in splitting the output of the laser

system into two beams, which we define pump and probe. The former excites

the sample, while the latter (as its name suggests) probes the variation of

the optical response of the system, induced by the pump.

These two beams cover two different optical paths, which must be of

the same length because they have to fulfill the coincidence (spatial and

temporal) condition on the sample (as shown in fig. 5.2).

The temporal coincidence is required because laser pulses has a time-

structure in the femtosecond regime; if this condition is not satisfied the

probe cannot detect the effects in the optical properties due to the presence

of the pump.

Pump and probe are staggered in time by the use of the Scan Delay (see

figure 5.1): it is a motorized device that contains a system of mirrors (called
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the retroreflector), mounted on a sledge, placed in the optical path of the

pump. The Scan Delay is described in subsection (5.5).

The spatial coincidence is required to probe the same area of the sample

perturbed by the pump: this requirement force a condition on the beams’

spot sizes: to probe a uniformly excited zone of the superconductor, the

spot size of the probe must be smaller than the pump’s one. The lens L1

(f = 40 cm) focuses the pump beam (see fig. 5.1) to a spot whose diameter

is D = (88.8± 2.1) µm; the probe is focused on the sample by the spherical

mirror SM1 (f = 30 cm) with a diameter value of D = (30.3± 1.7) µm. The

measurement of the spot sizes is reported in section (5.2.6).

Another important constraint is the intensity of the probe, that must be

limited to avoid strong excitation of the system. So the probe has to be a low

fluence (< 50 µJ/cm2) beam, fluence is defined in section (5.2.6). For this

reason we alternatively used two different filters with optical density (OD)

2 (i.e. Transmittance= 10−2, so 1 %) and 3 (i.e. Transmittance= 10−3, so

0.1 %), as shown in fig. (5.1) in order to attenuate the probe intensity.

The signal to detect is very low, so we want to exclude any other contri-

bution to the signal, except from the pump induced reflectivity change. We

used pump and probe beams with orthogonal polarization to avoid possible

interference effect; the pump is s-polarized while the probe is p-polarized.

An interesting feature of our set-up is the possibility to change the pump’s

fluence, so that perturbations at different intensities can be induced in the

sample. This is provided by the attenuator, which is a system composed by a

rotatable half-wave plate and two mirrors at the Brewster angle, which select

the vertical polarization (the attenuator is described in subsection 5.3).
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This device allows us to perform time-resolved measurements in different

regimes:

• in the high fluence regime (> 50 µJ/cm2) the pump excitation impul-

sively destroy the superconductivity.

• in the low fluence regime (< 50 µJ/cm2) the pump weakly perturbs the

superconducting condensate.

In the present work we are going to report measurements performed in

the low-fluence regime.

The source is a laser system (described in section 5.2) eith 250 kHz rep-

etition rate. The value is the optimal trade-off between high repetition rate

sources (for example 80 MHz which is typical of an oscillator, Mira Seed in

our set-up) that are suitable for the low-fluence measurements but destroy the

superconductivity by thermal heating (i.e. high mean power), and low repe-

tition rate (on the order of 1 kHz) sources, that work at very high fluences,

impulsively destroying the superconductivity. The 250 kHz source allows us

to work in the low fluence regime, while keeping a high signal without any

average heating effect, in fact the laser power on the sample was P = 7.98

mW. Comparing our source with an oscillator, despite the reduced repetition

rate, the energy content of each single pulse is not strongly suppressed: the

pulse intensity is 20 GW/cm2.
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Acquisition system The signal variation induced by the pump is ex-

tremely small, so the acquisition is a critical step. To overcome this hardness

we relied on the lock-in technique. The reflected probe is collected by two

lenses into a photodiode, that is linked to the lock-in amplifier. In this

scheme the pump is modulated by the chopper which supplies the frequency

and phase reference to the lock-in amplifier. This instrument selects and ac-

quires only the component of the reflected probe modulated at the reference

frequency (13 kHz). This procedure allows us to acquire the pump induced

variation of the reflectivity, without the noise related to other frequencies.

The choice of the chopper’s frequency has some constraints: it has to

be the highest possible value, in order to suppress the 1/f noise, but lower

than the laser repetition rate because, in that case, only a few pulses would

pass through the open window of the chopper. Considering 250 kHz as the

repetition rate and 13 kHz as the chopper’s frequency, we get 250 : 13 : 2 ∼ 10

pulses per each open window of the chopper. The factor 2 takes into account

the duty cycle (50 %−50 %) of the chopper. Given also some considerations

reported in section (5.4) it follows that the oprimal choice is 13 kHz.
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5.2 Laser system

Figure 5.3: Laser system

In this section we describe the details of the laser source, which is dis-

played in figure (5.3). It consists of:

• Coherent Verdi V-18 laser

• Coherent Mira Seed laser

• Coherent Stretcher/Compressor

• Coherent RegA 9050

• Coherent OPA 9850
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5.2.1 Verdi V-18

In our set-up the Coherent Verdi V-18 is the optical pump for both the Mira

Seed and the RegA. It is a compact solid-state diode-pumped, frequency dou-

bled Nd:Vanadate (Nd:YVO4) laser that provides continuum monochromatic

green (532 nm) output, with 18 W of power output.

The Verdi V-18 laser consists of the laser head and power supply con-

nected by an umbilical (i.e. a cylindrical pipe that contains fibers and ca-

bles): a chiller is used to cool down both the laser head and the power supply.

Inside the umbilical there are fiber optics and electrical cables. The fiber op-

tics transmit light from the diode bars in the power supply to the laser head,

the electric cables provide control and monitoring signals between the laser

head and the power supply.

The laser head contains the following optical elements (hermetically sealed

in the head):

• Vanadate as the gain medium

• LBO non-linear crystal (for Second Harmonic Generation)

• Optical diode

• Astigmatic compensator and four cavity mirrors

• An etalon as the single-frequency optic

The temperature of the Vanadate and etalon are controlled by thermo-

electric coolers (TECs), which are capable of heating or cooling the optical

element.
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The temperature of the lithium triborate (LBO non-linear crystal) is con-

trolled by a resistive heater: this crystal is held at approximately 148◦ C. To

prevent rapid change of temperature that may cause LBO crystal damage

during warm-up, a CPU in the power supply regulates a slow ramp-up to

operating temperature. In case of loss of AC power the laser undergoes a

battery powered, CPU-controlled, cool-down process that lowers the LBO’s

temperature gradually to room temperature. There is one important fea-

ture to notice: the LBO is a Type I non critically phase matched crystal,

which means that a little change of the temperature’s value implies a dra-

matic collapse in the Second Harmonic conversion efficiency. Actually a 0.5◦

C variation cause an efficiency’s decrease of nearly 50 %; this the reason why

temperature control of the LBO is a key aspect to make Verdi work properly.

In fact the phase matching condition is achieved because the birifrangent

properties of the LBO are temperature-sensitive; so the value of 148◦ C is

the proper one to obtain phase matching at the wavelength of the two pump

diodes (located in the power supply).

Accumulated heat in the laser head is dissipated by a water-cooled heat

sink mounted on the laser head baseplate. Baseplate temperature is moni-

tored by the CPU, which will shut the system down if the laser head tem-

perature reaches 55◦ C.

The laser head utilizes a Neodymium Vanadate (Nd:YVO4) crystal as

active medium with the pump power provided by fiber delivery; this medium

is a homogeneously broadened system, so the Verdi tends to naturally run

single frequency, with the etalon reinforcing this behaviour.
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A photodiode in the laser head monitors the laser output; it allows the

CPU to control the Verdi output power by adjusting the diode pump power

to the Vanadate, in order to get the power value requested by the user from

the power supply front panel.

The pump diodes’ temperature is held constant by the TECs. Excess

heat is dissipated by forced air cooling through heat sinks, which are located

within the power supply.

5.2.2 Mira Seed

The Coherent Mira Seed Laser is a Titanium:Sapphire (Ti:Sapphire, Al2O3

doped with Ti2O3) oscillator, pumped by the Verdi. It is a mode-locked laser

that produces ultra short, wide bandwidth, femtosecond pulses at a repetition

rate of 76 MHz. We used the laser at the wavelength of 800 nm, which gives

the best results in terms of stability and pulse quality (bandwidth and pulse

duration): in fact the pulse out of Mira Seed has 30 nm of bandwith and 120

fs of duration. It is tunable from 760 to 840 nm, the tuning capability results

in an increase of the pulse duration and a reduction of the bandwidth. The

output beam has horizontal polarization (so p-polarization) and the spatial

mode is the TEM00.

The technique used to mode-lock the Mira Seed Laser is called Kerr Lens

Mode-Locking (KLM). The optical cavity is designed specifically to exploit

changes in the spatial profile of the beam (i.e. self-focusing) due to the optical

Kerr effect produced in the Ti:Sa crystal, that is also the active medium of

the laser. This mechanism results in higher round-trip gain in the mode-

locked than in the continuous wave (CW) operation; it can easily be shown
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[4] that the ratio of the pulse peak power in the mode-locked regime versus

the modes’ random phase relation regime reaches values of 103− 104 in solid

state lasers. In addition an aperture is placed at a location where the mode-

locked beam diameter is smaller to produce minimal round trip losses. The

negative group velocity dispersion (GVD) accomplished by the optical media

in the cavity results in reduced third-order dispersion with bandwidth grater

than 50 nm.

5.2.3 Stretcher/Compressor

The Coherent Stretcher/Compressor is a device capable of stretching in time

the pulse out of Mira Seed and then of re-compressing it. The main idea is

to stretch in time the Mira’s pulse, amplifying it up to saturation in RegA,

then recompress the pulse by a second pass in the Stretcher/Compressor as

it is shown in figure (5.3). Finally we get a pulse of ∼ 50 fs duration and

high peak power (∼ 20 GW/cm2).

Figure 5.4: Stretching process of the pulse: 1) Input; 2) Positive dispersion; 3) Collima-

tion of the beam; 4) Eliminating spatial chirp; 5) Output.
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Figure 5.5: Compression of the pulse temporal width: 1) Input; 2) Negative dispersion;

3) Collimation of the beam; 4) Eliminating spatial chirp; 5) Output.

The stretching and compression operations occur by the use of diffraction

gratings, as described in figure (5.4) and (5.5). Let us take a closer look to

these two stages: the input of the Stretcher is the Mira Seed’s short pulse,

which has no chirp (it is approximately transform limited). The set of lenses

shown in figure (5.4) induces positive dispersion, so the pulse acquires spa-

tial and time chirps. The beam is then collimated and the spatial chirp is

compensated by the system of lenses (fig. 5.4 stage (4)); finally the output

pulse has only a temporal chirp (long pulse). Let us suppose to perform the

compression operation on a transform limited (no chirp) pulse: the situa-

tion is pretty similar to the stretcher’s one, with the basic difference that

compression induces a negative chirp in the pulse. This two processes (i.e.

stretching and compression) have to be balanced in order to obtain a trans-
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form limited pulse, but there is also another contribution that must be taken

into account. The pulse is amplified by RegA (after the stretching stage and

before the compression one), that adds another contribution to the pulse’s

dispersion (actually a positive contribution) dependent on the thickness of

the optical media in RegA and on the number of round trips.

To compress the pulse successfully it is necessary to balance the total

dispersion of the pulse to second order (group velocity dispersion, GVD) and

third order (third order dispersion, TOD). The dispersion due to the diffrac-

tion gratings depends also on the angle the beam diffracts off the gratings;

hence this angle must be different in the Stretcher and in the Compressor to

balance the RegA’s dispersion. The length of the optical path, in the two

stages previously described, is the other parameter to adjust , to obtain a

transform limited pulse.
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Figure 5.6: Regenerative amplifier Q-switch operation

Figure 5.7: Regenerative amplifier seeded operation

5.2.4 RegA 9050

The Coherent RegA Model 9050 is a compact regenerative amplifier system

for increasing the pulse energy from the Mira Seed: it requires only a few

mW of output power from the oscillator and amplifies this output over 1000

times to the µJ level. The pump source used by RegA is the Verdi laser, the

amplification of the Mira Seed’s pulses occurs at a repetition rate of 250 kHz

(tunable from 10 to 300 kHz). This feature is peculiar of the RegA system,

as will be explained in the following.

Let us explain what is a regenerative amplifier by looking at the figures

(5.6) and (5.7): when it is pumped (by the Verdi, in our specific case) a
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regenerative amplifier behaves like a stand alone laser cavity, it can work in

CW or Q-Switched. Figure (5.6) reports the case of Q-Switch, the pump

beam induces gain to build up in the Ti:Sa, the regenerative amplifier is

working in CW when the ejector is off and finally as soon as the ejector is

turned on a pulse is ejected.

A regenerative amplifier can also be used as an amplifier for seed pulses,

this is the situation represented in figure (5.7). The injector traps the seed

pulse in the cavity, while the pump beam makes gain establish in the active

medium. Hence the pulses are amplified at each pass through the Ti:Sa (so

at each round trip in the cavity) and finally the ejector allows the pulse to

exit the cavity.

The pulse ejection and injection in RegA are performed by an acusto-optic

modulator (AOM) that works with high efficiency and so fast that manages

to exploit the 3 µs-long energy storage time of the Ti:Sa to produce stable

operation at very high repetition rate. Indeed this is the main feature of the

RegA: it overcomes the repetition rate limitations associated with the former

amplified system based on pulsed pump lasers and electro-optic Pockels cells.

Figure 5.8: RegA 9050 Optical Scheme
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The input beam from the Stretcher passes through the Faraday Rotator

and a single pulse is injected into the RegA by a SiO2 acusto-optic Cavity

Dumper (it is the AOM and it forms Bragg cell), as is well shown in figure

(5.8). Amplification occurs over 20 to 30 round trips, then a single pulse of

several µJ energy content is extracted first by the Q-Switch and then by the

Cavity Dumper (CD); hence the pulse returns through the Faraday Rotator

and is separated from the input beam path by a polarizer. The pulse then

exits the cavity in order to be compressed by the Compressor.

The CD and the Faraday Rotator are worth to be described a little deeper.

The CD is a SiO2 crystal that acts as a diffraction grating for the input seed.

The refractive index of the CD is modulated by a radio frequency (RF) signal;

the repetition rate of the RegA can be varied by changing the RF. There are

some photodetectors in the laser head that provide intracavity buildup time

and extracted power level signals to the electronic controller for optimization

of the RF phase of the CD pulses.

Figure 5.9: Seed pulse injection

The input laser beam is diffracted by the SiO2 crystal; the optical path

of the diffracted beam is a double-pass stage through the crystal, as can be

seen in figure (5.9), to obtain an higher diffraction efficiency.
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The same procedure takes place for the pulse ejection.

Figure 5.10: Faraday rotator

A Faraday rotator is an optical device that rotates the polarization of

light due to the Faraday effect; it works because one component of the input

light’s polarization is in ferromagnetic resonance (i.e. the pulse’s frequency

equals the precession frequency of the magnetization of the rotator, caused

by the torque exerted by an external field) with the material which causes

its phase velocity to be higher than the other component’s one. The plane

of linearly polarized light is rotated when a magnetic field is applied parallel

to the propagation direction, as it is reported in figure (5.10).

Faraday rotation is an example of non-reciprocal optical propagation.

Unlike what happens in an optically active medium, reflecting a polarized

beam back through the same Faraday medium does not undo the polarization

change the beam underwent in its previous pass through the medium. This

is the reason why the output beam can be separated from the input one with

a polarizer, despite of the double pass through the Faraday rotator.
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5.2.5 OPA 9850

The Coherent Optical Parametric Amplifier 9850 is a wavelength conversion

device that converts the RegA output to amplified femtosecond pulses tun-

able from 1200 nm to 1600 nm (OPA signal) at a 250-kHz repetition rate. At

the same time paired pulses with tunable wavelength in the infrared range

from 1600 nm to 2400 nm are produced (OPA idler).

Figure 5.11: OPA optical scheme

An OPA optical scheme is shown in figure (5.3). The 800 nm RegA output

enters the OPA and is split by M1 with 75 % of the energy going into the

OPA crystal (X1) via M2, passing through a waveplate (WP1), and from M3

to D1. The remaining 25 % passes through on Iris (Ir1) and is focused by the

lens L4 onto the Sapphire crystal (S), which produces a whitelight continuum

in the 460− 1600 nm spectral range. The whitelight (WL) is collimated by

lens L5.
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The WL then passes through an adjustable optical delay (first pass),

consisting of M4 and M5. These two mirrors share a common mount that

can be moved by an external micrometer so that the optical paths of the WL

and 800 nm at optic D1 exactly match.

The 75 % of the incoming RegA beam is steered by M2 and M3 to optic

D1 where it is combined with white light from M5 for a first pass trhough

the OPA crystal (X1).

At this stage a small amount of signal and idler are generated: the signal

is then separated from the 800 nm pump and is reflected by a second fixed

optical delay, mirrors M8 and M9. The 800 nm pump is reflected by an

adjustable (with an external micrometer) optical delay, mirrors M6 and M7,

hence it is recombined with the signal beam at D2 for a second pass through

the OPA crystal.

After the second pass the remnant pump beam exits the OPA via output

mirror M11. In our set-up the signal and idler are reflected out of OPA with

a gold mirror that is encountered by the two beams after the reflection by

the M10 mirror. (differently from the scheme in figure 5.11).

The signal wavelength can be changed by angle-tuning the crystal with

an external micrometer: this degree of freedom allows to choose from the

continuum a different wavelength to amplify for the signal wave.

The crystal of the OPA is a Type II BBO in collinear configuration, this

settlement provides more GVM than Type I, therefore shorter crystals are

required, but allows to filter easily signal and idler (by their polarization)

after the first pass. The Type II BBO is the reason why there is a waveplate

(WP1) in the pump’s optical path.
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We are going to give a brief description of two physical phenomena that

occur in this device: Optical Parametric Amplification and whitelight con-

tinuum generation.

The Optical Parametric Amplification is a non-linear optical process that

involves three waves: the signal, the pump and the idler. Basically the OPA

is a Difference Frequency Generation (DFG), so given two input waves (ω1

and ω2) they interact in a non-linear crystal, provided certain conditions (i.e.

phase matching), and the result is a third wave (ω3) whose frequency is the

difference between the two input waves’ ones. So the following relation holds

ω3 = ω1 − ω2 (5.2)

In a quantum mechanical approach this equation represents the energy

conservation: it is possible to obtain an ω3 photon only by the annihilation

of one ω2 and one ω1 photon.

Translating the equation (5.2) for the OPA case we get

ωi = ωp − ωs (5.3)

This equation is usually written in the following way:

ωp = ωs + ωi (5.4)

The main goal in performing an OPA is getting an intense signal wave

at the desired frequency; the idler’s generation is unavoidable cause of the

energy conservation condition. This doesn’t mean the idler is useless, in fact

we have uses it to extend the measurements in the infrared region.
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Besides the energy conservation there is another fundamental condition

to fulfill: the phase matching condition, which represents the momentum

conservation.

So

kωp = kωs + kωi
(5.5)

The phase matching condition is achieved by rotating the BBO crystal,

because this means changing the direction of propagation in a birifrangent

medium.

The main difference between OPA and DFG relies on the initial condi-

tions, in fact the two input waves in DFG have to be comparable in intensities;

otherwise in OPA there is a a pump beam (which is the shorter wavelength

one) and a very weak signal beam.

In the OPA the idler beam is generated by the non-linear interaction;

actually it is not the only result achieved with OPA. Indeed the amplification

of the signal takes place and its intensity reaches the same order of magnitude

of the pump’s one. Further details about OPA can be found in [5].

As far as the whitelight continuum is concerned it is a non-linear opti-

cal phenomenon. The continuum generation process is dominated by self-

focusing (SF) and self-phase modulation (SPM), both of which are based on

the Kerr optical effect: it consists of a nonlinear dependence of the refractive

index on the pulse’s intensity.
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This nonlinear effect becomes appreciable for high intense fields. In this

case we can write

n = n0 + n2I (5.6)

where n0 is the usual refractive index, intensity-independent, and I is the

laser pulse intensity.

Figure 5.12: Beam self-focusing in a Kerr medium

Self-focusing is the nonlinear optical effect in which the laser beam inten-

sity leads to a significant increase in the local index of refraction in the ma-

terial. The spatial variation in intensity of a Gaussian beam leads to change

in index in space and creates a positive lens in the Kerr medium (Sapphire

in the OPA) which causes the beam to collapse on itself (fig. 5.12).
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The phase of a traveling wave in a dispersive medium of length L is

φ = nkL = n2πL/λ. Let us consider a Gaussian pulse, so the intensity has

the following spatial structure: I = Ip exp[−2(r/w)2], where Ip is the peak

intensity, w is the spot size and r is the distance from the propagation’s

direction. The consequence of equation (5.6) on the pulse’s phase is a shift

that has the following value

δφ = −2πδnL/λ = (−2πn2IpL/λ) exp[−2(r/w)2] ≈ (−2πn2IpL/λ)×[1−2(r/w)2]

(5.7)

Hence in first approximation the phase shift δφ can be considered a

parabolic function of (r/w), which is equivalent to the previous statement

that the Kerr effect induces a positive lens in the medium.

Self-phase modulation is the temporal parallel of the spatial effect of self-

focusing. The temporal shape of the pulse creates a rapidly changing refrac-

tive index in time, so we can rewrite the equation (5.6) as time-dependent:

n(t) = n0 + ∆n(t) = n0 + n2I(t) (5.8)

In this framework also the phase of the traveling wave acquires a time

dependence φ(t) = n(t)kL = n(t)2πL/λ, and the phase shif is

δφ = −2πδn(t)L

λ
= −2πn2I(t)L

λ
(5.9)
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If n2 > 0 (the most common case) there is a decreasing of the frequency

(redshift) on the leading edge of the pulse

dn

dt
> 0→ ∆ω(t) =

d

dt
∆φ < 0 (5.10)

where it is supposed a eiωt pulse’s time dependence. Otherwise blue-shift

occurs on the pulse’s trailing edge. The spectrum of the continuum is not

symmetric about the center frequency, because the n2 non-linearity has a

time delay on the order of 10 fs. This implies that the leading edge of the

pulse doesn’t experience SF or SPM in the same measure of the trailing edge,

therefore conversion to shorter wavelengths is favored. The spectrum is so

more extended towards the ultraviolet region from the center wavelength

than towards the infrared frequencies.

The threshold for continuum generation is less than 0.5 µJ. Above this

threshold the energy output at visible wavelengths has been observed to be

nearly linear with input pulse energy.
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5.2.6 Pulse characterization

The pump and probe technique imposes some constraints on the laser pulses’

temporal and spatial features (see section 5.1), so there are some quantities

that must be known. In particular, we measured the spot size and the tem-

poral duration of the pump and probe pulses. These data allowed us to

calculate some peculiar properties of the laser beam:

• Pulse energy

EP =
P

Repetition rate
(5.11)

where P is the average power of the laser beam, detected by a power

meter.

• Fluence

F =
EP
A

(5.12)

where A is the beam spot area, A = πr2 where r is the radius of the

spot which depends on the focal length of the lens L for the pump and

of the spherical mirror SM1 for the probe. The spot size is measured

by the knife-edge technique. The fluence is a measure of the energy per

surface unit released by each pulse on the sample.

• Pulse intensity

IP =
Fluence

τ
=

P

A · τ ·Repetition rate
(5.13)
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where τ is the temporal duration of the pulse, which we measured

with the autocorrelation. In order to get numerical values of all these

quantities, we need first to know the beam spot size and the pulse

duration.

Knife-edge

The output of the laser system has a beam profile Gaussian in shape. In

order to measure the laser beam spot size, we used the knife-edge technique.

It consists of slicing the beam with a metallic blade and detecting the

transmitted intensity with a photodiode. The blade was mounted on a mo-

torized translator, controlled via software, that moved with 6 µm steps. The

measurement was performed placing the blade in the same position of the

sample, so that the same focus condition used in the pump and probe mea-

surement was achieved. The detector was placed just behind the blade, to

collect the whole transmitted power.

In figure (5.13) is reported the knife-edge measurement, in panels a) and

b) we reported the pump beam measurement. In a) the beam profile sliced by

the blade and acquired by the photodiode is reported. The shape obtained is

equivalent to a convolution of a Gaussian function (the pulse’s intensity) with

a step function (the blade); the integration is performed by the photodiode.

The real Gaussian profile of the pulse is recovered by differentiating the

output of the measurement (i.e. photodiode voltage VS blade position), so

we get the result shown in figure (5.13) b). We calculated the spot size by

the fit reported in the figure; the Full Width Half Maximum (FWHM) of the

Gaussian fit is considered the beam diameter. So the pump diameter results

D = (88.8± 2.1) µm.
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Figure 5.13: Knife Edge measurement: a) Pump beam profile integrated by the photodi-

ode; b) Pump beam profile with Gaussian fit (black line); c) Probe beam profile integrated

by the photodiode; d) Probe beam profile with Gaussian fit (black line).

We performed the same measurement on the probe at 1300 nm wave-

length. The results are reported in figure (5.13) c) and d). We obtained the

value of D = (30.3± 1.7) µm.

This result confirms the choice of the focusing elements (lenses and mir-

rors). As explained in section (5.1) a necessary condition to perform a pump

and probe measurement consists of using as probe a beam with smaller spot
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size than the pump’s one.

Autocorrelation

The autocorrelation measurement was used to determine the temporal

duration of the pump. Phenomena that occur on the femtosecond timescale

are out of the detection range of the ordinary electronic devices. That’s why

another approach is required to determine the duration of the ultra short

laser pulses. The time structure of the pulses can be assumed as a Gaussian.

The autocorrelation consists in the measurement of the following convolution

A(τ) =

∫ +∞

−∞
I(t)I(t− τ)dt (5.14)

The two functions that appear in this convolution are the intensities of

two Gaussian pulses equal in temporal width (this explains the name auto-

correlation) considered at time t and (t−τ). The integration is performed in

the range from t = −∞ to t = +∞ so that the autocorrelation is a function

of the delay τ between the two beams.

It is straightforward to get the relationship between the FWHM of the

autocorrelation and the FWHM of the input Gaussian pulse. This result

allows to determine the duration of the pump pulse by the measurement of

the autocorrelation’s one. In the case of Gaussian pulses the factor between

the two FWHMs is
√

2, it can be easily calculated because only Gaussian

integrals occur in the derivation.
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The autocorrelation is usually performed by splitting the same beam and

then focusing the two components on a non-linear crystal, in spatial and

temporal coincidence. The measurement is performed acquiring the second

harmonic produced by the input beam. In fact the relationship between

the FWHM of the second harmonic and the FWHM of the fundamental

wave is very similar to the one previously reported, that comes from the

autocorrelation definition (formula 5.2.6).

We performed autocorrelation on the pump beam and cross-correlation

measurement between the pump (800 nm) and the probe, tuned in nearly all

the range of the OPA.

Figure 5.14: Autocorrelation of the pump beam

The result of the pump autocorrelation is shown in figure (5.14); note

that the pulse duration value indicated in the picture has to be divided by

the deconvolution factor (
√

2), so the pump pulse had a duration of nearly

50 fs.
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The cross-correlation of the pump and the probe beams was performed in

the following way. A non-linear crystal (BBO) was put in the same position

of the sample, then the pump and the probe were directed on the BBO in

temporal and spatial coincidence.

The BBO was rotated in the phase matching condition for the Sum Fre-

quency Generation. The crystal has to be rotated to a different angular

position everytime the wavelength out of the OPA is changed. The Scan De-

lay was used to change the delay between the beams (exactly as in the pump

and probe technique). The sum frequency signal was blinking, because it

appeared when pump and probe were in coincidence and disappeared when

the Scan Delay put them out of this condition (i.e. the two beams were

separated by a time delay). The signal was finally acquired by a photodiode.

We report the measurement relative to the edge points and a middle

point of the spectral range for both the idler and the signal in figure (5.15).

We have reported the pulse durations on the figure: the outcome of this

measurement is that the temporal duration of the probe pulse is on the order

of 100 fs in all the range of OPA. We note that the some experimental traces

are not properly fitted by a Gaussian, which means that the laser profile is

not very sharp.

Once we have measured the pulse time width we can calculate the pump’s

fluence. Recalling equation (5.12) we get F = 1.03 mJ/cm2. This result was

obtained from a mean power value of 7.98 mW, which corresponds to the

100 % of the pump (pump intensity can be changed with the attenuator).

The measured mean power value has to be multiplied by 2, because the

chopper actually halves the laser repetition rate by alternating open and
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Figure 5.15: Crosscorrelation measurement (black lines are Gaussian fits).

closed windows. The pulse intensity can be calculated by applying equation

(5.13), we get I = 20 GW/cm2.
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5.3 Attenuator

The attenuator is composed by a motorized half-wave plate (that can be

rotated via software) and two Brewster windows that act as polarizers. By

moving the λ/2 the polarization of the beam is rotated, so the attenuator’s

output changes in intensity. The beam reflected by the two Brewster windows

exits the attenuator with vertical polarization.

Figure 5.16: Rotator’s calibration curve.

The calibration of the rotator is shown in figure (5.16), we performed a

scan by rotating the λ/2 for a 45 degrees range. An angular displacement θ

of the halve-wave plate induces a 2θ rotation in the polarization of the input

beam.
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This result follows straightforwardly from the Jones matrix of the λ/2,

that is

 Ex

Ey

 =

 sin2 θ − cos2 θ −2 sin θ cos θ

−2 sin θ cos θ cos2 θ − sin2 θ

 Ex0

Ey0

 (5.15)

where E0 represent the electric field of the beam incident on the half-wave

plate, while the left hand side of the equation contains the components of

the output beam.

Recalling the trigonometric relations:

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ
(5.16)

the 2θ polarization rotation induced by the λ/2 becomes evident.

So the angular range scanned in the calibration makes the input beam

polarization rotating from 0◦ to 90◦. This means that all possible orientations

relative to the optical axises can be accessed. The calibration reported in

figure (5.16) has been obtained rotating the half-wave plate of a complete

period.
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5.4 Lock-in Amplifier

The lock-in Amplifier used in the set-up is the Standford Research SR830m.

Lock-in amplifiers are used to detect very small AC signals. They use a

technique known as phase-sensitive detection to single out the component

of the signal at a specific reference frequency. Noise signals at frequencies

other than the reference frequency are rejected and don’t affect the measure-

ment. Lock-in amplifiers require a frequency reference (ωr), which in our

set-up comes from the chopper. The signal that enters the lock-in can be

written as Vsig sin (ωrt+ θsig) where Vsig is the signal amplitude. It is worth

to underline that this expression hold also for signals different from a simple

sinusoidal function; in fact the Fourier’s theorem states that each signal can

be decomposed as a sum of sinusoidal terms with different frequencies.

The SR830 generates its own sine wave that can be called lock-in refer-

ence; this signal has the form VL sin (ωLt+ θref ). Then the signal is amplified

and multiplied by the lock-in reference using a phase-sensitive detector (PSD)

or multiplier. The output of the PSD is simply the product of two sine waves:

Vpsd = VsigVL sin (ωrt+ θsig) sin (ωLt+ θref )

=
1

2
VsigVL cos [(ωr − ωL)t+ θsig − θref ]+

− 1

2
VsigVL cos [(ωr + ωL)t+ θsig + θref ]

(5.17)
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The PSD output is formed by two AC signals, one at the difference fre-

quency (ωr−ωL) and the other at the sum frequency (ωr +ωL). The output

is filtered through a low pass filter in order to remove the AC signals. The

only signal surviving is the difference frequency component, i.e. ωr = ωL. In

this case the filtered PSD output will be

Vpsd =
1

2
VsigVL cos (θsig − θref ) (5.18)

which is a DC signal proportional to the signal amplitude. The PSD

and low pass filter detect only signals whose frequencies are very close to

the lock-in reference frequency. If the input is affected by noise, noise at

frequencies very close to the reference one will result in very low frequency

AC outputs from the PSD (|ωnoise − ωref | is small). Only the signal at the

reference frequency will result in a true DC output and be unaffected by the

low pass filter: this is the signal to be measured.

For these reasons we need to make the lock-in reference frequency the

same as the signal frequency (i.e. ωr = ωL). Hence not only the frequencies

have to be the same, the phase difference between the two signals cannot

change in time, otherwise cos (θsig − θref ) will change and Vpsd will not be

a DC signal. This means that the lock-in reference has to be phase-locked

to the signal reference, this condition is achieved thanks to a loop called

phase-locked-loop (PLL).
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As already mentioned the PSD output is proportional to Vsig cos θ where

θ = (θsig − θref ) is the phase difference between the signal and the lock-in

reference oscillator. By adjusting θref we can make θ equal to zero, in which

case we can measure Vsig (cos θ = 1). Conversely, if θ is 90◦, there will be

no output at all. A lock-in with a single PSD is called a single-phase lock-in

and its output consists of Vsig cos θ.

This phase dependancy can be eliminated by adding a second PSD. If the

second PSD multiplies the signal with the reference oscillator shifted by 90◦,

i.e. VL sin (ωLt+ θref + 90◦), its low pass filtered output will be

Vpsd2 =
1

2
VsigVL sin (θsig − θref )

Vpsd2 ∼ Vsig sin θ

(5.19)

So there are two outputs, one is proportional to cos θ and the other to

sin θ. If we call the first output X and the second Y we get

X = Vsig cos θ Y = Vsig sin θ (5.20)

These two quantities can be thought as the components of a vector (i.e.

the signal); X is called the in-phase component and Y the quadrature com-

ponent, this is because when θ = 0 X measures the signal while Y is zero.

The phase dependency is removed by computing the magnitude (M) of

the signal vector, which results

M = (X2 + Y 2)1/2 = Vsig (5.21)
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A dual-phase lock-in, such as the one in our set-up, has two PSD’s, with

reference oscillators 90◦ apart and can measure X,Y and M directly.

The phase θ can be obtained by the evaluation of

θ = arctan

(
Y

X

)
(5.22)

Hence the lock-in basically multiplies all the components of input the

signal by a pure sine wave at the reference frequency. This process occurs

every 4 µs, this value represents the working frequency of the lock-in.

In the SR830 lock-in the product of this multiplication yields a DC output

signal proportional to the component of the signal whose frequency is exactly

locked to the reference frequency. The low pass filter provides the averaging

which removes the products of the reference with components at all the

other frequencies. So the lock-in measures the single Fourier component of

the signal at the reference frequency.

In general the input consists of signal plus noise, which is represented as

varying signals at all frequencies. The ideal lock-in responds only to noise

at the reference frequency; noise at other frequencies is removed by the low

pass filter following the multiplier.

Lock-in amplifiers, as a general rule, display the input signal in Volts RMS

(Root Mean Square), it means that when the lock-in displays a magnitude

of 1 V the actual signal is (1 ·
√

2) V intense.
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In our set-up the reference comes from the chopper, the signal is acquired

by a photodiode and then enters the lock-in (see figure 5.1). The photodiode

is a InGaAs detector, so it has a time-response value typical of the p-n

junctions that are in the range of 10−100 ps. On the other hand, the lock-in

cannot deal with spiked input, thus we coupled a 10 kΩ resistance to the

photodiode to integrate the signal; the value of the resistance was chosen in

order to integrate the laser pulses (emitted at a 250 kHz repetition rate) and

not to affect the 13 kHz modulation induced by the chopper.

The signal detected by the photodiode is split into two parts, one enters

the lock-in and the other is acquired via computer. The latter contains the

data about the reflectivity (R), which we used to evaluate ∆R/R.

We set the integration time of the lock-in to a value of 1 ms; this choice

was dictated by the following constraints:

• the integration time has to be larger than the chopper’s period, other-

wise the lock-in cannot acquire a whole modulation cycle of the chop-

per;

• the upper limit is set by the duration of the fast scan (200-500 ms).
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Figure 5.17: Sledge

5.5 Scan Delay

The APE Scan Delay is a drive unit for carrying out linear displacements of

optical components; in our set-up this device is used for the generation of an

optical delay. The optical delay line consists of a motor module and a control

electronics module. The former contains the linear drive with the optical

element (retroreflector) and the position measuring system. The latter allows

to control the optical delay induced on the beam and the time interval (called

the rise time) required by the device to perform a single scan.

The Scan Delay is mounted on a motorized sledge, represented in figure

(5.17), controlled via software.

The Scan Delay is used for the fast scan measurements. The total range

of the Scan Delay (1-50 ps) has been exploited to measure the fast dynamics

in the sub-nanosecond timescale. The choice of the rise time value determines

the measurement’s resolution and sets a constraint for the choice of the lock-

in integration time.
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It is interesting to calculate the time resolution of our measurement; the

number of representative points is given by the duration of a single scan (that

equals the rise time) and the lock-in integration time (see subsection 5.4). A

typical rise time value is 0.2 s, so we have 200 points. The actual resolution

is obtained by dividing the scan range for the number of the points. Let us

suppose to perform a 10 ps scan; in this case our resolution is

10 ps

200 pt
= 50 fs/pt (5.23)

The fast scan technique allows to eliminate the problem of noise on long

time scale. For example the oscillations of the laser intensity occur on a time

range of 1 hour; the fast scan makes possible to perform a strongly averaged

measurement in a much shorter time interval.

It could be possible that the dynamics to study is a longer time scale. In

this case the retroreflector is kept fixed and the whole Scan Delay is moved

by translating the underlying sledge. This technique (slow scan) allows to

achieve delays on the order of 2 ns.
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5.6 Cryostat and vacuum system

The LT-3-110 Heli-tran Liquid Transfer Refrigeration System is used for con-

ductive cooling of small samples in low-temperature experiments in the range

from 2 K to 300 K. Cooling is accomplished by the controlled transfer of liq-

uid helium (or nitrogen) through a high-efficiency transfer line to a heat

exchanger adjacent to the sample interface. The heat exchanger is hollow

and the liquid helium flows in the inside.

The liquid cryogen is transferred through the supply dewar bayonet tube

and the transfer line to the cold stage of the refrigerator by externally pres-

surizing the supply dewar (see figure 5.18). The pressure is 2.5 psig (1 psig

=68.948 · 10−3 bar) in normal operation regime and reaches the value of 5

psig in the cooling process from room temperature.

Liquid heating is limited during the cooling process by the use of two

coaxial pipes in the transfer line: the inner helium flow cools the sample,

while the outer works as a thermal insulator.

The liquid flow is regulated by a needle valve at the tip of the refrigerator

cold end bayonet. The valve is engaged by an adjustment knob on the transfer

line, flow is directed through a heat exchanger in the refrigerator which serves

as the interface for the sample holder. A resistive thermofoil heater, tied to

the cold stage, allows for sample holder operation above the liquid cryogen’s

normal boiling point.

The temperature of the cold stage and of the sample holder can be mon-

itored thanks to two cernox sensors connected to a controller (LakeShore

331).
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Figure 5.18: Flow diagram
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A radiation shield minimizes the radiant heat load on the cold stage, this

shield is cooled by helium exhausting from the heat exchanger. The shield

has a little window that allows the laser beam to impinge the sample.

The refrigerator must operate in vacuum to eliminate convective heat

transfer to the cold internal components in order to keep cryogenic temper-

atures; the refrigerator in fact was placed in a vacuum chamber.

The pumping system is composed of two pumps from EDWARDS: the

pre-pumping XDS Scroll pump, plus the EXT75DX turbomolecular pump.

This system let us work in high vacuum conditions at a pressure of ∼ 7 ·10−7

mbar. These vacuum conditions cannot completely avoid the condensation

of impurities (in particular water) on the sample’s surface. When the sample

has been cooled for some hours (15-20) we can observe a degradation of the

reflectivity signal, due to the impurities. The sample had been cleaved before

we placed it in the vacuum chamber.
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5.7 Characterization of the sample

Figure 5.19: Measurement of Tc in Y-Bi2212 OP.

The present work consists of an experimental analysis of optimally doped

Bi2Sr2Ca0.92Y0.08Cu2O8+x (Y-Bi2212 OP). The value of the critical tempera-

ture has been measured by performing a magnetic susceptibility experiment.

When the phase transition which leads the system in the superconducting

state occurs, a sudden and sharp change in the susceptibility is observable: in

fact superconductivity makes the system diamagnetic. If the temperature of

the system is finely changed, while the magnetic susceptibility is measured,

a sharp variation of this quantity suggests that the phase transition has just

taken place. This procedure allows the precise determination of the critical

temperature. Further details about this experimental technique can be found

in [2]. The measured critical temperature of the sample is Tc=95 K, as it is

shown in fig. (5.19).



6. Time-resolved optical properties

In this chapter we report the experimental results of this work. The data of

the time-resolved reflectivity measurements on the superconducting Y-Bi2212

are shown; the experimental conditions are also described.

6.1 Experimental Data

The goal of this work consists in performing time-resolved reflectivity mea-

surement on High-Tc superconductors, in particular our sample was

optmillay doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ (Y-Bi2212 OP). We acquired the

data in the infrared region of the spectrum, in fact the probe used is the OPA

(described in section 5.2.5) which works in the spectral range 1200 − 2400

nm. We performed measurements scanning this spectral region by 50 nm

wide steps.

We performed measurements at 15 µJ/cm2 of fluence. The calculation of

the fluence is reported in section (5.2.6).

The total scan range of the Scan Delay (see section 5.5) was 20 ps. The
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outcome data are an average of 600 scans, the acquisition lasted about 10

minutes per each wavelength. The signal to noise ratio is 105.

These measurement were performed at three different temperatures: 17 K

(superconducting state), 100 K (pseudogap state) and 300 K (normal state).

In this section we focus on the data in the superconducting state, since we

want to investigate electron-boson coupling in this phase. The results of the

measurement in the pseudogap and normal state are reported in appendix

(B).

In the upper panel of figure (6.1) we report the δR/R signal as a function

of the delay, for the different wavelengths. In the lower panel we show a 2D

plot of the same data. The discontinuity of the measurements in the 2D plot,

between 1550 and 1600 nm, are due to the low OPA signal at degeneracy

(i.e. idler and signal have the same wavelength).

Let us look at the single wavelength data (upper panels of fig. 6.1). A

sharp change of the signal occurs at zero delay, which corresponds to the

pump pulse incidence on the sample. Two different kinds of behavior can be

observed from the data. For frequencies between 1100 nm and 1300 nm a

positive peak appears at zero delay, then the signal decreases and becomes

negative. All the other frequencies show a negative peak at zero delay and

all the relaxation dynamics is characterized by negative values of δR/R.
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Figure 6.1: Upper panel: single wavelength scans in the whole OPA’s range at 15 µJ/cm2

of fluence (T=17 K). Lower panel: 2D plot of the same data .
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Figure 6.2: Single wavelength scans which show a change of reflectivity sign.

Figure 6.3: Fit performed on single wavelength measurements: the fast dynamics is

accounted for by the fit. The two wavelengths reported are 1300 nm (left panel) and 1100

nm (right panel), which are the edge values of the spectral range of interest.
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The described behaviors are even more manifest in the 2D plots of the

data: the red feature corresponds to the positive sharp peak that occurs

between 1100 nm and 1300 nm. The change of sign for these frequencies in

the reflectivity is clear (passage from red to blue), as the dynamics negative

at every delay values typical of all the other frequencies.

We want to focus on the frequencies which exhibits the change of sign in

their reflectivity (fig. 6.2). We fitted these data in order to give an estimation

of the relaxation dynamics duration. We report in fig. (6.3) the fit performed

at 1300 nm (left panel) and 1100 nm (right panel). We chose to show these

two particular frequencies because they are the edges of the spectral range

of interest.

The fit function contains the sum of two exponential functions, because

from fig. (6.3) it looks like that two dynamics contribute to the signal, so

H(t)[Ae−t/τ1 +Be−t/τ2 ] (6.1)

where τ1 and τ2 are the decay time of the two dynamics, H(t) is a step

function that accounts for the pump pulse impinging on the sample. In prin-

ciple we should calculate two convolutions of eq. (6.1) with two Gaussian

functions: one representing the pump pulse and the other representing the

probe. We considered only a single convolution with a Gaussian function,

whose temporal Full Width Half Maximum (FWHM) equals the value ob-

tained by the cross-correlation measurement on the pump and the probe.

The results of this measurement are reported in section (5.2.6): we use a

Gaussian with a 100 fs FWHM.
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From the fit we got two decay times on different scales:

1100 nm 1300 nm

τ1 (1744.6± 78.7) fs (3773.7± 28.7) fs

τ2 (216.1± 5.8) fs (209.4± 1.9) fs

The fast dynamics results on the order of 200 fs, whereas the slow dy-

namics is in the picosecond timescale.



7. Analysis and discussion of the re-

sults

In this chapter we discuss the data in order to give a physical interpretation

to the results. We introduce the theoretical models, that give a description of

the non equilibrium dynamics occurring in the sample during a time-resolved

experiment. The first is the two-temperature model, suitable to describe

metals. Then we discuss its extension leading to the three-temperature model

which can be applied to the strongly correlated materials, like the high Tc

superconductors. Finally we deal with the Rothwarf and Taylor model, which

was proposed to describe the superconducting state for a BCS material; it

can be applied also to the cuprates. Then the analysis performed on the data

is reported.
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7.1 Two-temperature model

The dynamics of the excitations photo-injected in a metal in normal state

(i.e. T=300 K) can be described by the two-temperature model [23]. The

dynamics accounted for by this model is usually covered by the bottleneck

in the superconducting state (as explained in chapter 4). This is the reason

why the two-temperature description does not apply in this case.

The two-temperature model describes the physics of a pump and probe

experiment. The initial temperature of electrons and lattice (i.e. phonons, in

a quantum mechanical picture) is the same, so the system in an equilibrium

state.

When the pump pulse impinges the sample’s surface, the electronic tem-

perature (Tel) is suddenly raised up, whereas the lattice temperature (Tlatt)

is left unchanged. The system is out of equilibrium, after some tens of fem-

toseconds the electrons reach the equilibrium condition among themselves.

Hence the electrons begin to interact with the phonons, until they achieve

the same temperature value (i.e. they are in equilibrium): this means that

the Tel decreases while Tlatt increases.

After a few hundreds of femtoseconds (200-300 fs) the electrons and the

phonons are in equilibrium, so the system has globally a temperature value

higher than the initial one. Heat diffusion from the surface to the bulk leads

to the recovery of the initial temperature within several nanoseconds.

The phenomenological two-temperature model describe this physical pic-

ture by means of the two following equation
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
Cel(Tel)

∂Tel
∂t

= Iext(t)−G · (Tel − Tlatt)

Clatt(Tlatt)
∂Tlatt
∂t

= G · (Tel − Tlatt)
(7.1)

where Cel and Clatt are the electronic and phononic specific heat. Iext(t)

represents the external perturbation (i.e. laser pulse in our experiment).

These equations describe the temporal evolution of the electronic and phononic

temperatures. The factor G represents the decay time of Te, after the initial

external-induced sharp rise. It is of course the same time constant that drives

the dynamics of Tlatt, it is of the order of 200-300 fs as aforementioned.

Considering the physical dimensions of the terms appearing in eq. (7.1)

G = γe−phCel where γe−ph is the inverse of the time decay, so γe−ph = 1/τ .

There is a connection between γe−ph and the electron-phonon coupling con-

stant λ. This link is provided by the Allen formula (derived in [24]), namely

γe−ph =
3~λ < ω2 >

πkBTel
(7.2)

The coupling constant λ is defined as

λ = 2

∫ ∞
0

dΩ α2(Ω)F (Ω)/Ω (7.3)

where α2(Ω)F (Ω) is the spectrum of the phonons.
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By solving eq. (7.1) it follows that the electronic temperature decreases

on a time scale of

τ =
πkBTel

3~λ < ω2 >
(7.4)

7.2 Three-temperature model

Experimental observation of the electron-phonon coupling in cuprates has

been performed both in normal and superconducting state. In the latter

case the techniques used are other than optical [28] [27]. The experimental

evidence reported in [27], which is relative to a Time Resolved Angle Resolved

Photoemission Spectroscopy (TR-ARPES) experiment on Bi2212, shows two

dynamics appearing in the decay process of the electronic temperature (Te)

following the sharp increase due to the pump pulse excitation. A drop of Te

occurs in ∼ 100 fs, which is followed by a decay lasting several picosecond.

The slower relaxation has not been observed in usual metals but has been

reported in anisotropic materials.

The interpretation provided by the authors is sketched in fig. (7.1). Two

subset of phonons have been considered:

• a limited number of modes, which interacts more strongly with the

electrons (hot phonons);

• a complementary group of nearly non-interacting phonons (cold phonons).
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Figure 7.1: Sketch of the energy transfer during the relaxation process. Hot electrons

generate hot phonons with characteristic time τα, while hot phonons dissipate their energy

on a time scale τβ � τα.

Electrons transfer energy to the phonons that are more strongly coupled

with characteristic time τα = 110 fs. This small subset of phonons acquires

a temperature Tp > Tl, where Tl is the lattice temperature (which is, at this

stage, still equal to the initial equilibrium value, like in the two-temperature

model). Already after τ = 3τα = 330 fs the hot electrons and hot phonons

reach a common temperature (i.e. equilibrium) Tp ∼ Te, the dynamics

of hot electrons and hot phonons become similar. The electronic cooling

can still proceed due to a residual scattering with the cold lattice modes.

Moreover the hot phonons are expected to dissipate their energy by means

of anharmonic decay. The relaxation by anharmonic cooling and scattering

with cold phonons takes place with time constant τβ = 2 ps. After 3τβ the

sample surface is in local equilibrium, heat diffusion from the surface to the

bulk leads to the recovery of the initial temperature value.

Quantitative description of this physical framework is obtained by an

extended version of the two-temperature model, which leads to the so-called

three-temperature model [27].

Let us consider the approximation of the hot phonon spectrum F (Ω)

provided by the Einstein model: F (Ω) = δ(Ω−Ω0). These modes are coupled
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to the electrons through the dimensionless constant

λ = 2

∫ ∞
0

dΩ α2(Ω)F (Ω)/Ω (7.5)

The rate equations describing the temporal evolution of the three tem-

peratures are given by:

∂Te
∂τ

= −3λΩ3
0

~πk2
B

ne − np
Te

+
P

Ce
(7.6)

∂Tp
∂τ

=
Ce
Cp

3λΩ3
0

~πk2
B

ne − np
Te

− Tp − Tl
τβ

(7.7)

∂Tl
∂τ

=
Cp
Cl

Tp − Tl
τβ

(7.8)

where ne and np are Bose-Einstein distributions (ne,p = (eΩ0/kBTe,p−1)−1)

evaluated at Te and Tp, P is the laser energy density. In the rate equations

there are also the electronic specific heat (Ce), the hot and cold phonons

specific heat (Cp and Cl).

Let us pinpoint with f the fraction of total modes that are strongly

coupled. Electron-phonon scattering with the (1 − f) lattice modes, that

are weakly coupled, barely contributes to the temporal evolution of Te and

has been therefore neglected. In [27] an estimation of f is reported, it results

f ∼ 0.2. It follows that the 80% of the phonon modes have very weak

interaction with the electrons. Two reason can explain this issue

• only a few branches of phonons are significantly coupled;
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• the interaction is highly anisotropic.

In conclusion experimental evidences have revealed that the description

provided by the two-temperature model is inappropriate for the strongly cor-

related materials. In these systems the photoexcited carriers may anisotrop-

ically and preferentially couple to a subset of phonon modes, resulting in the

failure of assignment of a single temperature to the whole lattice structure.

No optical experiment so far has shown the electron thermalization dy-

namics in the superconducting state; this is the new thing of this thesis work.

This evidence allows us to apply the three-temperature model to our data.

7.3 Rothwarf-Taylor model

Rothwarf and Taylor proposed [25] a phenomenological model, suitable to

describe the dynamics of the superconductvity recovery in a non-equilibrium

system. This is exactly the physics that lies under a pump and probe exper-

iment performed on a superconductor in the superconducting state.

The model relies on two nonlinear differential coupled equations, which

describe the temporal evolution of the quasiparticle and high frequency phonons

(ω > 2∆, where ∆ is the superconducting gap) populations.

The Rothwarf-Taylor equations were originally suggested for BCS su-

perconductors, that’s why the quasiparticle-phonon interaction is taken into

account. The phonon contribution in this model is not related to a particular

phononic branch, it is a general phonon.

The physical process described by the Rothwarf and Taylor model is

shown in figure (7.2): the pump pulse breaks some Cooper pairs, thus
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Figure 7.2: Superconductivity recovery: these three stages are well described by the

Rothwarf-Taylor equations. All these interactions result in a slow dynamics.

fermionic excitations are injected in the system. These quasiparticles tend to

recombine, hence they form pairs in order to establish the superconducting

state again.

When two quasiparticles recombine in a Cooper pair a phononic radiation

is emitted; in fact the two quasiparticles involved in the recombination have

to loose an amount of energy equal to 2∆, which is the binding energy of a

Cooper pair. Thus the phonon is emitted for the energy conservation, which

means that its energy is 2∆ (so it is a High Frequency Phonon), the HFP

is enough energetic to break another Cooper pair. The lifetime of the HFP

determines the duration of the superconductivity recovery dynamics: the

slower is the decay of these phonons the more Cooper pair get broken. This

results in a slowdown of the dynamics, this effect is called bottleneck.

The Rothwarf-Taylor model is based on two coupled equations that ex-

press the temporal evolution of the quasiparticles and HFP populations, rep-

resented by n and b respectively. The equations are
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
dn

dt
= Iqp(t) + ηp−Rn2

dp

dt
= Ip(t)− η

p

2
+R

n2

2
− γ(p− pT ).

(7.9)

where Iqp(t) and Ip(t) represent the external sources of quasiparticles and

HFP respectively; so in our experiment these terms account for the effects

of the pump pulse. For this reason Iqp(t) and Ip(t) have the same Gaussian

temporal profile of the pump pulse. Usually Ip(t) is neglected, because the

main effect of the pump pulse is breaking Cooper pairs, so that electronic

quasiparticle are injected in the system (i.e. only n is affected).

The rate of recombination with the creation of a HFP is R, whereas η

is the probability for pair breaking by HFP absorption. The factors of 1/2

arise in the phononic equation because one boson creates two quasiparticles;

the coefficients η and R are considered time-independent for simplicity. In

principle they could depend on the excitation (laser pulse) intensity and on

the temperature, by the way it has been reported in [26] that this dependance

can be neglected for a certain temperature range.

The parameter γ represents the rate at which the HFP are removed from

the system by processes other than pair excitation. Physically γ is governed

by the fastest of the two processes: anharmonic decay of HFP (to an energy

less than 2∆, so that they are no more able to break a Cooper pair) and

diffusion of HFP into the thermal bath. Even if this last process is usually

slow, it is very important in order to bring the system to the equilibrium

condition.

In thermal equilibrium at temperature T the number of phonons is pT
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(Bose distribution), so b − bT is the bosonic over-population due to the re-

combination process or to the external perturbation. The term γ(p − pT )

represents the bottleneck: it describes the lifetime of the HFP in the system,

considering both the overpopulation and the rate of the decay process.

The dynamics of the recombination is determined by the values of the

parameters R, η and γ. Suppose that γ � η: in this case a HFP would

create two quasiparticles more likely than diffuse into the thermal bath. The

consequence is that the phonon population increases until a condition of

detailed balance equilibrium is achieved, namely ηb = Rn2. This last equa-

tion of course means that the rate of recombination equals the quasiparticles

creation’s rate.

When this condition is achieved the two populations are strongly cou-

pled, so they have a slow dynamics featured by the common parameter γ.

In this framework the decay of the quasiparticles results to be slow, this

trend (imposed by the detailed balance condition) is called bottleneck regime.

There are obviously other regimes, for example no bottleneck is observed if

γ � η. The step required to achieve the detailed balance condition is called

prebottleneck. The above description is suitable for BCS superconductors,

with the only contribution of the phonons, instead of a broad bosonic spec-

trum. In the case of the high Tc superconductors there is an open issue

concerning whether the cuprates are in the bottleneck regime (like the BCS

materials) or not. In this second case the relaxation process is driven by

different interactions, like the bi-particle recombination [29].

We mention the work of Kabanov [26] in which he found analytical so-

lutions to the Rothwarf-Taylor equations in different regimes; he also com-
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pared these solutions to the experimental data. Kabanov’s claim is that the

cuprates belong to the bottleneck regime, like the BCS materials.

7.4 Data Analysis

From the data reported in section (6.1) we noticed that some frequencies show

a change in the reflectivity sign. We want to study the dynamics related to

this frequency shift of the zero value of ∆R/R at different delays.

For this reason we performed the following data analysis: we divided

the delay axis of the 2D plot of fig. (6.1) in 20 fs width vertical slices,

then we acquired the average values of ∆R/R for each wavelength over this

time window. This procedure allowed us to find out which frequency has a

vanishing value of the reflectivity variation at every delay, as shown in fig.

(7.3).

Then we plotted the extrapolated values of the wavelength versus the

delay. We obtained the graph shown in figure (7.4).

We fitted the data with the following fit function

H(t)[A(1− e−t/τ1) +B(1− e−t/τ2)] (7.10)

in which two exponential functions appear, representing two dynamics of

time constants τ1 and τ2. The term H(t) is a step function that describes the

pump pulse incidence on the sample. In principle we should calculate two

convolutions of eq. (6.1) with two Gaussian functions: one representing the

pump pulse and the other representing the probe.
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Figure 7.3: Upper panel: 2D plot of the data. The green lines represent some of the 20

fs slices in which we divided the delay axis. The dots are put in correspondence of the

reflectivity change of sign. Lower panel: each trace shown represents the average values of

∆R/R calculated over a single vertical slice. The frequency shift of the reflectivity change

of sign is clear.
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We considered only a single convolution with a Gaussian function, whose

temporal Full Width Half Maximum (FWHM) equals the value obtained by

the cross-correlation measurement on the pump and the probe. The results

of this measurement are reported in section (5.2.6): we use a Gaussian with

a 100 fs FWHM. The values of the time constants obtained from the fit are

reported in the following table

τ1 = (340± 20) fs

τ2 = (1.9± 0.6) ps

In order to give an interpretation to these values, we performed a nu-

merical simulation based on the three-temperature model (see section 7.2).

The result is shown in fig. (7.5): the traces reported were obtained using

our experimental conditions as input parameters (reported in the caption).

The electron-phonon coupling constant (eq. 7.5) and the frequency of the

hot phonon spectrum, considered in the simulation, come from the literature

[27].

As shown in fig. (7.5) we fitted the electronic temperature decay dynam-

ics. We used the following function

Ae−t/τ1 +Be−t/τ2 (7.11)
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Figure 7.4: Plot of the frequencies with ∆R/R = 0 extrapolated and put in evidence in

fig. (7.3). The red line is the fit performed with the function reported in eq. (7.10).

This two time constants obtained from the fit are

τ1 = (355± 1) fs

τ2 = (2.2± 0.1) ps

These decay values are confident with the time constants obtained from

the data. This means that the two dynamics, related to the frequency shift of

the ∆R/R = 0 point, are accounted for by the three-temperature model. As

far as the physical interpretation is concerned, the slower dynamics describes
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Figure 7.5: Simulation based on the three-temperature model. Input parameters: Flu-

ence=15 µJ/cm2, T=20 K, λ = 0.07, Ω0 = 70 meV, energy density=0.6 J/cm3. The

dashed black line is the fit to the Te decay.

the thermalization between the cold lattice modes and the hot phonons,

which are in equilibrium with the electrons at this stage (see section 7.2).

At the present moment we are not able to give a sure physical interpreta-

tion to the fast dynamics: it is related to the thermalization of the electrons

with the hot phonons, so to the electron-phonon coupling. However we can-

not state wether this process is driven by the the electrons or by the phonons,

in fact during the thermalization process both the temperatures (Te and Tp)

change simultaneously.

Previously we mention that the electron-phonon coupling constant used

in the simulation was taken from the literature. Actually we chose the small-
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est value in a range proposed in [27], namely λ = 0.07. In [15] it is reported

the coupling constant between the electrons and the entire phonon spec-

trum, which is equal to λv = 1.53. The value we used is smaller because it

describes the coupling with a subset of phonon modes, whose contribution is

not predominant, considering the difference in the coupling constant values.

The three-temperature model (with λ = 0.07) predicts the same time

constants that we actually observed. It means that our experimental evidence

is about the interaction of electrons with a subset of phonons, which is not

the most coupled in the whole phonon spectrum.

The dynamics related to the more coupled phonon modes should in prin-

ciple occur on a shorter time scale: considered the difference of two orders

of magnitude between λ and λv, the femtosecond temporal resolution could

not be enough to detect such a fast process.



8. Conclusions

In this work we have reported the direct observation of a dynamics due to the

electron-phonon interaction on superconducting Y-Bi2212 optimally doped,

with an optical measurement. This experimental evidence has never been

previously reported in the literature.

We noticed a femtosecond dynamics from the data, which is the finger-

print of the electron-phonon coupling.

We interpreted the data in the picture of the three-temperature model,

which predicts a trend for the electronic temperature driven by two exponen-

tial decay times. These time constants are almost equal to those describing

the dynamics appearing in our data.

The slow dynamics can be interpreted as the thermalization process be-

tween the hot phonons and the cold lattice modes, as described by the three-

temperature model.

The fast dynamics has not a clear physical interpretation yet: the process

behind it could be driven by electrons or phonons. A further development

of this work consists in performing a differential fit of the ∆R/R data, by
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disentangling the electronic and bosonic temperatures in the Kernel func-

tion (see section 3.2). This procedure should allow us to figure out wether

the fast dynamics is caused by the variation of the electronic or phononic

temperature.

Another possible prosecution could deal with a refinement of the three-

temperature model, by taking into account a more realistic phonon spectrum

for both the hot and the cold lattice modes.

Moreover it could be very interesting to apply the three-temperature

model to the interaction between electrons and spin fluctuations. Consid-

ering the combined effect of the phonon and spin fluctuations coupling to

the electrons, it should be in principle possible to figure out wether a BCS-

like mechanism (considering the interaction between electrons and a broad

spectrum of bosons as the pairing glue) can explain the onset of supercon-

ductivity in the cuprates.



A. Optical constants

The optical constants are all connected, which means that by knowing only

one of them it is possible to calculate all the others. The refractive index is

defined as

n2 = ε (A.1)

Considering that we are dealing with complex quantities, we have

n2 = (n1 + in2)2 = n 2
1 − n 2

2 + 2in1n2 (A.2)

ε = ε1 + iε2 (A.3)

so we get

ε1 = n 2
1 − n 2

2 (A.4)

ε2 = 2n1n2 (A.5)
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Hence by inverting these formulas we arrive to

n1 =
1

2

[
ε1 +

√
ε 2

1 + ε 2
2

]
(A.6)

n2 =
1

2

[
ε1 −

√
ε 2

1 + ε 2
2

]
(A.7)

Besides we can evaluate the optical conductivity σ(ω), which is related

to the dielectric function by

ε(ω) = 1 +
i4π

ω
σ(ω) (A.8)

If we are interested in the real and imaginary part we get

ε1(ω) = 1− 4π

ω
σ2(ω) (A.9)

ε2(ω) =
4π

ω
σ1(ω) (A.10)

Let us now derive the eq. (3.16), which represents the reflectivity of light

at normal incidence onto an interface vacuum-solid surface.

Considering the boundary condition at the interface, for the three waves

represented in figure (A.1), we get

Ei + Er = Et (A.11)

where the subscripts i, r and t represent respectively the incident, re-

flected and transmitted waves at the interface.
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Figure A.1: Illustration of incident, reflected and transmitted waves at vacuum-crystal

interface.

Similar conditions hold for H but with a change in sign for Hr. We must

remember that H is orthogonal to E in the sense that E×H is in the direction

of the wave propagation. Thus if Ei and Er are in the same direction at the

interface (see figure A.1), Hi and Hr must be in opposite directions, so that,

Hi −Hr = Ht (A.12)

In the vacuum |E| = |H|, whereas in the medium |H| = n |E| (n is the

complex refractive index). So we arrive to

Ei − Er = nEt (A.13)
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Eqs. (A.11) and (A.13) are easily solved to yield a reflectance wave am-

plitude

r =
Er
Ei

=
1− n
1 + n

(A.14)

The reflectivity is then given by

R = r∗r =

∣∣∣∣1− n1 + n

∣∣∣∣2 (A.15)

=
(1− n1)2 + n 2

2

(1 + n1)2 + n 2
2

(A.16)

Hence this treatment proofs eq. (3.16). This result can be made ε depen-

dent

R =

∣∣∣∣1−√ε1 +
√
ε

∣∣∣∣2 (A.17)

Let us now show the calculation of the integral expressed in eq. (3.18).

We make use of the eq. (3.11) and we get:

∫ ∞
0

ωε2(ω) =
4πNe2Γ

m

∫ ∞
0

ω2dω

(ω2
0 − ω2)2 + Γ2ω2

(A.18)

= ω 2
p Γ

∫ ∞
0

ω2dω

(ω0 + ω)2(ω0 − ω)2 + Γ2ω2
(A.19)

For Γ small, significant contributions come only for ω0 ≈ ω.
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Thus

∫ ∞
0

ωε2(ω) =
ω 2
p Γω2

0

4ω2
0

∫
dω

(ω0 − ω)2 + Γ2
(A.20)

=
ω 2
p Γ

4

2

Γ

[
arctan

(2ω − 2ω0)

Γ

]∞
0

(A.21)

=
1

2
πω2

p (A.22)

This result is exact even for interacting many-electron systems, as it is

shown in [8].



B. Time-resolved reflectivity data

In this appendix we report the data acquired in the pseudogap state and in

the normal state.

Alle the graph shown are relative to measurement performed at 30 µJ/cm2

of pump fluence. The calculation of the fluence is reported in section (5.2.6).

The delay set by the Scan Delay (see section 5.5) between the pump and

the probe pulses was 20 ps, the outcome data are an average or 600 scans.

The pseudogap data don’t show any change of sign in reflectivity. In-

stead in the normal state the usual dynamics well described by the two-

temperature model appear.

The white stripe in the spectra corresponds to the degeneracy frequency

of the OPA (namely 1600 nm); we weren’t able to get enough power from

the OPA at this wavelength to perform a measurement.
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Figure B.1: Upper panel: single wavelength scans in the whole OPA’s range in pseudogap

(T=100 K). Lower panel: Spectrum acquired in pseudogap state (T=100 K).



B. Time-resolved reflectivity data 129

Figure B.2: Upper panel: single wavelength scans in the whole OPA’s range in the

normal state (T=300 K). Lower panel: Spectrum acquired in normal state (T=300 K)
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Ringrazio in maniera particolare il mio relatore Claudio Giannetti, che

nella scrittura di questa tesi ha tentato (spero non invano) di insegnarmi

alcuni principi fondamentali dell’approccio all’attività scientifica, che proprio
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persona che stimo moltissimo e reputo veramenta amica; Federica per le

iniezioni di stima e fiducia a livello personale.

Infine non posso non citare quella che definisco sempre come la mia ”sec-



onda famiglia”: il Club28. Per me non è solo una società che mi ha dato la

possibilità di giocare (nonostante gli scarsissimi mezzi tecnici) e di allenare,

ma è un ambiente che mi ha accolto anni fa (quando ancora si chiamava

Team Exodus) e in cui ora mi sento più che a mio agio, non solo per il modo

di vivere la pallacanestro. Un ringraziamento vivissimo va a tutti: i ragazzi

delle giovanili, i miei giocatori-compagni di squadra e dirigenti. In particolare

voglio citare Carlo Cotelli, che è la vera colonna portante del Club28: con il

suo impegno ha creato un ambiente famigliare, in cui i giocatori e allenatori

possono vivere la pallacanestro con serenità. Tra tutte le altre persone ri-

cordo Matteo ”Cot” Cotelli che ha condiviso con me la pallacanestro ad ogni

livello: giocata, allenata (ricordo il corso allenatori, i clinic del maledetto

PAO e i playoff sfiorati l’anno scorso) e tifata, con le trasferte a Milano,

Bormio, Siena e Barcellona. Per me è stato un piacere condividere queste

esperienze con una persona con cui ho molto in comune (Fortitudo a parte!),

ma che soprattutto è uno dei mie più cari amici.


