
����������������	�����
��������������������

���������	
��������	���������������
������������������������

�������������������������

��������	�
������

�����������������������

 ����!"� #�!#�"!�$�#%�&#�#�$

����
�����'� �����(��)�	������

	��������������������������
�����������������������

(��*��&��(����+����

	����������������������������������������

 ��������)��������

	����������������������������������������

!�*����'�(��*��$�� ������		�

	��������������������������������������������������������
 �!��

 ��!�����"

���#�����������
$�!��

��%�������������
����&�

'�(�)�#��*



��
��'

����+����#!����%��&�#��%�&����&�%�����,�-��-��.(/-0.(.1��-�123

��������	�
������

$����������� ��!����������$�!��

$����������$�!��4����#�4���&������-.5.
��,
�/61+11+/7686+9/+.

��%��&�������� � %�#�� � �%�&������� � �������� � ������� � �:�+%������

�����%����������;����&�����#(



to Annamaria, Carlo, Matteo
and

Martina





Contents

Table of contents ii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 High temperature superconductivity: models and open ques-

tions 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Electronic properties of HTSC . . . . . . . . . . . . . . . . . . . 7
2.3 Phase diagram and pseudogap phase . . . . . . . . . . . . . . . 9
2.4 Pairing mechanisms in HTSC . . . . . . . . . . . . . . . . . . . 11
2.5 Hole superconductivity and kinetic energy lowering . . . . . . . 12
2.6 Non-Fermi liquid behavior . . . . . . . . . . . . . . . . . . . . . 13

3 Optical properties of HTSC 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Equilibrium optical properties of HTSC . . . . . . . . . . . . . . 15

3.2.1 Extended Drude model . . . . . . . . . . . . . . . . . . . 16
3.2.2 Sum rules . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Non-equilibrium optical properties of HTSC . . . . . . . . . . . 19
3.3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Rothwarf-Taylor equations . . . . . . . . . . . . . . . . . 24
3.3.3 Electron-boson coupling . . . . . . . . . . . . . . . . . . 25

4 Time-resolved optical spectroscopy 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Optical oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 One color pump-probe reflectivity measurements . . . . . 30
4.2.2 Femtosecond pump-supercontinuum probe spectroscopy . 30
4.2.3 Supercontinuum light: physical features and characteri-

zation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



CONTENTS

4.2.4 Photonic crystal fiber . . . . . . . . . . . . . . . . . . . . 32
4.3 Optical parametric amplifier . . . . . . . . . . . . . . . . . . . . 32

5 Physical properties of Bi2Sr2Ca0.92Y0.08Cu2O8+δ 35

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Crystal structure of Bi2Sr2Ca0.92Y0.08Cu2O8+δ . . . . . . . . . . 35
5.3 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Static optical measurements . . . . . . . . . . . . . . . . . . . . 37

5.4.1 Interband transitions and mid-infrared peaks . . . . . . . 38
5.4.2 Strong-coupling analysis and far-infrared region . . . . . 41
5.4.3 The optical self-energy . . . . . . . . . . . . . . . . . . . 45
5.4.4 Marginal Fermi liquid . . . . . . . . . . . . . . . . . . . 46

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 One-color time-resolved optical measurements 51

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Normal state 57

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 Three-temperature model . . . . . . . . . . . . . . . . . . . . . 61
7.5 Phenomenological differential approach . . . . . . . . . . . . . . 63
7.6 Differential model . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.6.1 Non-equilibrium dielectric function . . . . . . . . . . . . 65
7.6.2 Kramers-Kronig constraint . . . . . . . . . . . . . . . . . 68
7.6.3 Fits and discussion . . . . . . . . . . . . . . . . . . . . . 70
7.6.4 Disentangling the electronic and phononic glue . . . . . . 71

7.7 Four temperature model . . . . . . . . . . . . . . . . . . . . . . 74
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Pseudogap state 79

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.3 Fit and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3.1 Quasithermal modification of the reflectivity . . . . . . . 81
8.3.2 Role of the εeq(ω) . . . . . . . . . . . . . . . . . . . . . . 82

8.4 Differential fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 Superconductive state 87

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . 87

iv



CONTENTS

9.3 Fitting results and discussion . . . . . . . . . . . . . . . . . . . 90
9.3.1 Kinetic energy variation . . . . . . . . . . . . . . . . . . 93
9.3.2 Gap suppression . . . . . . . . . . . . . . . . . . . . . . 96

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10 Conclusions 99

Bibliography 103

Acknowledgments 113

v



CONTENTS

vi



Chapter 1
Introduction

1.1 Overview

Superconductivity represents one of the most amazing discovery of the last century.
It was discovered by Kamerlingh Onnes and his collaborators in 1911 when, immerg-
ing a thin mercury wire into liquid helium, it was observed that under 4.2 K, the
sample undergoes a transition to a phase in which the resistivity surprisingly drops
to zero. This new state of the matter was called superconductive state.
This discovery opened the way, in the following years, to a large amount of exper-
imental works that led to identify many other superconductive materials, like tin
and lead. Despite the growing interest surrounding the discovery of Onnes, it took
almost fifty years to reach a full theoretical explanation of the superconductivity.
In 1957 Bardeen Cooper and Schrieffer developed a microscopic theory of the su-
perconductivity which was called later BCS theory in their honour. A significative
step towards the formulation of this theory is due to Cooper which demonstrate that
the normal Fermi sea becomes instable if a whatever small attractive interaction is
effective among the electrons [26]. In BCS superconductors this attractive force is
mediated by the phonons and bring the electrons, lying near the Fermi surface, to
form the so-called Cooper pairs. Each pair is formed by two electrons with opposite
momentum and spin. In simple terms the picture is the following: one electron in-
teracts with ions and polarizes the lattice while another electron, coming afterwords,
interacts with the polarized lattice. This variation of the lattice polarization is felt
by the second electron as an effective attractive interaction that, below the critical
temperature Tc, overcomes the Coulomb repulsive force and allow the electrons to
couple in pairs. In other words, the glue which binds the electrons together, is given
by the phonons. The so-formed pairs strongly overlap due to the long-range coher-
ence and form a condensate in order to minimize the total energy of the system. All
the Cooper pairs are described by the same wavefunction, characterized by a phase,
which remains coherent over a macroscopic length scale (i.e. of the order of 10−6

m). The collective behaviour of the condensate is responsible of many macroscopic
effects observed in these systems, like the opening of an isotropic (s-wave) supercon-
ductive gap in the continuum spectrum of the allowed energy states [118].
The BCS theory was believed to give an exhaustive explanation of superconduc-
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1. Introduction

tivity until 1986, when J. G. Bednorz and K. A. Müller discovered the supercon-
ductive properties of La-based cuprate compound with a critical temperature above
30 K [14]. For this discovery they were awarded the 1987 Nobel prize of Physics.
Soon after, compounds with Tc as high as the temperature of liquid nitrogen were
discovered and a superconductive transition temperature of 90 K was found in the
compound YBaCuO by Wu [134]. Just to give an idea of the importance of this
discovery, the record of the highest critical temperature before 1986 was 23.3 K in
the alloy Nb3Ge.
The cuprates superconductors are compounds which are characterized by a crystal
structures with one or more sheets of CuO2, separated by insulating block layers.
Since the advent of first cuprate and the present days more than 200 superconduc-
tors were synthetized with different chemical compositions and crystal structures.
The maximum Tc found until now is in the mercury-based compounds which has a
Tc=133 K at ambient pressure (about 160 K under pressure).
The discovery of high-Tc superconductivity (HTCS) induced an unprecedented worl-
wide effort to discover the physical mechanism at the base of many physical prop-
erties that the BCS model is not able to capture.
In these years, a huge amount of experimental and theoretical works have been pro-
posed in order to find the mechanism that causes the pairing of electronic carriers
but a definitive answer to this question does not exist. The scientific community
is divided on this issue. Part of that is convinced that electron-phonon coupling is
still the responsible of the pairing mechanism like in conventional superconductors
while an other part is persuaded of the electronic origin of the superconductivity’s
glue [1, 7, 68, 88, 109]. A possible hypothesis which has spread out recently, is
that the high-temperature superconductivity in cuprates is the result of the inter-
play between the electron-phonon interaction and an interaction mediated by other
bosons of electronic origin, like spin fluctuations [60, 61]. Moreover the electron-
boson coupling function α2F (Ω) of HTCS, extracted from optical and inelastic neu-
tron scattering measurements, is characterized by a broad continuum spectrum ex-
tending beyond the Debye frequency, in contrast to BCS superconductors where
α2F (Ω) is limited to the energy range of the characteristic frequencies of the lattice
modes [58, 127]. The specific nature and the identification of the role played by
these high-energy bosons constitutes an outstanding issue.
Another interesting but not solved problem, together with the determination of the
superconductive glue, is given by the possible interdependence between the high and
low energy electronic properties in the cuprates below Tc. In BCS superconductors
the occurence of the superconductivity is accompanied by the opening of the gap 2∆
which affects only the electronic states in an energy shell of the same order of ±∆
(where ∆ is of the order of few meV) near the Fermi level. On the contrary, in the
HTSC, the formation of the superconductive condensate seems to modify also the
physical properties in the visible region. Recent equilibrium optical measurements
evidenced a superconductivity induced spectral weight shift from the intraband to
interband optical region [20, 90, 107]. This result seems to be in agreement with the
hole-superconductivity model proposed by Hirsch et al. [53, 51], according to which,
in cuprates, the superconductivity is driven by a kinetic energy gain in contrast with
the BCS-like increasing of the kinetic energy. However the difficulty to choose the
cutoff frequency separating the two energy regions and the broadening of the Drude
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1.1. Overview

peak have prevented finally to clarify whether the spectral weigth transfer over a
broad frequency range is due to a thermal effect or it is a real modification of the
electronic properties in visible range [96].
The intriguing puzzle of HTSC is further complicated by another problem, i.e. the
appearence below a certain temperature T∗>Tc of a new phase which is called pseu-
dogap phase. This phase has peculiar properties which differs from that found in
both the superconductive and normal state. Recently, scientists have focused on
trying to understand the origin of the pseudogap state and in particular the possible
relation with the superconductive state [55, 117]. Two main scenarios have been
proposed [95]. In the first one, the pseudogap is described as a state dominated by
an hidden order which is in competition with the superconductive state [23, 129]. In
the second scenario the electrons are supposed to form Cooper pairs below T∗ while
the formation of the condensate due to the long range phase coherence, occurs below
Tc. In this sense the pseudogap phase represents a precursor of the superconductive
phase [42].
In order to validate one of these two different interpretations, it’s necessary to get
more insight to the nature of the pseudogap. In particular it has to be clarified
whether the occurrence of this phase is accompanied by an opening of the gap in
the quasiparticles density of states or it is an effect caused by the suppression of
the spectral weight in the single-particle spectral function [55]. Since the discovery
of HTSC, a wide variety of experimental techniques, i.e. equilibrium optical spec-
troscopy, angle-resolved photoemission spectroscopy, tunnelling spectroscopy and
inelastic neutron scattering have been employed to study the physical properties of
this systems. All these experimental techniques probe the equilibrium state of the
materials.
Ultrafast time-resolved spectroscopy has been used more and more frequently in the
last 20 years due to the rapid development of ultrafast laser sources. This tech-
nique investigates the out-of-equilibrium physical properties and has been applied
to HTSC and other strongly correlated system like charge and spin density wave
systems and heavy fermion systems [35, 47, 50, 110, 34].
In a time-resolved experiment a femtosecond laser pulse prepares the system in a
non-equilibrium state and a second delayed pulse probes the recovery of the equilib-
rium state.
In the case of HTSC, the success of this experimental technique relies on the possi-
bility to study in the time-domain the interaction between the electronic carriers and
the phonons directly determining the strength of the coupling λ without the need to
perform a complicate integration of the electron-boson coupling function. Moreover,
in contrast with all the time-integrated spectroscopies which are blind to the nature
of the bosonic glue, a time-resolved technique have the capability to disentangle the
different bosonic excitations described by α2F (Ω) because of a different specific heat
and, consequentely, a different relaxation time.
Another important characteristic of this experimental technique is given by the
strong sensitivity of the temporal response to the electronic phase of the system
which could allow to study the possible interplay between the pseudogap and the
superconductive phase.
A long standing problem concerns the origin of the transient reflectivity variation
measured in the superconductive state. Below Tc the transient signal exhibits a
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strong doping dependence variation and an increase of one order of magnitude with
respect the case of a noble metals. A possible explanation has been ascribed to
a modification of the optical properties of the system due to a superconductivity
induced rearrangement of the electronic bands, instead of a simple thermal effect.
Up to now, all the time-resolved reflectivity experiments in the visible region on
the HTSC have been performed at the probe energy of 1.5 eV and the study of
the temporal behaviour of the system is limited to the output frequency of the
Ti:sapphire lasers. The lack of spectral resolution of the probe pulse prevented to
relate the measured reflectivity variation to a pump-induced modification of the di-
electric function of the system avoiding to explain the origin of the signal measured
in the superconducting phase.

1.2 Outline

In this thesis work we study for the first time the non-equilibrium optical response of
a high-temperature superconductor, more precisely, of a Bi2Sr2Ca0.92Y0.08Cu2O8+δ

crystal, at different doping levels and temperatures, over a wide spectral range which
covers all the visible and part of the infrared region. The optical spectroscopy tech-
nique we use, is characterized by both spectral and temporal resolution and exploits
the large spectral content of the supercontinuum light produced by a non-linear
photonic crystal fiber. The probe frequency window is further extended towards
the infrared region by an optical parametric amplifier system. The use of this non-
equilibrium approach allows to face various open problems related to the HTSC and
sometimes presents some advantages with respect to the standard equilibrium spec-
troscopies. To be more precise the main issues that we want to tackle in this work
are the following:

1. What is the glue responsible for binding the electrons into superconducting
pairs? Is the pairing mediated by phonons or by other bosonic modes of
electronic origin or by both these elements?

2. Are the pseudogap and superconductivity competitive effects or can they co-
exist? Is the pseudogap a real gap in the density of states?

3. What is the origin of the superconductivity-induced spectral weight transfer
from the interband to intraband optical region? Is it a real modification of
the electronic properties in the visible range or is it a simple thermal effects
due to the broadening of the Drude peak?. Which are the optical transitions
involved? Does this modification involve a superconductive-induced rearrange-
ment of Cu-O bonds, partecipating to the condensate formation?

The work has been organized in these chapters:

• In the second chapter a general description of the electronic properties of the
HTSC is given together with a brief description of different models describing
the coupling mechanisms. The chapter outlines the physical properties of the
pseudogap phase and it describes the non-Fermi liquid behavior of the normal
state of HTSC.

4



1.2. Outline

• In the third chapter we introduce the Extended Drude model, commonly used
to describe the equilibrium optical properties of the HTSC. The problem of the
possible sum rule violation related to the spectral weight shift, is presented.
The second part of this chapter presents the non-equilibrium optical properties
of the HTSC and introduces the theoretical models that describe the temporal
dependence of the electron and phonon temperatures in a high-temperature
superconductors excited by an ultrashort laser pulse.

• The description of the experimental set up is sketched in the four chapter. In
particular great importance is given to the detection and characterization of
the supercontinuum light pulse and to the physical mechanism responsible for
its production.

• The equilibrium optical measurements are shown in chapter five. The Ex-
tended Drude model is used to fit the data. Finally, the electron-boson cou-
pling function is extracted from the optical spectra using a strong-coupling
analysis.

• In chapter six we show one-color pump-probe reflectivity measurements. The
electronic temperature dependence and the electron-phonon coupling constant
is extracted from the dynamics.

• Time and frequency resolved reflectivity measurements in normal state are
reported in chapter seven. Starting from the strong coupling formalism used
to describe the equilibrium dielectric function, we develop a differential model
to fit the pump-induced modification of the reflectivity over the whole probe
energy range at different delay times. This approach allows us to disentangle
the contribution of the electronic and the bosonic temperature due to the
different temporal scale and to gain important information about the coupling
mechanism in HTSC demonstrating that both phonons and other bosonic
excitation of electronic origin contribute to the high Tc of these systems.

• In chapter eight, pump-supercontinuum probe reflectivity measurements in
pseudogap phase are shown. The results of the fit of the differential model to
the data can be explained in term of a transient increasing of the Drude plasma
frequency and a weakening of the low-energy bosonic mode. In particular the
positive variation of the plasma frequency has an opposite trend with respect
the normal state behaviour and seems to support the hypothesis that a gap
in the density of state starts to open in the pseudogap phase.

• The superconductivity induced variation of reflectivity (T<Tc), reported in
chapter nine, can be accounted for by assuming a transient modification of
the optical properties in the visible region. In particular a significative mod-
ification of the optical oscillators centered at 1.5 eV and 2 eV is observed.
This result puts an end to the long-lived and hotly dabated issue about the
increase of the transient signal observed in HTSC below Tc. Thanks to the
wide spectral content of the probe pulse, we can assert that the measured
signal is not given by a simple excited state absorption but it is caused by a
modification of the electronic bands.
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Chapter 2
High temperature
superconductivity: models and
open questions

2.1 Introduction

In this chapter we describe the physical properties of an HTSC from a theoretical
point of view. At the begining we give a short introduction of the theoretical models
proposed to describe the low-energy electronic states of cuprates. Then a sketch
of the different versions of the phase diagram that have been proposed in the last
years, is given. In particular we focus on the pseudogap phase which represents one
of the most intriguing aspect of the HTSC. The two following sections are devoted
to the description of the various mechanisms proposed to explain the formation of
Cooper pairs in HTSC. Particular importance is given to the model of the hole
superconductivity proposed by J.E. Hirsch and F. Marsiglio [52]. Finally we discuss
different aspects related to the non-Fermi liquid behaviour of the cuprates.

2.2 Electronic properties of HTSC

High-temperature superconductivity (HTSC) represents one of the most interesting
and intriguing problem of the modern condensed matter physics [14]. Despite a lot of
efforts of the scientific community to develop new experimental and theoretical tools
to get more insight to this problem, HTSC still remains an open issue and its origin
is object of a strong debate. The superconductivity with the higher critical temper-
ature was found in compounds belonging to the family of copper oxides (cuprates).
The feature common to all cuprates is given by two dimensional CuO2 planes weakly
interacting with the neighboring planes containing other atoms, like Ba, La, Bi, act-
ing like charge reservoir to dope with hole or electron the CuO plane [22, 119].
Hole doping can also be achieved, like in the case of Bi2Sr2CaCu2O8+δ (Bi2212), by
addiction of oxygen ions to the charge reservoir layers. The copper oxygen planes
play a fundamental role because the Cu-O orbitals within these planes form the
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electronic bands close to the Fermi level. Below a critical temperature Tc electrons
in these planes overcome the Coulomb repulsion, forming a condensate of Cooper
pairs characterized by a macroscopic coherence length. Before describing the differ-
ent mechanisms proposed to explain the phenomenom of HTSC, we summarize the
peculiar electronic properties of the undoped parent compound. Considering the un-
doped compound of La2−xSrxCuO4, i.e. La2CuO4, the valence of Cu is 2+, leading
to a 3d9 electronic configuration of copper atoms. The crystal field that derives from
the interaction with the four planar oxygens surrounding the copper atom and the
out of plane oxygens (apical oxygens) breaks the degeneracy of the d-levels leading
to the splitting into four occupied low energy orbitals (with symmetry xy, xz, yz,
3z2-r2) and one half-filled high energy orbital x2-y2 [59, 103]. According to the band
theory this compound should be a metal but experimental findings indicate that it
is an insulator with a large gap (2 eV) where the spins of the Cu holes are coupled
antiferromagnetically [136]. The failure of the band theory comes from its inability
to include the dramatic effects of the strong electronic correlations.
The Hubbard model is believed to capture the main part of the physics of the strongly
correlated materials [6]. The single band Hubbard Hamiltonian can be divided into
two terms:

H = −t
∑

<ij>,σ

(
c+i,σcjσ + H.c.

)
+ U

∑

i

ni,↓ni,↑ (2.1)

The first term describes the quantum hopping of electrons between nearest neighbor
sites, while the second term is the Hubbard U term that accounts for the strong
Coulomb interaction between electrons that occupy the same site. In the more
specific case of the cuprates, the low energy electronic structure can be described by
the so called three band Hubbard Hamiltonians that is given by [41, 131]:

H =
∑

iσ

εdd
+
iσdiσ +

∑

iσ

εpp
+
iσpiσ +

∑

<ij>σ

tp,dp
+
jσdiσ + H.c. +

+
∑

i

Udni,↓ni,↑ +
∑

<jj′>σ

tO−Op
+
jσpj′σ (2.2)

Having adopted the hole picture, the operator d+iσ creates a Cu hole at the site i with
energy εd, p

+
jσ creates an O 2p hole at the site j, the third term takes into account the

hopping between oxygen and copper electronic orbitals, while the fourth and the fifth
term describe the Coulomb repulsion term between two holes on the same Cu site
and the hopping between nearest-neighbour oxygens. If the energy difference εp− εd
(charge transfer energy) is large enough compared with the hopping amplitude tpd,
the holes remain localized on the Cu site. In other words the hopping is responsible
for antiferromagnetic superexchange near-neighbour spin correlations between Cu
holes, where the exchange integral is given by:

J =
t4pd

(εp − εd)
3 (2.3)

As the parent compound is doped, for example replacing in La2CuO4 a trivalent
La atom with a divalent Sr atom, an extra number of holes is injected in the CuO4

plaquettes. Due to the strong Coulomb repulsion term Ud, the holes occupy the
oxygen p orbitals. This hole-doped system may gain energy because of the hole hop-
ping between Cu and O orbital which leads to an antiferromagnetic superexchange

8



2.3. Phase diagram and pseudogap phase

interaction of the Cu-O holes. In particular, a lower energy state is obtained by a
fully symmetric linear combination of oxygen hole states around the Cu site with
the Cu hole spin that couples antiferromagnetically to the O hole spins. This singlet
state, known as Zhang-Rice singlet, can hop from site to site like a single hole does
in a simple Hubbard model [137]. It is important to notice that it is possible to
recover the single band Hubbard model only in the case of a single hole added to the
undoped compound: when additional holes move in the 2D lattice, as in the case of
doped cuprates, the single-band approximation is not still valid and the interactions
between neighboring Zhang-Rice singlets has to be considered. The question whether
the single band Hubbard model can satisfactorily describe the physics of HTSC is
still an open problem, although spin-resolved photoemission measurements [?] and
theoretical calculation using Dynamical Mean Field Theory (DMFT) recently con-
firmed that the lowest energy excitations have a singlet nature providing a direct
support to the stability of the Zhang-Rice singlet in hole-doped cuprates. Despite
its apparent simplicity the Hubbard model is very hard to solve: one of the most
studied simplified Hamiltonians in the field of HTSC is called t − J model and is
obtained from the Hubbard model by projecting out the doubly occupied states at
large U [30]:

H = −t
∑

<ij>,σ

(
c+i,σcjσ + H.c.

)
+ J

∑

<ij>

(
Si · Sj −

1

4
ninj

)
(2.4)

The t− J Hamiltonian is widely used as a starting point to describe the electronic
properties of HTSC, however the possibility that the electronic excitations alone are
not sufficient to explain the pairing of the electrons has been recently discussed. For
this reason, many efforts have been devoted to study the electron-phonon interaction
effects in the t− J model [60, 61, 68, 88].

2.3 Phase diagram and pseudogap phase

The physical properties of HTSC crucially depend on the nature of the dopant car-
riers (electrons or holes) and on their concentration. In fig. 2.1 we sketch the phase
diagram of an HTSC, showing the different phases as a function of the temperature
and of the dopant concentration. We focus on the hole-doped side of the diagram.
As the density of the holes in the CuO2 planes is increased, the antiferromagnetic
correlations break down and, below a critical temperature Tc, the system is driven
to the superconductive state and a d-wave symmetry gap starts to open at the
Fermi level [111, 121]. The Tc curve has a dome shape with a maximum that cor-
responds to an optimal doping condition which, in the case of Bi2Sr2CaCu2O8+δ

(Bi2212), is 0.16 holes per Cu atom [79]. The superconductive state persists until
about the 30% of hole doping. Above this concentration the electronic properties
of the system change and it is strongly discussed if the Fermi liquid behaviour is
recovered at high-doping concentration, in the overdoped region. Above Tc and in
the underdoped region of the phase diagram the antiferromagnetic-insulating phase
continuously evolves into another exotic phase not found in the standard BCS su-
perconductors, known as pseudogap phase. This phase was observed for the first
time by measuring the decrease of the spin-lattice relaxation in an NMR experiment
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on underdoped HTSC and it was interpreted as the opening of a pseudogap below
a temperature T∗>Tc [13]. A similar suppression has been confirmed by tunneling
experiment [89, 116], c-axis optical conductivity [105], specific heat experiment [78]
and angle-resolved photoemission (ARPES) [122]. Since its discovery, a great effort
has been devoted to understand the connection of the pseudogap with the super-
conductive state but no consensus has been achieved concerning the origin of the
pseudogap phase [55, 117].
All the models reported in the licterature can be grouped in two main scenarios [95].
The first one involves preformed Cooper pairs under the temperature T∗, which be-
come phase coherent under Tc. As an example we mention the pionering work by
Emery and Kivelson [42]. Here the loss of coherence of the condensate is explained in
term of phase fluctuations that, due to the low density of superconducting carriers
(as compared to the standard 3D BCS superconductors), may wash out the long
range order without breaking the Cooper pairs.
Another interesting theory is based on the notion of spin-charge separation [72, 92]:
an hole can be theoretically treated as a bound state of a fermionic particle called
spinon carrying only the spin and another bosonic particle called holon carrying
only the charge. In strongly correlated system like HTSC the double nature of the
charge carriers becomes more evident and spinons and holons behave like indepen-
dent particles. In a mean-field description spinons pair together forming a gap in the
spin excitation spectrum that is interpreted as the pseudogap, while holons undergo
Bose-Einstein condensation at the critical temperature leading the system into the
superconductive state.
In the second scenario, instead, the pseudogap is considered as a particular phase
that is in competition with the superconductivity and it’s characterized by an hid-
den order [23, 129]. Various candidates of this order were proposed in the course of
these years in particular stripe and antiferromagnetic order or d-density wave order
(DDW ), which break a particular symmetry of the system. Among these mod-
els we cite the one proposed by Emery [43] in which, below a certain temperature
T0, an exotic phase characterized by an alternation of charged and insulating an-
tiferromagnetic stripes is spontaneously formed. At a lower crossover temperature,
antiferromagnetic correlations start to grow up and to pair quasiparticles while be-
low Tc the Josephson coupling between charged stripes induces the coherence of the
condensate.
The fact that T∗ decreases moving towards the overdoped region is experimentally
established, but the structure of the whole phase diagram and in particular the T∗

dependence on the doping is nowadays an object of discussion. Two different be-
haviors of the pseudogap line were put forward depending on the above-mentioned
different scenarios [55]. In the first scenario the T∗-line is supposed to be tangent the
strongly overdoped side of the superconducting dome while in the case of a pseu-
dogap competing with superconductivity, the T∗-line is expected to cross the Tc

line at about optimal doping and to extend under the overdoped side of the super-
conducting dome, in a region where the superconductivity coexists with pseudogap.
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Figure 2.1: Phase diagram of an hole-doped cuprate. The solid lines repre-
sent the true thermodynamic phase transitions. The dotted lines indicate a
crossover behaviour. Figure taken from [95].

2.4 Pairing mechanisms in HTSC

The possible models of the pairing mechanism in HTSC can be divided in two
categories. The first one claims that the high critical temperature accompanied
with a d-wave symmetry gap has an electronic origin and can be explained in terms
of the strong Coulomb interaction [7, 102] (for example the RVB model by P.W.
Anderson [6]). The second group argues that the binding of the electrons in Cooper
pairs is mediated by a bosonic glue. Concerning the last hypothesis there is no
consensus about the nature of this glue and a very hot debate is aimed at identifying
whether a lattice vibration (phonons) [29, 36, 71, 80, 112] or a fluctuations of the
spin polarization [1, 24, 109] is involved in the pairing process.
In conventional superconductors, the glue responsible for the formation of the Cooper
pairs is given by the phonons. The BCS theory is only valid in the weak electron-
phonon coupling approximation [9, 10]. The generalization of the BCS theory in the
case of strong electron-phonon coupling has been carried on by Eliashberg [40, 93]
and it takes into account the retardation effects of the phonons response. This
work sets out from the Migdal theory of metals [85] based on the Green’s-function
methods of the many body theory and the finite temperature Matsubara formalism:
all the effect of interaction with the lattice modes are summarized in the electron
self-energy Σ (ω) that is written in terms of the one-electron Green function and
phonon propagator, neglecting the vertex corrections. The main physical quantity
of this theory is the glue function α2F (Ω). F (Ω) is the phonon density of states,
Ω being the phonon frequency and α2 (Ω) the strength of the frequency dependent
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2. High temperature superconductivity: models and open questions

electron-phonon interaction. The electron-phonon coupling constant λ provides the
strength of the coupling integrated over the phonon frequencies:

λ = 2

∫
α2F (Ω)

Ω
dΩ (2.5)

The critical temperature depends on λ and in the strong coupling regime this de-
pendence can be explicated in the following expression obtained by McMillan [86]:

Tc =
Ω̃

1.2
exp

[
−

1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

]
(2.6)

where Ω̃ is the characteristic phonon frequency and is defined as an average over
α2F (Ω):

Ω̃ =
〈
Ω2

〉 1

2 (2.7)

and
〈
Ω2

〉
=

2

λ

∫ ∞

0
Ωα2F (Ω) dΩ. (2.8)

This formalism is not restricted to the case of phononic interactions but it can also
be applied to a more general bosonic interactions.
Although there are many experimental results, like the high critical transition tem-
perature, the d-wave symmetry of the gap and the small isotope effect on Tc, that
seems to exclude a phonon-mediated glue in HTSC, there are as many other exper-
imental evidences that electron-phonon coupling plays an important role in HTSC.
For example Raman scattering and infrared optical spectroscopy [114] evidenced a
strong electron-phonon coupling with certain phononic modes. Moreover the kinks
in the energy dispersion, observed in ARPES spectra along the nodal direction of the
Brillouin zone, are explained by interaction with phonons [28, 36] or with magnetic
resonance modes [44, 97].
The Nearly Antiferromagnetic Fermi-liquid (NAFL) model was proposed by Pines
and Scalapino and explains the pairing mechanism in term of spin fluctuations [87,
91, 109, 132]. It is based on the experimental observation that in the antiferromag-
netic insulating phase the dynamical spin susceptibility is strongly peaked in the
points q = (±π,±π) of the Brillouin zone: this is equivalent to say that the spin
fluctuations tend to zero at these points. The NAFL model claims that electrons
on the Fermi surface in the vicinity of the (±π,±π) points scatter more strongly
with the other electrons at the Fermi level, connected by a vector q. In that way,
the resulting coupling is more effective in the antinodal region and it has a d-wave
symmetry as confirmed experimentally.

2.5 Hole superconductivity and kinetic energy

lowering

The theory of hole superconductivity has been proposed by J.E. Hirsch and F. Mar-
siglio to explain the phenomenology of the HTSC [52, 53, 51, 83]. It is based on
the asymmetric dynamical behavior of electrons and holes near the Fermi level. The
motion of an hole in a full band costs an amount of energy due to the disruption
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it causes in its environment, contrary to what happen to electrons. In the Hirsch
model the occurrence of the superconductivity is explained in term of pairing be-
tween oxygen holes. The effective Hamiltonian that describes the propagation of
holes through the oxygen anion network contains on-site repulsive interactions and
a modulated hopping term that yields to a larger hopping amplitude between sites
when other holes simoultaneously present.
This model provides an attractive interaction between nearest-neighbor holes with
antiparallel spin with a critical temperature that depends on the hole density. When
two holes couple together, they reduce their effective mass and can delocalize more
efficiently: in other words they reduce the kinetic energy. The mechanism described
here is totally different from the BCS theory. When a system is cooled down to
the critical temperature, the value of the internal energy decreases. The internal
energy is given by a sum of the interaction energy between carriers and the kinetic
energy. For a BCS superconductor the superconductive transition is accompanied
by an increase of the kinetic energy overcompensated by a decrease of the interac-
tion energy. On the contrary, in the Hirsch’s model the carriers directly lower their
kinetic energy upon pairing. This result seems to find a confirmation in the optical
spectral weight transfer from the visible region to the intraband transition region,
observed in the optical spectra of HTSC (see chapter 3).

2.6 Non-Fermi liquid behavior

Another interesting aspect of HTSC is related to the non-Fermi liquid behavior found
in the optimal and underdoped side of the phase diagram. In this region, a linear
temperature dependence of the resistivity has been observed, in contrast to the T 2

dependence predicted by the Landau Fermi-liquid theory, revealing the failure of
the concept of quasiparticles to describe the low lying energy excitations. Another
difference between Fermi and non-Fermi liquid resides in the different shape of the
momentum distribution function nk at T = 0: in the first case nk has a discontinu-
ity Zk for k = kF , while in the second case the quasiparticle spectral weigth Zk is
zero [31, 98].
Moving in the phase diagram towards the overdoped region, the superconductive
phase is observed to fade and the physics of HTSC is believed to be metallic-like.
The crossover between these two regimes supports the theories that explain the su-
perconductity at high temperature in term of a quantum critical point [21]. The
possible quantum phase transition occurs at zero temperature and at optimal dop-
ing but strongly affects the physical properties of HTSC at finite temperature: both
the T ∗ line and Fermi-non Fermi liquid crossover line converge to this point. The
experimental determination of this crossover line can be obtained by ARPES tech-
nique because of the possibility to discriminate the coherent and incoherent part
of the spectral function and the close relation between these quantities and Zk:∫
Acoh dω = Zk and

∫
Aincoh dω = 1− Zk.

Recently, employing these relations and studying the evolution of the bilayer band
splitting in the nodal direction, Fournieret al. [46] found that, below a critical hole
doping, Zk suddenly drops to zero, directly demonstrating the non-Fermi liquid
behavior of HTSC at an hole doping concentration below 10-15%.
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Chapter 3
Optical properties of HTSC

3.1 Introduction

This chapter is divided in two main parts. In the first part we introduce the ex-
tended Drude model which is used to describe the far-infrared optical properties
of the HTSC and allows us to determine the electron-boson coupling function di-
rectly from the equilibrium optical measurements. Afterwards the problem of the
sum rule violation in cuprates is presented. The second part of the chapter deals
with the non-equilibrium optical properties of HTSC. After a brief overview of the
state of the art of the experimental results obtained by the time-resolved reflectivity
measurements, we describe the Rothwarf-Taylor model which gives a phenomeno-
logical explanation of the non-equilibrium dynamics in the superconductive phase.
The chapter ends with a brief description of a simple model proposed to simulate
the temporal dependence of the electronic and phononic temperatures of a system
excited by an ultrafast laser pulse.

3.2 Equilibrium optical properties of HTSC

Optical spectroscopy constitutes a powerful tool to investigate the electronic prop-
erties of solids, since it provides direct information about the underlying electronic
structure [37, 125, 133]. The Drude-Lorentz model describes very well the opti-
cal properties of a good metal: it is based on the hypothesis that electrons in the
conduction band constitute a classical gas of non-interacting particles. Within this
model, the optical conductivity σ(ω) is given by:

σ (ω) =
1

4π

ω2
pD

1/τD − iωτD
+

1

4π

∑

i

ωp,iω

i
(
ω2
i − ω2

)
+ ω/τi

(3.1)

The first term (Drude term) is related to the intraband optical transition and de-
scribes the motion of the free carriers, ωp,D being the Drude plasma frequency and
1/τD the free carriers scattering rate. The second term describes the interband op-
tical transition in terms of a sum of optical oscillators with characteristic plasma
frequencies ωp,i, resonance frequencies ωi and relaxation times τi.
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3.2.1 Extended Drude model

The Drude model has been applied successfully to describe the optical properties of
a large number of metals but in the case of a strong interaction between electronic
carriers and bosonic excitations, it fails to be a good approximation. The general-
ization of the Drude model to the case of boson-assisted optical transitions is called
Extended Drude model (EDM) [4, 3]. This model has been used for the first time
by Allen to analyze the far infrared optical response of the metals at T=0 and later
on it was generalized to the case of finite temperature [112]. In the following years
the EDM has been extensively applied to strongly correlated materials like HTSC.
In the EDM all the effects of the strong interactions are accounted for by an optical
self-energy Σopt (ω), which is sometimes called also memory function:

Σopt (ω) = Σ
′

opt (ω) + iΣ
′′

opt (ω) =
1

τ (ω)
− iωλ (ω) . (3.2)

The resulting expression of the complex conductivity turns out to be:

σ (ω) =
1

4π

ω2
p

Σopt (ω)− iω
=

1

4π

ω2
p

1
τ(ω) − iω (1 + λ (ω))

(3.3)

where:

λ (ω) =
m∗

m
− 1 (3.4)

The real part of the optical self-energy (3.2) is a frequency dependent scattering rate
due to the electron-phonon scattering (in the Drude model the inelastic impurity
scattering makes the scattering rate a constant), while the imaginary part λ(ω) is
related to the renormalization of the electronic effective mass due to the strong
correlations [11]. The optical self-energy Σopt (ω) has the same analytical properties
of the one-particle self energy Σ (ω) (averaged over the Fermi surface) used in the
Green function theory, but conceptually it is a different quantity. Σ (ω) is directly
measured by a photoemission experiment, since this technique probes the single
particle excitations of the (N-1) particle system, which can be described in terms
of the spectral function and the single particle self energy. An optical experiment,
instead, looks at the particle-hole excitations of an N-particle system and gives
information about the joint particle-hole density of states. In the so-called Allen
approximation [4], Σopt (ω) can be write as a convolution integral between a transport
spectral function α2

trF (Ω) and a kernel function K
(

ω
2πT ,

Ω
2πT

)
which describes the

thermal dependence of the phononic excitations coupled with electrons.

Σopt (ω) = −2

∫ ∞

0
α2
trF (Ω)K

(
ω

2πT
,

Ω

2πT

)
(3.5)

where

K (x, y) =
i

y
+

{
y − x

x
[Ψ (1− ix+ iy)−Ψ (1 + iy)]

}
− {y → −y} (3.6)

and Ψ (x) is the Digamma function. The quantity α2
trF (Ω) is different from that de-

fined in 2.5 and refers to a transport property of the sample. An interesting method
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to determine α2
trF (Ω) directly from the raw data was found by Marsiglio [81] and

it is based on the second derivative of the conductivity with respect the frequency:

α2
trF (Ω) =

1

2π

ω2
p

4π

d2

dω2
Re

(
1

σ (ω)

)
(3.7)

The Maximum Entropy Method has been recently used to extract α2
trF (Ω) from

the optical scattering rate 1/τ (ω) but it produces unphysical negative values of this
quantity [58].
The microscopic derivation of the complex conductivity σ (ω) in the presence of
strong electron-phonon correlations is achieved starting from the Kubo formula and
using complex diagrammatic techniques to evaluate the electron and phonon Green
functions. Omitting the vertex corrections (Migdal approximation) it is possible
to simplify the calculations and to obtain an expression of σ (ω) in terms of the
one-particle self-energy function:

σ (ω, T ) =
iω2

p

4πω

∫ +∞

−∞

fFD (ω + ε, T )− fFD (ε, T )

ω − Σ (ω + ε, T ) + Σ∗ (ε, T ) + iΓimp
dε (3.8)

where ωp is the plasma frequency, fFD (ω) is the Fermi-Dirac distribution function
and Γimp is the impurity scattering contribution. Σ (ω) and Σ∗ (ω) are the electron
and hole self-energies, respectively, and are obtained averaging Σ (ω,k) over the
Fermi surface and assuming a constant density of states. In this case Σ (ω, T ) is
given by a convolution integral between the glue function α2F (Ω) and a new kernel
function L (ω,Ω, T ) [67]:

Σ (ω, T ) =

∫ ∞

0
α2F (Ω)L (ω,Ω, T ) (3.9)

The kernel function is the result of the integration of Bose-Einstein (nBE (ω)) and
Fermi-Dirac functions:

L (ω,Ω, T ) =

∫ [
nBE (Ω′) + fFD (Ω)

Ω− ε+ Ω′ + iδ
+

nBE (Ω′) + 1− fFD (Ω)

Ω− ε− Ω′ − iδ

]
dΩ′ (3.10)

The last integral can be analytically solved obtaining:

L (ω,Ω, T ) = −2πi

[
nBE (Ω) +

1

2

]
+Ψ

(
1

2
+ i

Ω− Ω′

2πT

)
−Ψ

(
1

2
− i

Ω+ Ω′

2πT

)
(3.11)

The first term contains the distribution of the bosons while the second term (sum
of digamma functions) is the result of the Fermi-Dirac function integration. This
formalism is valid not only for phonons but it can be extended to a general electron-
boson interaction. In the case that the charged carriers lose energy coupling magnet-
ically with their spins, the boson glue has the following notation I2χ (Ω), because in
the spin-fluctuation interaction model, the coupling function is proportional to the
imaginary part of spin susceptibility. In the case of an unknown coupling mechanism
it’s possible to define a glue function given by the sum of the contribution of all the
scattering bosons:

Λ (Ω) = α2F (Ω) + I2χ (Ω) + other bosons (3.12)

17



3. Optical properties of HTSC

The strong electron-boson coupling formalism is based on the hypothesys that elec-
trons behave like Fermi-liquid particles and it is supposed to properly describe the
optical response of an HTSC in the overdoped region. Following the work of van
Heumen et al. [127, 124, 126] it is possible to generalize the eq. (3.12) and define
a new glue function Π that, convoluted with the kernel function (3.11) and put in
eq. (3.8) reproduces the measured conductivity. Π is assumed to be a multi-step
function and it is obtained by the best fit to the experimental data. It has been
recently demonstrated that the Π extracted at room temperature reproduces the
data down to 100 K, confirming that the strong coupling formalism is applicable in
a large range of temperature. A common feature of Π̃, found at all doping regimes
and at all temperatures, is a broad spectrum that extends up to 400 meV and an
intense peak at 50-60 meV, that corresponds to the kink observed in the nodal di-
rection in ARPES spectra [65, 138] and with the peak-dip-hump structure of the
tunneling spectra.

3.2.2 Sum rules

The optical constants in solids satisfy simple integral relations, called sum rules. The
global sum rule states that the integral, over all the energy bands, of the imaginary
part of the dielectric function ε (ω) is a constant independent of the temperature
and it is proportional to the ratio between the density and the mass of the carriers:

1

4π

∫ ∞

0
ω Imε (ω) dω =

ω2
p

8
(3.13)

The integral that appears in (3.13) is called spectral weight SW. Choosing an appro-
priate cutoff frequency ωc, the integral (3.13) can be split into the sum of an intra-
band (SWD) and an interband spectral weight (SWinter). In a BCS superconductor
below Tc, the spectral weight removed in the far infrared region of the dielectric
function, related to the opening of a gap ∆, is recovered by the formation of a peak
at ω = 0 associated to the dissipationless response of the condensate. The transi-
tion to the superconductive state does not affect the interband optical region and
no experimental variation of SWinter has been detected (i.e., SWN

inter = SWSC
inter).

These results are summarized by the Ferrer-Glover-Tinkham (FGT) sum rule [118]:
D = SWN

D − SWSc
D where D is the condensate spectral weight.

The work by Hirsch et al. about the superconductivity driven by a kinetic energy
lowering (see chapter 2.5) [53, 51], triggered the interest of various experimentalists
looking for a possible violation of the FGT sum rule. This violation is explained in
terms of a spectral weight transfer from the interband to intraband optical regions
or viceversa, i.e., the FGT sum rule has an additional term and can be written as:

D = (SWN
D − SWSc

D ) + (SWN
inter − SWSc

inter) (3.14)

In the specific case of an optical process described by an Hamiltonian with near-
neighbour hopping, the total intraband spectral weight can be related to the average
kinetic energy 〈Tδ〉 of the charged carriers (holes) associated to the hopping process
in the δ direction through the relation:

1

4π

∫ ∞

0
ωεD (ω) dω =

π2a2δe
2

2!2VCu
〈−Tδ〉 (3.15)
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where aδ is the lattice spacing in the Cu−O plane, along the direction determined
by the in-plane polarization δ of the incidence light and VCu is the volume per Cu
atom.
Recently, a superconductivity-induced decrease of SWinter has been reported in op-
timally and underdoped HTSC [15, 20, 70, 82, 90, 107, 108, 125] (see fig. 3.1). These
results have been interpreted as an increase of SWD corresponding to a gain in the
kinetic energy. On the contrary, in the over-doped region an opposite change of
SWinter is detected, accordingly to a BCS-like behavior at high dopings. Although
the estimated kinetic energy gain is of the same order than the one predicted by
the hole-superconductivity models, the equilibrium spectroscopic techniques didn’t
definitely clarify whether the spectral weight shift observed is related to a real mod-
ification of the electronic properties in the visible region or simply to a temperature-
related narrowing of the Drude peak [66, 96]. In addition, the inability of resolving
small reflectivity variations and the finite cut-off necessary to evaluate the optical
integral prevented these techniques from addressing the major question whether the
measured spectral weight variation is equally spread over all the interband transitions
or related to particular electronic states participating in the condensate formation.

3.3 Non-equilibrium optical properties of HTSC

The recent development of ultrafast laser sources enabled the study of non-equilibrium
properties of several materials included the HTSC. In time-resolved optical experi-
ments an ultrafast laser pulse (pump pulse, ∼100 fs) excites the electronic carriers
above the Fermi level EF while a second delayed pulse monitors the evolution of the
system back to the initial equilibrium state. If the probe pulse is monochromatic,
the experimental technique is named one-color pump-probe reflectivity, while prob-
ing the photoinduced variation of the reflectivity (or transmissivity) with a broad
spectrum or with a tunable wavelength pulse permits to perform a time-resolved op-
tical spectroscopy and to measure the temporal dynamics of the dielectric function
on the femtosecond time scale.
Time-resolved optical properties of metals and semiconductors have been extensively
studied and many works, both experimental and theoretical, have been published
during the last 30 years [54]. The physics that describes the interaction of the
electronic and lattice degrees of freedom with an ultrafast light pulse is quite well
understood in these materials.
In the specific case of the metals, electrons are excited from occupied to non-occupied
states above the Fermi level EF and then thermalize, through inelastic scattering
processes, on a characteristic timescale of few femtoseconds. The electron-electron
thermalization occurs in a time τe−e ∼ !EF

2πE2 where E is the carrier energy measured
with respect to EF . Considering that in metals EF ∼ 10 eV and !=0.658 eV·fs,
τe−e ∼ 4 fs for electrons excited at 0.5 eV above EF that is significantly faster com-
pared to the pulse temporal width. Since τe−e is much shorter than the period of the
typical phonon modes, the electronic system, in this time interval, is not coupled to
the lattice and reaches a temperature Te higher than the phonon bath temperature
Tph. The final value of the temperature Te depends on the pulse energy and is
larger than Tph because the heat capacity of the electrons is much smaller than the
lattice heat capacity. After the thermalization, the excited electrons start to loose
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Figure 3.1: Temperature dependence of the intraband spectral weight SWinter

for optimally (top) and underdoped (bottom) Bi2Sr2CaCu2O8+δ obtained by
integrating the optical conductivity up to 1.25 eV. At Tc SWinter breaks away
from the approximately T2 behaviour and shows an anomalous rise, meaning
that the kinetic energy of the carriers lowers in the superconducting state [90].

energy through electron-phonon scattering processes and relax towards the states
near the chemical potential. Allen developed a theoretical two-temperature model
(2TM) [5] which describes the electron-phonon relaxation in metals and obtained a
simple expression of the electron-phonon relaxation time τe−ph in terms of Te, the
mean square phonon frequency

〈
ω2

〉
and λ:

τe−ph =
πkbTe

3!λ 〈ω2〉
(3.16)

Allen’s model represents an interesting method that allows to derive λ more directly
than other experimental techniques. In fact τe−ph can be obtained fitting ∆R/R to
an exponential decay while

〈
ω2

〉
is taken from the literature or can be approximated

by ω2
D/2. The 2TM model has been successfully applied to different metals obtain-

ing a λ that ranges between 0.05 and 0.15 in agreement with the data obtained by
other experimental techniques. This formalism has been employed also in HTSC
in normal state, where there’s no gap in the excitation spectrum and the system
seems to have a pseudo-metallic behaviour: the λ extracted from transient reflectiv-
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ity measurements was found to increase to 0.82 in the case of Bi2212 [18, 17].
Before reviewing the state of art of the time-resolved techniques on HTSC, we focus
on the physical origin of the change of the optical properties in these experiments. In
metals, the relative change of the reflectivity (∆R/R) can be accounted for by simple
thermal effects. The heating of the electrons induced by the pump pulse modifies
the carrier population, smearing the electronic distribution function fFD (ω, T ). In
other words the thermal broadening of fFD (ω, T ) induces an increase of the occu-
pation of states above EF and a depletion of states below EF which is revealed as a
change in reflectivity. This mechanism is responsible for a small relative reflectivity
variation on the order of ∆R/R∼10−4-10−5.
Time-resolved reflectivity measurements performed on HTSC under Tc reveals some
important differences as compared to metals.
First, the opening of a gap in the excitation spectrum at T<Tc causes the slowering
of the relaxation dynamics with a decay time τ that increases of about one order of
magnitude (from ∼ 100 fs to ∼ 1 ps).
In this case when the pump pulse breaks a Cooper pair, a quasiparticle pair is
created with energy larger than the superconductive gap. In this non-equilibrium
condition, the recombination process of quasiparticles is accompanied by the emis-
sion of an high energy (!ω > ∆) boson that is responsible of the pairing. Since
the boson has enough energy to break another pair, an avalanche process of cre-
ation of quasiparticles grows up. The recovery time of this process is determined
by the decay time of the bosons. A slowing of the recombination dynamics of the
bosons (boson bottleneck) brings to the increasing of the decay time of ∆R/R. This
mechanism is well described by a set of coupled differential equations that constitute
the Rothwarf-Taylor model [106]. This phenomenological model is able to explain
the bottleneck of the dynamics in superconductive state and will be described more
deeply in section (3.3.3).
Second, another anomalous behaviour distinctive of the cuprates below Tc, is given
by a substantial increase of the signal ∆R/R as compared to the relative variation
measured in metals. In particular, a ∆R/R of the order of 10−3, about 1-2 order
of magnitude larger than normal metals, is measured in HTSC. The origin of the
∆R/R variation has been extensively discussed in these last years and has been
subject of different interpretations [33, 49, 62].
i) A possible explanation of this result is given in terms of the spectral weight shift
from the interband to intraband optical regions observed in equilibrium optical mea-
surements. In a pump-probe experiment on a superconductor, the effect of the pump
is to drive the system towards the normal state. When an high density of quasi-
particles is photoinjected in the system, the superconductive gap can be totally or
partially quenched and part of the condensate spectral weight shifts to higher en-
ergy, i.e., in the same energy region investigated by the probe pulse [48]. The ∆R/R
change of sign recently observed under the Tc is compatible with the change of spec-
tral weight shift that occurs in overdoped region [48].
ii) The photoinduced signal is interpreted also as a simple result of an excited state
absorbtion from photoexcited quasiparticles states, similar to what occurs in met-
als [33]. This interpretation does not account for the dramatic large ∆R/R values
measured in the superconducting phase and will be extensively discussed and ruled
out in the next chapters.
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3. Optical properties of HTSC

Figure 3.2: (a) Temperature dependence of ∆R/R on Bi2212. The blue line
marks the transition from pseudogap to superconductive phase. While the
green line is interpreted as the transition from pseudogap to normal state. (b-c-
d) Transient reflectivity measured respectively in superconductive, pseudogap
and normal state [76].

3.3.1 State of the art

The main purpose of the time-resolved optical measurements is not only to study
the optical properties of the HTSC far from the equilibrium condition but also to
clarify several unsolved aspects of the equilibrium properties of these materials.
In this paragraph we summarize the most significant experimental results obtained
by optical pump-probe measurements. A characteristic common to most of cuprates
is the sensitivity of time-resolved measurements to the phase of the system. The
optical response changes drastically with the temperature as we can appreciate in
the fig. 3.2 [76]: in the normal state the transient variation of reflectivity is fast
(about a hundred of fs) and positive while as the sample enters in the psedogap
phase a negative and fast component appears and dominates over the previous one
as the temperature is further lowered. When the system is cooled below Tc, ∆R
increases rapidly and the relaxation time τ drops to 2.5 ps.
The peculiar capacity of the time-domain spectroscopy to disentangle different ex-
citations on the base of their decay-time has been employed in the past to address
the complicate problem of the interplay between the superconducting and pseudo-
gap phases. As reported in the previous section, the presence of the gap strongly
affects the transient behaviour of ∆R/R. In the strong boson bottleneck regime,
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3.3. Non-equilibrium optical properties of HTSC

Figure 3.3: Transient variation of the reflectivity measured on Bi2212 at dif-
ferent doping range. Adapted from [48]

the photoinjected quasiparticles accumulate above the gap because their recombina-
tion rate depends on the anharmonic decay of the bosons. When the temperature
increases and approaches Tc the superconducting gap closes. Since only the boson
with energy !ω > 2∆ can break a Cooper pair, when ∆ decreases, a large number of
bosons has enough energy to create pair of quasiparticles. It is for this reason that
the decay time diverges like 1/∆ as Tc is approached from below. The temperature
dependence of τ has been measured and analyzed in many works. In fig. 3.4 the
value of the decay obtained by a multicomponent fit of the transient signal is shown.
Above Tc the signal is well reproduced by a single exponential decay, while in the
superconductivity phase two distinct components with different relaxation times are
resolved: the first τ shows the expected divergence at T=Tc, the second is found to
be temperature independent. The measurement of two different relaxation dynamics
under Tc has been interpreted as a possible coexistence of the two gaps under the
superconductive dome.
Another important result comes from the experimental observation that the tem-
poral dynamics of ∆R/R in optical pump-probe experiment is equivalent to that
measured in optical pump-terahertz probe experiments. Since in the last technique
the imaginary part of the transient conductivity is directly proportional to the con-
densate density, this is considered as the proof that the ∆R/R variation in the
near-IR/visible spectral range is proportional to the density of photoinjected quasi-
particles. All the mentioned results are obtained in a regime of low perturbation
i.e. when the intensity of the pump is not large enough to completely destroy the
superconducting phase [47, 50, 110].
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3. Optical properties of HTSC

Figure 3.4: Relaxation times resulting from a two component fit of ∆R/R
on Y1−xCaxBa2Cu3O7−δ at different doping. The relaxation time τa diverges
at T=Tc while τb is found to be completely T-independent. The presence of
this dynamics below Tc suggests the coexistence of two distinct gap below
T=Tc [34].

3.3.2 Rothwarf-Taylor equations

In this subsection we give an overview of the Rothwarf-Taylor model (RT model)
which provides a phenomenological description of the photoinduced non-equilibrium
dynamics of superconductors. The RT model consists in two coupled differential
equations describing the temporal evolution of a quasiparticles system, created by
the laser-induced breaking of Cooper pairs, followed by the process of recombination
into the condensate. The process of recombination is mediated by the emission of
a boson at the same energy of the superconductive gap. The coupled differential
equations describing the dynamics of the quasiparticle excitation density n(t) are:

ṅ = IQP (t) + 2γp− βn2

ṗ = IBos (t)− γp+
βn2

2
− γesc (p− pT ) (3.17)

where p is the boson density with energy !ω ≥ 2∆. IQP (t) and IBos (t) are respec-
tively the number of quasiparticles and boson photoinjected per cm3 per second: for
both these quantities we assume the same gaussian temporal profile of the incident
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3.3. Non-equilibrium optical properties of HTSC

Figure 3.5: Three physical process described by the RT model: (a) Creation
of a pair of quasiparticles above the superconductive gap by absorption of a
boson. (b) Annihilation of two quasiparticles via emission of a boson. (c)
Anharmonic decay of high frequency bosons [35].

pulse. 2γp is the rate of electron-hole pair creation by annihilation of a gap energy
boson, while βn2 is the inverse process i.e. the rate of annihilation of two quasipar-
ticles via emission of a boson. The parameter γesc is the boson decay rate due to
anaharmonic processes or to the diffusion out of the excited volume.
In the case γesc < γ, the probability that bosons are scattered and create a couple
of quasiparticles is higher than the one to lose energy via the interaction with low-
frequency bosons. In this regime the boson density increases until an equilibrium
with the excited quasiparticles is reached. This is possible when the rate of creation
γ compensate the rate of annihilation β. At this point quasiparticles and boson are
strongly coupled and both decay at the rate γesc. Usually 1/γesc is of the order of a
few picoseconds.
Although it is well-known that BCS superconductors are in the regime of strong
phonon bottleneck, it is far from the agreement which regime properly describes the
non-equilibrium dynamics of HTSC.

3.3.3 Electron-boson coupling

One of the outstanding problems connected to the origin of HTSC is to determine
which are the bosons mediating the formation of Cooper pairs. In particular, the
determination of the electron-boson coupling strenght λ allows to shine light on the
mechanism of pairing. So far, the parameter λ has been determined by different ex-
perimental tecniques i.e. inelastic neutron scattering, optical conductivity, ARPES
and tunneling spectroscopy but with contrasting results ranging from a weak cou-
pling regime (λ ∼ 0.1) to a strong coupling regime (λ ≥ 1). All these tecniques allow
to extract the electron-boson coupling function through a complex procedure of in-
version of the experimental data. The constant λ is finally obtained by integration
of the coupling function over the boson frequencies up to a given cutoff frequency.
The peculiarity of time-resolved measurements is in the possibility to directly ex-
tract the coupling constant λ from the experimental data in the time domain.
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Table 3.1: Fitting parameters obtained by numerically integrating the differtial
equation7.15. The smallest and highest values of f and λΩ2

0 correspond to the
choice Ω0=40 meV and Ω0=70 meV. Data taken from [101]

Tl f λΩ2
0 (meV2) τβ (ps)

30±10 0.13-0.25 300-380 2±0.1

300±10 0.18-0.25 340-380 0.9±0.1

Contrary to the standard equilibrium techniques it is possible to disentangle the
contribution of different bosons on the base of the different relaxation dynamics.
Time resolved techniques have been extensively used in the last years to determine
λ in metals and in superconductors above Tc within the two temperature model
(2TM). In the superconductive state the bottleneck in the recovery dynamics has
prevented the determination of the effective strength of the electron-boson coupling.
Very recently time-resolved photoemission spectroscopy on cuprates has been per-
formed by L. Perfetti et al. [101]. In this experiment the sample is excited by an
ultrashort infrared pulse (1.5 eV) while a second delayed pulse (6 eV) probes the tran-
sient electron distribution f (ω, τ) by photoemitting electrons along the nodal direc-
tion. The temperature evolution Te (τ) of the excited electron population is directly
extracted fitting f (ω, τ) at different delay time. The author observed two different
dynamics of the extracted electronic temperature and developed a three-temperature
model (3TM). They supposed that the excited electron are more strongly coupled
with a subset of phonons and quickly reach the equilibrium at a temperature Tp in
a few hundred of femtoseconds. The second dynamics is given by the thermalization
with the cold lattice at the temperature Tl and it occurs with a slower decay time
(τβ ∼ 2 ps). Accordingly to the 2TM the rate of energy transfer between electrons
and phonons is given by the integral

∫
Ω2α2F (Ω) (ne − np) dΩ, where ne and np

are the Bose-Einstein distributions at the temperature of electrons Te and phonons
Tp, respectively. The spetral density of phonons is simplified considering only one
phonon mode at Ω0 between 40 meV and 70 meV, i.e., F (Ω) = δ (Ω− Ω0). The
rate equations of the 3TM are:

dTe

dt
= −

3λΩ3
0

!πk2b

ne − np

Te
+

P

Ce
(3.18)

dTp

dt
=

Ce

Cp

3λΩ3
0

!πk2b

ne − np

Te
−

Tp − Tl

τβ
(3.19)

dTl

dt
=

Cp

Cl

Tp − Tl

τβ
(3.20)

where P is the gaussian temporal profile of the incident pulse. The specific heat of
the electrons, the strongly coupled phonons and the lattice are: Ce = γTe, Cp =

3fΩ0
dnp

dTp
, Cl = 3 (1− f)Ω0

dnp

dTp
, and f is the fraction of the strongly-coupled phonons.

Fitting the temporal profile of Te with the numerical solution of the equation (7.15),
one obtains the results displayed in the table (3.1).
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Chapter 4
Time-resolved optical
spectroscopy

4.1 Introduction

The experimental set up is described in detail in this chapter. Particular importance
is given to the detection system and to the characterization of the supercontinuum
light pulses used to probe the non-equilibrium dynamics of the sample in the visible
optical region. At the end of the chapter we give a brief description of the setup
used to extend the probe energy range in the infrared region down to 0.5 eV.

4.2 Optical oscillator

The first stage of the laser system is a diode pumped Nd:Yag laser (Coherent Verdi
V10) which provides a beam with wavelenght λ=532 nm and maximum output power
of 10 W. This laser pumps a Ti:sapphire oscillator (Coherent Mira 900) converting
the input continuous wave beam into a train of ultrafast pulses characterized by a
wavelenght λ=800 nm and a temporal width of 120 fs. The cavity of the oscillator is
equipped by a cavity dumper which is an acousto-optical switch that allows to vary
continuously the repetition rate of the laser from 1 MHz to 200 Hz and to increase
the energy per pulse. The output energy per pulse is about 50 nJ at 100 KHz of
repetition rate. This experimental configuration is particularly suitable to study
the strong non-equilibrium regime in cuprates avoiding the avarage heating effects.
Nevertheless it’s necessary to underline that all the measurements presented in this
thesis are done in a low perturbation regime without causing any superconductive
to normal photoinduced phase transition.
At the output of the laser source, a telescope formed by two plano-convex lenses
(L) placed at the distance 2f from each other (f is the focus length of the lens)
collimates the beam and helps in obtaining a better focalization on the sample at
the end of the line. The beam is divided in two part by a beam splitter (BS):
the 70 % of the incident beam is trasmitted (pump) while the remaining 30 % is
used as probe. The temporal delay between the two beam is varied by a motorized
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4. Time-resolved optical spectroscopy

high-precision translational stage, placed on the pump line, which is controlled via
software and allows to change the optical path in step of 1 µm. Because of the
double passage into the translational stage 1 µm corresponds to a temporal delay
between pump and probe of 6.6 fs. The intensity of both the beams is tuned by
an intensity attenuator given by an half-wave plate and a polarizer (P). Pump and
probe are both focused on the sample with a plano-convex lens of 20 cm and 10 cm
and have perpendicular polarizations to avoid any possible interference effect. A
mirror placed on a piezoelectric motor allows to obtain a fine control of the spatial
coincidence. Since the relative variations of the probe are very low (tipically of the
order of 10−5 is necessary to minimize all the effects due to scattering of the pump.
The size of the two beams are measured by imaging the spots in the focal plane on a
CCD camera. The samples measured are placed in an open-cycle cryostat that can
cool down to the minimum temperature of 10K.

4.2.1 One color pump-probe reflectivity measurements

In this type of measurement both pump and probe beams have the same wavelenght
(λ=800nm). The signal acquisition is based on the lock-in detection. The intensity
of the pump beam is modulated at a frequency of 3 KHz using a mechanical chopper.
The probe signal reflected by the sample is parallelized using another lens of the same
focal lenght f and is refocused on a photodiode (PD). The signal detected is acquired
by a lock-in amplifier referenced to the modulation of the pump beam. Using a
Fourier-transform based algorithm, this device extracts from the input signal the
component modulated at the reference frequency. The frequency of the modulation
is chosen in order to be high enough to minimize the 1/f noise and sufficiently lower
than the repetition rate of the laser source. The signal to noise ratio provided by the
lock-in acquisition scheme is further reduced by the fast scanning of the translator
stage. The oscillatory movement of the scan delay is synchronized with the lock-in
acquisition in a way that the first step of the translator coincides with the starting of
the acquisition. Because of the fast scan, the integration time of the lock-in amplifier
has to be reduced to 5 ms. If the total scan length is 1 mm (corresponding to a
time window of 6.6 ps), the time required to perform a single scan is about 2 s. A
good signal to noise ratio is obtained averaging 200-300 scan for a total duration
of 6 min. The fast scanning acquisition scheme is particularly suitable to reduce
the noise present on a time scale longer than the measured temporal dynamics, for
example the intensity drift of the laser and the oscillations of the cryostat.

4.2.2 Femtosecond pump-supercontinuum probe spec-

troscopy

To develop this novel experimental technique we start from the experimental setup
described in the last section introducing some modifications which are reported in
the following.
Supercontiuum light is produced on the probe line, focusing the probe pulses with
an aspherical lens into a photonic crystal fiber (the properties of the photonic crystal
fiber will be extensively described in the next section). The fiber is positioned on a
home-made launch system equipped by three traslational degrees of freedom and a
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4.2. Optical oscillator

Figure 4.1: A schematic drawing of the experimental set-up.

tilting mechanism, in order to optimize the coupling of the laser into the fiber itself.
Strongly non linear processes inside the fiber broaden the 800 nm pulse generating
a broadband pulse characterized by a spectral content ranging from 450 nm to
1500 nm and a complex spectral chirp. More details on the temporal and spectral
characterization of the supercontinuum light will be given in the next chapter. After
the fiber the white light pulse is parallelized by an achromatic doublet (AD) and
then refocused by another doublet with focal lenght f=100 mm. An optical window,
placed before the last doublet, samples the probe. This reference is used to monitor
and compensate the probe intensity during the measurements. Both the reference
and the signal reflected by the sample are dispersed by a prism and collected by
two Si-arrays of 128 pixels. A spectral slice, whose width ranges from 2 nm at
700 nm to 6 nm at 1100 nm, is acquired by each pixel of the array, corresponding
to a constant temporal resolution of ∼120 fs [25]. A fast digitizer performs the
scan of the arrays. Because of the large difference between the scan frequency of
the array and the repetition rate of the laser, a single-shot detection is not feasible
and it is necessary to integrate many pulses. The pump beam is chopped at a low
frequency (typically 30 Hz), and, at the same time, the pump modulation is acquired
by a photodiode and digitalized by a data acquisition device (NI-DAQmx M-series)
which is synchronized with the fast digitizer. In this way it is possible to discriminate
between pumped and the unpumped pulses. At the end of a single acquisition the
pump-induced variation of signal is obtained by mediating and subtracting the two
signals. To prevent the probe intensity fluctuations from affecting the measurement,
the reflectivity variation is divided by the reference signal. The sensitivity of the
array of photodiodes ranges from 500 nm to about 1000 nm, outside this range the
response of the photodiodes drops. Only this portion of the supercontinuum light
will be used in the measurements reported in this work.
In fig. 4.1 we sketch the pump-supercontinuum probe reflectivity experimental setup.
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4.2.3 Supercontinuum light: physical features and char-

acterization

Supercontinuum generation consists in a spectral broadening of a narrow-band light
pulse generated by nonlinear process during the propagation in a medium [38]. Su-
percontinuum or white light was first generated and observed by Alfano and Shapiro
in a bulk glass [2]. In the following years, supercontinuum light was generated in a
wide range of non-linear materials, like solids, organic and inorganic liquids, waveg-
uides and photonic crystal fiber. The physical mechanism behind the broadening
of the spectrum is the combination of different non-linear phenomena like the self-
phase modulation, the Raman scattering, the four-wave mixing and the soliton fis-
sion. Nowadays, supercontinuum generation constitutes an emerging tool in the field
of ultrafast optical spectroscopies but the complexity of the spectral and temporal
structure of the supercontinuum pulses requires a detailed characterization.
We developed a specific characterization technique based on a frequency-resolved
optical gating through two-photon absorption in thick ZnSe plate (gap 2.1 eV). The
gating pulse is the pump that is noncollinearly focused on the plate, in coincidence
with the supercontinuum pulse. After the plate, the supercontinuum pulse is dis-
persed by a prism and collected on the linear photodiode array as reported in section
( 4.2.3). This method is based on the fact that carriers can be excited across the
gap of ZnSe, through a two-photon absorption process only if temporal coincidence
between part of its spectrum and the gate pulse, is realized. In this way the spectro-
gram of the pulse is obtained by measuring the transient absorbtion as a function
of the time delay between the two pulses as we can see in fig. 4.2. The main advan-
tage is that the two photon absorption process is not subjected to phase-matching
condition as in the standard XFROG techniques.

4.2.4 Photonic crystal fiber

The supercontinuum light is generated in a photonic crystal fiber (PCF). This type
of fiber exploits the light confinement properties typical of the photonic crystals:
the core of the fyber has a diameter of 1.8 µm and the cladding is constituted by
an ordered array of holes that run over the entire length of the fiber. An advan-
tage to use photonic crystal fibers is the possibility to reduce the core size to few
microns making the non-linear processes more efficient. Another peculiar charac-
teristic is the possibility to modify the size and the order of the holes controlling
the physical properties of the fiber. In particular our fiber is engineered to obtain a
zero wavelength dispersion close to the seed pulse wavelength: this guarantees the
maximum broadening of the spectrum and reduces the pump power requirements
making possible the supercontinuum generation using unamplified input pulses.

4.3 Optical parametric amplifier

This set-up has been used to extend the spectral content of the probe also in the
infrared region down to 0.5 eV. The main component of the setup is a solid-state
diode-pumped Nd:vanadate (Nd:YVO4) laser generating a continuous light with
λ = 532 nm and power of 18 W. This laser is the pump of both an optical oscillator
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Figure 4.2: Supercontinuum pulse spectrogram measured through two-photon
absorption in a ZnSe crystal.

(described in section ( 4.2.1) and a Regenerative amplifier (Coherent RegA Model
9050). The laser pulse provided by the oscillator is temporally stretched by a couple
of diffraction gratings and it is switched into the cavity of the amplifier with a fast
Pockels cell (electro-optic modulator). The pulse amplification is achieved by mul-
tiple passes through a gain medium, i.e, a Ti:sapphire crystal which is previously
pumped and accumulates energy. After several trips in the cavity, the amplified
pulse is switched out and it is compressed until reaching a minimum temporal delay
of 50 fs. The repetition rate of the RegA is 250 KHz and the maximum energy per
pulse increases up to a few µJ.
After the amplification the laser beam is split into two part: the first parts is focused
on the sample while the other is used as the seed of an optical parametric ampli-
fier (Coherent OPA 9850). The working principle of this optical device is based on
the non-linear process of optical parametric generation. In this process the pump
photon (ωp), strongly interacting with a non-linear crystal, is converted into two
photons called signal and idler with frequencies respectively ωs and ωi respectively.
The sum of their frequency is fixed by the value of the pump frequency, and by the
energy conservation principle: ωp = ωs + ωi. Their values are determined by the
phase matching conditions which change varying the angle between the pump and
the optical axys of the crystal. Changing these conditions it’s possible to tune ωs

and ωi in a frequency window that ranges from 1200 nm to 1600 nm for the signal
and from 1600 nm to 2400 nm for the idler.
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Chapter 5
Physical properties of
Bi2Sr2Ca0.92Y0.08Cu2O8+δ

5.1 Introduction

In this chapter, the equilibrium optical measurements carried on a sample of Y-doped
Bi2212, are reported in a large frequency region ranging from the far-infrared to the
ultraviolet. Before showing the experimental measurements, we spend few words on
the physical optical properties of the sample. The equilibrium dielectric function
is well reproduced by a sum of Lorentz oscillators and an extended Drude term.
The origin of the interband oscillators is discussed. The electron-boson coupling
function is determined directly from the fit assuming a model-independent histogram
rappresentation.

5.2 Crystal structure of Bi2Sr2Ca0.92Y0.08Cu2O8+δ

The bismuth strontium calcium copper oxyde superconductors are the most stud-
ied high-temperature superconductors together with yttrium barium copper oxy-
des (abbreviated YBCO). The general chemical composition of these compounds
is Bi2Sr2CanCun+1O2n+6+δ. The n=1 sample is called for the sake of simplicity
Bi2212, referring to the ordered sequence of the metallic ions in the stoichiometric
formula, and has attracted more attention than the other compounds of the same
family. The main building blocks of the crystal structure are the CuO2 planes that
are separated between each others by additional BiO, SrO and Ca planes as we can
see looking at the unit cell of the Bi2212 shown in fig.5.1. The superconductive
currents are localized in the two-dimensional CuO2 planes and they start to occur
at low temperature upon doping the system with holes. This effect is obtained by
adding interstitial oxygen atoms which take position in the BiO planes: the critical
temperature strongly depends on the amount of extra-holes and in the specific case
of Bi2Sr2CaCu2O8+δ, it reaches the maximum value of 95 K in correspondence with
an excess density of about 0.16 holes per Cu atom.
The stability of Bi2212 superconductors and the relative ease to cleavage, due to the
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Figure 5.1: The unit cell of Bi2212.

weakness of the chemical bonds between BiO layers, make these samples particularly
suited for electron spectroscopy studies. Although a large amount of experimental
work on the Bi2212 have been published since now, several chemical properties are
not well understood when compared to other HTSC. In particular the connection
between the nanoscale inhomogeneity of the doped holes in the CuO2 planes and
the chemical inhomogeneity of the sample given by the excess of oxygen atoms in
BiO layers, and consequently the connection between the former and the occurence
of the superconductivity is still an object of study.
All the measurements we will show in the next chapters are performed on Yttrium
doped Bi2212. The substitution of Yttrium for Calcium atoms has the effect to sta-
bilize the 1:1 ratio between Bi and Sr sites and, for 8% of Y doping, to increase the
maximum critical temperature to the value of 96 K. The resulting chemical formula
of this compounds is: Bi2Sr2Ca0.92Y0.08Cu2O8+δ. In the next section we will give
more details on the preparation techniques of the samples.
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Figure 5.2: Magnetic susceptibility curves as a function of the temperature.

5.3 Sample preparation

Large single crystals of Y-substituted Bi2212 have been provided by the group of
Prof. A. Damascelli in the University of British Columbia
These crystals were grown in an image furnace by the traveling-solvent floating-zone
technique with a non-zero Y content in order to maximize Tc and with different
annealing condition in order to obtain three different doped sampes [39]. The un-
derdoped samples have been annealed at 550 ◦C for 12 days in a vacuum sealed glass
ampoule with copper oxide inside. The overdoped samples were annealed under pure
oxygen flow at 500 ◦C for 7 days. To avoid damage of the surfaces, the crystals have
been embedded in BISCO powder during the annealing procedure. The samples have
been homogenized by annealing in a sealed quartz ampoule, together with ceramic
at the same oxygen content. The critical temperature of the sample are determined
from the susceptibility curve obtained using a SQUID magnetometer. In fig.5.2 we
report the magnetic susceptibility as a function of the temperature for three samples
characterized by different doping regimes. For the optimally-doped sample (OP96)
the critical temperature reported (Tc=96 K) is the onset-temperature of the super-
conducting phase transition, the transition being very narrow (∆Tc <2 K). As a
meaningful parameter for the under- (Tc=83 K, UD83) and over-doped (Tc=86 K,
OD86) samples, which have transition widths of ∆T10−90% 8 K and ∆T10−90% 5 K,
we reported the transition midpoint temperatures. The hole concentration p is ob-
tained through the phenomenological formula [104]:

Tc

Tc,max
= 1− 82.6 · (p− 0.16)2 (5.1)

where Tc,max is the critical temperature of the optimally-doped sample.

5.4 Static optical measurements

In this section we report the equilibrium optical measurements performed the optimally-
doped sample (OP96). All these measurements have been taken in the laboratories
of the Quantum material group of the University of Geneve (head of the group,
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Figure 5.3: Reflectivity, measured on a broad energy range, is reported for
OP96 at T=300 K (black line) and T=100 K (blu line). The red solid curve is
the fit to the data. In the inset the imaginary part of the dielectric function ε2,
at low energies, is reported. In particular the opening of the superconductive
gap is revealed as a suppression of spectral weight in ε2.

Prof. D. Van der Marel). The optical response of the sample is measured using two
different experimental techniques. In the low frequency region between 50 cm−1 and
6000 cm−1 (6-740 meV) in-plane normal incidence reflectivity measurement are per-
formed by a Fourier transform spectrometer. In the frequency window that ranges
from 1500 cm−1 and 36000 cm−1 (0.18-4.4 eV) ellipsometric measurements have been
performed allowing to directly determine the dielectric function of the sample. In
the far-infrared region the ab-plane dielectric function is extracted using the KK re-
lations. This combination allows to determine with precision the dielectric function
in the entire range of the reflectivity and ellipsometric measurements. The c-axis
dielectric function previously determined from c-axis reflectivity measurements, is
used to extract the true ab-plane dielectric function washing out all the out of plane
cotributions due to the off-normal angle of incidence used in the ellipsometric mea-
surements. All these measurements are carried out in ultra high vacuum condition.

5.4.1 Interband transitions and mid-infrared peaks

In the fig.5.3 we report the reflectivity measured on the sample OP96 in the normal
and pseudogap phases respectively at 300 K and 100 K. The reflectivity measured in
superconductive state at 20 K is not reported bacause it completely overlaps the 100
K measurement on the scale of the graph. In the fig.5.3 we report the real ε1 and
imaginary part ε2 of the dielectric function at different temperatures. The intraband
optical region under 1.25 eV (10000 cm−1) is dominated by a broad Drude peak that
will be discussed extensively in the next section.
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Figure 5.4: The high-energy region of the imaginary part of the in-plane di-
electric function, measured at T=20 K for the OP96 sample is shown. The
thin black line is the fit to the data described in the text. The values of the
parameters resulting from the fit are reported in the table5.2. The contribu-
tions of the individual interband oscillators at ω0,i=1.46, 2, 2.72 and 3.85 eV
are indicated as colour-patterned areas. The black inset indicates the spectral
window covered by the supercontinuum light probe.

In the high energy region (!ω > 1.25 eV) the optical response is dominated by
the interband optical transitions. The best fit to the data (solid line) is obtained
modelling the equilibrium optical conductivity εeq (T,ω) as:

εeq (T,ω) = εD (T,ω) +
∑

i

εL,i (T,ω) (5.2)

where the first term is the Drude peak of the conductivity and the second term is a
sum of Lorentz oscillators.
We stress that the εeq (T,ω) obtained by the fitting procedure reproduces both ε1
and ε2 in the whole experimental range. In the table (5.2) we report all the param-
eters obtained from the fit procedure on the OP96 sample at 300 K, 100 K, 20 K.
The optical properties are satisfactorily reproduced over the whole spectrum, consid-
ering, in addition to the extended Drude model, two mid-infrared (MIR) peaks in the
intraband region (∼0.5, 0.8 eV), whose origin is still subject of debate. Many experi-
mental groups suggest that these peaks are a remnant of some spectroscopic feature
intrinsic to the undoped compounds [11]. A possible interpretation of this well-
established structures is a transition from the occupied low-Hubbard band (LHB)
of Cu to the Fermi energy in the O-2p band [74, 120].
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Figure 5.5: Real and imaginary part of the dielectric function are reported at
T=300 K, T=100 K, T=20 K

The interband transitions in the near-IR/visible/UV spectral range are reproduced
using six Lorentz oscillators at ∼1.45, 2, 2.7, 3.85, 4.36 and 5 eV. The identification
of the interband transitions with specific electronic excitations is an open issue as
well. Many efforts have been devoted to give a possible interpretation studying the
temperature and doping behaviour of the optical conductivity. A common feature
observed in all undoped compounds is a suppression of spectral weight below 2 eV
due to the presence of a charge-transfer (CT) gap. Adopting the hole-picture, the
charge-transfer process is explained in terms of a hole transfer from the upper Hub-
bard band with dx2−y2 symmetry to the O 2px,y orbitals. Increasing the doping
level of the sample, the energy region below the gap is partially filled by states at
the expense of the spectral weight related to the CT excitations of the undoped
compound. However the feature associated to the CT gap clearly persists in the
finite doping region and it’s found to be blue-shifted.
Dynamical mean field calculations of the electron density of states and optical con-
ductivity in an hole-doped three-band Hubbard model [32], recently found that the
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Fermi level moves into a broad (∼2 eV) and structured band of mixed Cu-O char-
acter, corresponding to the Zhang-Rice singlet states, in agreement with previous
experimental results [16]. The empty upper Hubbard band (UHB), constituted by
Cu-3d10 states, is shifted to higher energies with respect to the undoped compound,
accounting for the blue-shift of the optical CT edge to 2.5-3 eV. The structures
appearing in the optical conductivity at 1-2 eV, i.e. below the reminiscence of the
CT gap, are related to transitions between mixed Cu-O singlet states with different
symmetries.
Little et al. [75] give a different interpretation of the 1.5 eV oscillator in terms of
a d-d transition, i.e., an electronic transition between Cu 3d states. However the
rather small dependence with the temperature of the oscillator strength compared to
the strong variation of the phonon-assisted d-d transition observed in other parent
compounds [12] makes this hypothesis inconsistent.
The dielectric functions of the UD83 and OD86 samples have been extrapolated
from the εeq (T,ω) of the OP96, following the trend of the optical properties at dif-
ferent dopings, reported in Ref. [20]. In particular, for the UD83 sample, the main
modifications to the dielectric function are: i) ε∞=2.55; ii) the plasma frequencies
of the Drude ωp and MIR peaks (ω0 and ω1) are decreased by ∼3.7%; iii) the plasma
frequencies ω2 and ω3 are decreased by ∼3.7%; iv) the plasma frequency ω4 is de-
creased of ∼13%; v) the plasma frequency ω5 is increased of ∼30%; vi) the plasma
frequencies ω6 and ω7 are decreased by ∼4.8%. For the OD86 sample, the main
modification to the dielectric function are: i)ε∞=2.79; ii) the plasma frequencies of
the Drude (ωp) and MIR peaks (ω0 and ω1) are increased by ∼2.9%; iii) the plasma
frequencies ω2 and ω3 are increased by ∼2.9%; iv) the plasma frequency ω4 is in-
creased by ∼14%; v) the plasma frequency ω5 is decreased by ∼17%; vi) the plasma
frequencies ω6 and ω7 are increased by ∼3.7%.

5.4.2 Strong-coupling analysis and far-infrared region

As pointed out in the previous section, the Drude peak in the intraband optical
region has a width broader than in the case of a normal metal. The reason of this
broadening is the coupling of the free carriers to a broad spectrum of bosons whose
origin is still being discussed. We adopt the generalized Drude formalism, described
in the section (3.2.1), to study the optical response of the medium in the far infrared
region. The Drude component εD of the dielectric function in (5.4) is written in
term of a complex optical self-energy Σopt. Employing the Allen approximation [4],
Σopt is given by the sum of a contribution due the impurity scattering rate Γimp and
a convolution integral between a kernel function K (ω,Ω, T ) and a general boson
spectrum Π (Ω).
We follow the work by van Heumen et al. [127] and we use an histogram representa-
tion of Π (Ω) which does not depends on a microscopic model, since we are interested
only in the relevant spectral features of the bosonic glue. This fit procedure has been
previously applied to other HTSC such as HgBa2CuO4+δ and bismuth-based com-
pounds with very good results. The authors also test the accuracy of the fitting
procedure finding that an histogram formed by only 6 blocks are sufficient to repro-
duce the experimental data.
The bosonic function we used in our fitting procedure is a simplified one,constituted
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Figure 5.6: Reflectivity of OP96 at different temperature. The fit to the curve
(red line) reproduces in a very satisfactory way the experimental data also at
low energies.

by 4 blocks. On the other hand we added contribution to the dielectric function of
two mid-infrared peaks at higher frequencies than the spectral broadening of Π (Ω).
Another difference is that the blocks are mathematically written in term of sigmoid
functions which are analytical approximation of the step function. As a consequence
the total number of fit parameters necessary to describe the boson function are 14:
a background term, a term connected to the steepness and other 3(x4) terms that
describe the frequency, the width and the intensity of the blocks.
As we can see in the fig. 5.6 the resulting fit procedure reproduces in details the
reflectivity of the OP96 sample, down to low photon frequencies, at different tem-
peratures.
In the fig. 5.7 the boson spectra extracted from the fit at 300 K and 100 K and

20 K are reported. The distinctive feautures of the bosonic glue is the narrow peak
at 50-70 meV which is present both in the normal and superconductive states and a
broad spectrum extending up to 350 meV which will be discussed in the following.
The intensity of the peak strongly varies with the temperature while its position does
not significantly change: a slight blue-shift of few meV is observed with the increase
of the temperature. The formalism used to fit the data is in principle valid in the
normal state of an HTSC, assuming that the behaviour of the system is Fermi-liquid
like. The opening of the pseudogap under T∗ and the occurence of the superconduc-
tivity strongly change the density of states in the low-energy region and introduce
additional effects that are not captured by this formalism. Moreover below Tc the
far-infrared reflectivity is dominated by the opening of the superconducting gap and
by the emergence of the condensate δ (0) function. For this reason, the extraction of
the boson spectral function below Tc is a difficult task and, in particular, the results
obtained for the underdoped sample, where the antiferromagnetic correlations play
an increasing role, have to be handled with care.
The boson spectrum has been recently obtained [58] also from the equilibrium con-
ductivity numerically inverting the optical scattering rate with the maximum entropy
method. The resulting bosonic coupling function has the same wide spectral content
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Figure 5.7: Electron-boson coupling functions extracted from the reflectivity
fit. A physical feature found at all the temperatures, is a low-energy peak and
a broad continuum extending up to ∼2500 cm−1.

of Π (Ω) but the narrow peak, well evident below Tc is broadened and is frequency-
shifted, merging into the high energy spectrum when the temperature increases.
The low energy peak is intimately related to the kink observed in ARPES spectra
along the nodal direction and also to the sharp resonance observed at low tempera-
ture in magnetic neutron scattering measurements. Until now, detailed study do not
to converge to a unique interpretation of this physical feautures and the interaction
with optical phonons or magnetic resonance modes constitute possible explanations.
Moreover it is very difficult to clearly disentangle these two different excitations be-
cause of the similar energy scales: the optical phonons have energies 40 meV and 70
meV while the energy of the magnetic resonance mode in the hole doped compounds
is 40 meV. Another unsolved problem is to determine if this kink represents a real
signature of superconductivity. Regarding this point a recent work of Hwang et
al. [57] seems to exclude this possibility: studying the infrared optical properties of
Bi-2212, they found that the narrow peak under 100 meV weakens at higher doping
rate and completely disappears in the strongly overdoped side of the phase diagram
(p=0.23) where the system is still a superconductor with a high critical tempera-
ture. The persistence of the peak well above Tc found in the resulting Π (Ω) seems
to confirm that this spectral feature is not intrinsic to the superconductivity.
Together with the sharp feature, the boson coupling function displays a continuum
background extending up to frequencies much higher than the maximum frequency
of the lattice (Debye frequency ωD) which is of the order of 100 meV. This part of the
spectrum is sometimes called the Millis-Monien-Pines spectrum and it is common
to all the HTSC independently of the techniques employed to extract Π (Ω). The
electron-phonon coupling function α2F (Ω) of a BCS superconductor extracted from
the tunneling experiments, has a width of the same size of the phononic density of
states F (ω) and the peaks observed in F (ω) and α2F (Ω) coincide. In the specific
case of an HTSC, the background can not be due to phonons, because of its large
spectral content, and it has necessary an electronic origin: a coupling mediated by
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Table 5.1: We report here the values of the electron-boson coupling constant λ
obtained by integrating the glue function Π (Ω) at different temperatures. The
corresponding Tc, calculated in the frame of the strong-coupling formalism,
are also reported.

Temp (K) λ Ω̃ (cm−1) Tc (K)

290 0.96 730 113.9

100 1.54 463 105.9

20 1.69 497 120.3

spin fluctuations or orbital currents has been proposed.
By a careful examination of the extracted Π (Ω) it is possible to get important

informations on which are the parts of the spectrum that are responsible of the high
Tc. Van Heumen et al. [127] have evaluated separatly the strength of the coupling
above (λbcg) and below (λpeak) 100 meV, employing the relation (2.5). The Mc Mil-
lan formula (2.6) relates the value of Tc with the strength of the coupling λ and for
the Coulomb repulsion term µ=0 takes this simplified form:

Tc = 0.83Ω̃ exp

(
−
1 + λ

λ

)
. (5.3)

The values of λpeak and λbcg are shown to change with the doping in particular for
the overdoped sample the low frequency part of the boson function turns out to be
too weak to explain the high Tc. These results suggest that also the high energy
bosons has to be taken into account in the calculation of Tc and play a role in the
mechanism of the superconductivity.
We repeated the same analysis for the OP96 sample and we obtained the values
reported in table (5.1). The values of Tc obtained are higher but very close to the
experimental values. The overestimation of the critical temperature is expected and
it comes from the fact that the pairing between electrons in HTSC has a d-wave
symmetry and it is active only in the antinodal direction while the electron-boson
coupling constant λ is extracted from a momentum mediated Π (Ω).
We note that the λ is temperature dependent and increases about twice at 20K as
compared to the normal state. This behaviour is connected to an increasing of the
50 meV-peak intensity and a raise of a spectral feauture in Π (Ω) below the peak as
we can see in fig. 5.7. The high energy part of the spectrum seems to change less
significantly than the peak. A possible explanation of the increasing of the electrons
interaction with the bosons could be given in terms of a pseudogap opening.
The observed temperature variation of the spectrum doesn’t imply the failure of the
strong coupling formalism where the thermal excitations of the bosons and electrons
are described by the kernel function K

(
ω

2πT ,
Ω

2πT

)
(see eq. 3.5). It is concerning this

problem, it was shown that the Π (Ω) function extracted from the T=290 K data
reproduces satisfactorily the experimental spectra in the pseudogap state and under
Tc. For this reason we conclude that the temperature dependence of the optical
spectra mainly originates from the Bose-Eistein and Fermi-Dirac factors contained
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in K
(

ω
2πT ,

Ω
2πT

)
and only small differencies between theoretical and experimetal

curves have to be ascribed to an effective temperature dependence of Π (Ω).

5.4.3 The optical self-energy

The optical self-energy Σopt is a complex function which it is introduced in the
formalism of the generalized Drude model to describe the strong interaction between
the free electron gas and a general spectrum of bosons. The real and imaginary part
of Σopt describe respectively the frequency dependent scattering rate 1/τ (ω) and the
mass enhancement of the charged carriers m∗(ω)/m which is related to the coupling
constant λ. Since the optical response is causal the these two quantity are related
by the Kramers-Kronig relations.
We used the Π (Ω) obtained by the fit to compute 1/τ (ω) and m∗(ω)/m at different
temperatures as shown in fig. 5.8. The inverse of the scattering time decreases
with the temperature at all the range of frequencies and has the form a+ bω above
1000 cm−1: the slope b is proportional to the the temperature as expected for
the marginal liquid behavior of the carriers in HTSC while the intercept could be
interpreted as the signature of the non-Fermi liquid behavior of the normal state.
When the temperature is below Tc, 1/τ (ω) is strongly suppressed as a consequence
of the opening of the superconductive gap ∆. The behavior of 1/τ (ω) is very similar
to that extracted from ARPES measurement along the nodal direction; along the
antinodal direction instead the scattering rate of the electrons seems to feel the
effects of the superconductivity.
From the frequency dependence of 1/τ (ω) it is possible to roughly estimate the
superconductive gap. In the case of a BCS superconductor under Tc the absorption
drops at the frequency 2∆+Ωph where Ωph is the phonon resonance energy since the
coupling is phonon-mediated. Analogously, in HTSC the inverse of the scattering
rate onset is given by 2∆+Ωbos where Ωbos is the energy of bosonic mode observed in
the bosonic coupling function below 100 meV. We choose as the onset the frequency
at which 1

τ(ω) ceases to be linear: 1200±50 cm−1. Since the frequency position Ωbos

of the low-energy peak in Π̃ (Ω) is 585±50 cm−1 we find that ∆=307±100 cm−1 (i.e.
38±12 meV). This value is in agreement with the experimental value of ∆ (40±5
meV) obtained with ARPES meausurements on the same Y-doped sample [115].
The narrowing of the optical conductivity at low frequencies causes both the drop of
1/τ (ω) and the increasing of m∗ as we can see in fig. 5.8. This is in agreement with
the definition of m∗ as the probability of the charged carriers to be scattered. At
higher frequencies the ratio between the effective mass and the bare mass approaches
the unity. Decreasing the temperature, m∗ reaches higher values and below Tc

displays a hump at ω ∼600 cm−1 and saturates to a finite value.
Another important physical quantity that can be extracted in the frame of the
extended Drude model is the strength of the electron-boson coupling λ from the
relation:

lim
ω→0

m∗ (ω)

m
= 1 + λ (5.4)

For T=20 K we obtain the value λ=1.7 which is in agreement with the value 1.69
obtained from the integration of ΠT=20K (Ω) reported in table (5.1).
It’s necessary to specify that sometimes the interpretation of the Σopt in term of
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Figure 5.8: The frequency dependent effective mass (top) and the scatter-
ing time (bottom) are calculated at different temperature in the frame of the
extended Drude model using the parameter obtained by the reflectivity fit.

scattering rate and effective mass enhancement has to be tackled with care. For
example the result that 1/τ (ω) goes to zero for ω → 0 in the superconductive state
cannot be interpreted as an infinite quasiparticles lifetime but it is an effect due to
the redistribution of the density of states under Tc [11].

5.4.4 Marginal Fermi liquid

In the section (5.4.2) we describe the optical properties of an HTSC using a strong
coupling formalism and we chose a model-independent histogram rappresentation of
the electron-boson coupling function. In particular we represent the glue function
adopting the Marginal Fermi Liquid (MFL) phenomenology and we compare the
result to the ones obtained in the last section.
The Marginal Fermi liquid model is a phenomenological model that was introduced
by Varma and co-workers [130] to explain some anomalous physical properties in the
normal state of the cuprate superconductors, i.e. the linear temperature dependence
of the in-plane resistivity and the unexpected behavior of the nuclear relaxation rate
in NMR measurements. The main hypothesis behind this theory consists in the
assumption that the glue function is made of charge or spin excitations which, in
the low frequency region, scale as ω/T .
The simplified version of the bosonic spectrum is given by Π (Ω) = min

(
ω
T , cost

)

(Π (Ω) goes like ω/T at low energies and it is constant above this region). A cutoff
Ωc in the glue function is introduced to make convergent the electron self-energy.
Starting from the original work by Varma [130] we write Π (Ω) in an analitical
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Figure 5.9: (Top) Electron-boson coupling function extracted from the fit of
the reflectivity using the MFL model. (Bottom) Static reflectivity (OP96) at
low energy and fit for MFL model

form:

Π̃MFL (Ω) = Λ tanh

(
Ω

2T

)
f (Ω,Ωc,∆) (5.5)

where f (Ω,Ωc,∆) is the high energy cutoff function which has the following form:

f (Ω,Ωc,∆) =
1

1 + exp
(
Ω−Ωc

∆

) . (5.6)

Λ is the coupling constant of the entire boson spectrum while ∆ is a parameter
connected to its spectral width [124].
We replace ΠMFL (Ω) into eq. (3.9) and we fit the reflectivity. The results of the fit
are displayed in fig. 5.9 together with the ΠMFL (Ω) coupling functions in normal
and pseudogap state. The λ obtained from the integration of ΠMFL (Ω) increases at
low temperatures changing from λ=1.06 at T=290 K to λ=1.46 at T=100 K . This
effect can be understood in terms of a general redshift of the glue function and an
increase of the spectral weight in the low energy region observed also in Π (Ω). It’s
very interesting to note that, in order to obtain good fit, it is necessary to change
only the temperature and the parameter Λ, while the ωc and ∆ remain fixed. This
result seems to confirm the ω/T behavior of the bosonic coupling function distinctive
of the MFL model. For the sake of completeness, an analogous ω/T scaling behav-
ior was recently observed in the optical conductivity: σ (ω, T ) = Tµh

(
ω
T

)
where the

exponent µ assumes different values depending on the ratio ω
T .

The MFLmodel can be extendend in the superconductive state, modifyingΠMFL (Ω)
and taking into account of the opening of the gap. In this case we talk of gapped
MFL [96].
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5.5 Conclusion

In this chapter we report the optical measurements carried on the Y-doped Bi2212
in equilibrium condition. The dielectric function is reproduced by a set of interband
optical oscillators in the visible region. The oscillators placed at 1.5 and 2 eV are
related to transitions between mixed Cu-O singlet states with different symmetries
while, the interband oscillators in the ultraviolet region are a reminiscence of the
charge transfer gap. Two mid-infrared peaks, whose origin is still subject of debate,
are added to fit the dielectric function in the intraband region (∼0.5 and ∼0.8 eV).
The extended Drude model is employed to describe the low-energy optical properties
of the system and allow to extract the electron-boson coupling function which is
characterized by a narrow peak at ∼70 meV and a broad continuum extending up
to ∼300 meV. The high-energy part of the glue function is considered to be related
to the bosonic modes of electronic origin, like spin fluctuations, because it extends
well above the upper limit of the lattice excitation in HTSC i.e.100 meV. The low-
energy peak was already observed by different experimental measurements but the
nature of the bosons which give rise to this spectral feauture is still debated.
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Table 5.2: Parameters used in the fit to σeq (T,ω) of the OP96 sample. All the
values are expressed in inverse centimeter units (cm−1).

parameters T=20K T=100K T=300K

Extendend Drude

εinf 2.67 2.67 2.62

ωp 17418 17392 16901

Γimp 53 155 625

T 20 100 290

Mid-infrared peak

ω0 4234 4929 4264

ω2
p0 10454991 13871222 22041800

γ0 3535 4706 4069

ω1 6490 6959 6789

ω2
p1 11001998 6489852 8142014

γ1 3519 2949 3925

Interband transitions

ω2 11800 11800 11650

ω2
p2 5560610 7460610 5307060

γ2 3644 3944 3500

ω3 16163 16163 15409

ω2
p3 40768500 41268500 45542000

γ3 8304 8304 8905

ω4 21947 21947 21300

ω2
p4 225776000 230776025 223159025

γ4 13998 13898 13898

ω5 31057 31057 30756

ω2
p5 288626121 288626121 320536896

γ5 6191 6191 6908

ω6 35146 35146 34946

ω2
p6 217474009 217474009 214474009

γ6 6396 6396 6396

ω7 40421 40421 40421

ω2
p7 750212100 750212100 756371984

γ7 7518 7518 7518
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Chapter 6
One-color time-resolved optical
measurements

6.1 Introduction

In this chapter we report time-resolved reflectivity measurements performed on the
samples Bi2Sr2Ca0.92Y0.08Cu2O8+δ at three different doping level (UD83, OP96,
OD86) in a temperature range between 20 K and 300 K. Both the probe and pump
wavelengths are set at 800 nm (one-color configuration) and they are provided by the
optical oscillator described in chapter (4.2). The transient response of each sample is
fitted by a sum of exponential decay functions. A detailed study of the temperature
dependence of the decay times is done. The peculiar sensitivity of this technique to
the phase of the system enables to obtain important informations about the phase
diagram of an HTSC and in particular on how the psedogap crossover temperature
T∗ evolves with the doping level.

6.2 Experimental data

Ultrafast time-resolved reflectivity is an experimental technique largely employed in
the field of high temperature superconductivity because, in contrast to the standard
equilibrium spectroscopies, allows to study directly in time domain the quasiparticles
recombination dynamics. Besides the high temporal resolution, another advantage
of this techniques is the sensitivity to the phase of the system. The transient optical
response of an HTSC depends on the temperature and also on the doping rate as we
will see in this chapter. In particular the different time scales of the quasiparticles
response enable to get more information on the interplay between different phases of
the system. With regard to this point, the relationship between the superconductive
and the pseudogap state is not well understood and is subject of a debate to clarify
whether the pseudogap is a precursor or it is in competition with the superconduc-
tive phase. Strictly connected to this problem there is the issue of the determination
of the phase diagram of an HTSC and in particular of how the pseudogap line merges
into the superconductive dome.
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Figure 6.1: (a) Time-resolved reflectivity traces on underdoped Y-doped
Bi2212 at different temperatures, are reported. Both the pump and probe
wavelenght are set to 800 nm. An offset proportional to the sample tempera-
ture has been added to the traces. The solid lines superimposed to the data
are the fit with the function 6.1. (b) The amplitude of the exponential decays
is reported as a function of the temperature. The values of the coefficient C,
related to the normal state component have been multiplied by 100, for dis-
play purposes. (c) The fast decay times τB and τC , obtained by the fitting
procedure, are reported as a function of the temperature.

In the last decade this problem has been approached by many authors [34, 76]
employing one-color pump-probe reflectivity techniques.
A typical time-resolved reflectivity signal in a HTSC is characterized by a fast tran-
sient component with a finite rise time of the order of few hundreds of femtoseconds
and a temperature dependent decay time which changes abruptly under Tc and is
related to the energy exchange between electrons and phonons. The signal related
to the thermalization of electrons among themselves via intraband scattering pro-
cesses has a relaxation time τe−e too fast (τe−e = !EF /2πE2 where E is the energy
measured with respect the Fermi level EF ) and it’s covered by the temporal width
of the pulse. Beside these components, there’s another slow dynamics related to
the phonon thermalization which is well reproduced by an exponential decay with a
slower relaxation time of about 100 ps. At the moment, we do not consider, in the
fitting procedure, the slow component and we focus on the fast one trying to study
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Figure 6.2: Temperature dependence of the time-resolved reflectivity measure-
ments at λprobe=800nm. The black arrows indicate the critical temperature.

its change with the temperature.
In fig. 6.1a we report time-resolved reflectivity scans (∆R/R(t)) on the underdoped
(UD83), where the pseudogap region is more extended. The positive and negative
fast components of the measured signal have been extracted by fitting to the data
a triple exponential decay, convoluted with a Gaussian curve, taking into the tem-
poral profile of the pump and probe pulses (full-width-halfmaximum= 120 fs). The
exponential decay function is given by:

f (t) = A exp (−t/τA) +B exp (−t/τB) + C exp (−t/τC) (6.1)

where τA is a slow decay time (τA >1 ps) and τB and τC are fast decay times
(τB,τC <1 ps). The fitting procedure evidences a large and positive A component,
that disappears approaching Tc from below and, for this reason, is attributed to
the superconducting (SC) phase. Around Tc a negative component starts to ap-
pear overlappig with the slow and positive one. This component increases with the
temperature reaching the maximum at about 130K and then starts to decreses disap-
pearing at a temperature T∗ of about 220K. Also the relaxation time changes above
Tc and drops to about 400 fs according to the fact that the system is no longer a su-
perconductor and a bottleneck in the quasiparticles recombination process is absent.
The value of the crossover temperature T∗ and the sharp change sign of ∆R/R leads
us to interpret this feauture as the fingerprint of the pseudogap phase. A similar
value of T∗ was obtained by Liu et al. [76] in the same measurements carried on a
sample of underdoped Bi2212 and it’s consistent with the results obtained by other
experimental techniques reported in [55].
Above T∗ the B component drops and a small positive component, related to the
normal phase, appears.
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Figure 6.3: The decay times, obtained by fitting the exponential decay of the
reflectivity, are reported as a function of the temperature. The black arrow
indicate the critical temperature.

In fig. 6.1b the temperature dependence of the three components amplitude is shown:
to help the reader the values of the C coefficients have been multiplied by a factor
100. In fig. 6.1c we report the values, obtained from the fitting procedure, of the
decay times τB and τC of the non-equilibrium populations photoinjected in the N
and PG phases. The decay time is fast in both the N and PG phases ranging from
∼500 fs at T=300 K to ∼ 400 fs at T=100 K. The decay time values extracted from
the fitting procedure as Tc is approached (90K≤T≤100K) are not reported, since
the coexistence of the A and B components did not allow to obtain reliable values
of τB.
The values of τA obtained from the fit are reported in fig. 6.3 at different doping
regime and will be discussed later on.
Fig. 6.2 shows the 2D plot of the transient reflectivity at different temperature
carried on the three samples. As we can see, the sign of ∆R/R doesn’t change qual-
itatively from under to optimally doped but the value of T∗ extrapolated linearly
decreases with the doping to the value T∗ ∼140K. The decay dynamics becomes
slightly faster in OP96 below T∗ as compared to what observed in the UD sample.
In the overdoped sample the pseudogap component is not detected because the T∗

line has merged into the superconducting dome at lower doping level. Another differ-
ence encountered in the OD region, is the change of sign (from positive to negative)
of the relative change of reflectivity in the superconductive state. The sign flip of
the transient component was already reported by Gedik et al. [48] in Bi2212 and
triggered an animated debate.
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6.3 Conclusion

The measurements that we report in this chapter show that the signal variation
strongly depends on the phase of the system, making this technique a very useful and
promising tool to study the phase diagram of an HTSC. The ∆R/R(t) is positive and
fast in the normal state with a decay time of the order of ∼ 400 fs, while it changes
sign in the pseudogap phase. The temperature at which the negative component
starts to appear, is ascribed to the onset of the pseudogap phase and it turns out
to be ∼220 K for the UD83 and ∼130 K for the OP96 sample. In the OD86 sample
the pseudogap component is not detected meaning that the T∗ line merges with the
superconducting critical temperature. The amplitude of ∆R/R(t) increase of one
order of magnitude in the superconductive state while the corresponding decay time
slows down because of the opening of a gap and it turns to be of the order of few ps.
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Chapter 7
Normal state

7.1 Introduction

In this chapter we report time and frequency resolved reflectivity measurements on
Bi2Sr2Ca0.92Y0.08Cu2O8+δ at different doping levels in normal state. All the mea-
surements shown here are performed at T=290 K. We exploy the strong coupling
formalism used to fit the equilibrium optical spectra in chapter 5 and we develop a
differential model to interpolate the pump-induced modification of the reflectivity
over the entire energy range set by the spectral content of the probe. We will show
later how the possibility to disentangle the electronic and bosonic contribution to
the transient signal, gives us the chance to determinate which is the part of the glue
function Π(Ω) that is ascribed to the phonons and to the electronic boson modes.
The coupling constant λ and the contribution to the superconductive critical tem-
perature are obtained in both the cases by integrating Π(Ω) and using the McMillan
formula [86]. Our conclusion is that neither the electronic modes nor the lattice
alone are not able to account for the high Tc observed. This suggests that the
superconductivity in cuprates can be explained by an interplay between these two
pairing mechanisms [60, 61, 88].

7.2 Preamble

One color time-resolved reflectivity measurements have the great advantage to tem-
porally resolve the dynamics of the electronic excitations out of equilibrium and
to provide important informations on the mechanisms of the energy exchange with
the other degrees of freedom of the system. In this configuration, a pump pulse of
energy !ω, excites above EF , all the electrons that occupy the electronic bands in a
spectral region that extends !ω below EF . The monochromatic probe pulse follows
the carriers relaxation dynamics through the Fermi level but the resulting transient
signal ∆R/R is limited only to the probe photon energy. The lack of spectral resolu-
tion makes difficult to assess which is the physical origin of the reflectivity variation
particularly in strongly correlated systems like cuprates where the strong electronic
correlations plays a fundamental role.
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Figure 7.1: Energy and time-resolved reflectivity on Bi2Sr2Ca0.92Y0.08Cu2O8+δ.
The 2D scan are reported for different doping range at T=290K. The colour
scale of the reflectivity variation amplitude is reported on the top left of the
figure. The insets display the position of each scan in the T-δ phase diagram.
The white lines are the ∆R/R(t) traces obtained at λprobe=800nm. The yellow
line represents the cut at the delay time τ=0 ps. The energy resolved spectra
∆R/R(ω, τ = 0) are reported next to the respective 2D plot.

In simple systems, like metals, it’s well established that the measured ∆R/R can be
explained as a thermal effect which modifies the electronic distribution function [54].
In cuprates the situation is more complicated and many other effects could overlap
and contribute to ∆R/R, like a rearrangement of the electronic bands due to the
optical spectral weight shift [48].
In this case the temporal resolution is not sufficient to disentangle the several contri-
butions and it is necessary to study the transient dynamic behaviour of the dielectric
function of the system over a broad spectral range of energies. A possible way to
satisfy this condition, conserving the high temporal resolution, is to use the super-
continuum light or a frequency tunable femtosecond light pulses as a probe.
In the previous chapter we have seen how the supercontinuum light is chirped due
to the self-phase modulation and group velocity dispersion occurring in the pho-
tonic crystal fiber. The determination of the spectral and temporal structure of the
broadband pulse allows us to determine the real response of the system.
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Figure 7.2: (a) Pump-supercontinuum probe reflectivity measurements (top)
jointed with pump-OPA probe reflectivity measurements (bottom) carried on
OP96 at T=300K. The total probe energy range is 0.5-2 eV. The pump fluence
Ifl=10 µJ/cm2 per pulse. The straight line represents the temporal cut of the
2D spectra. (b) Energy resolved spectra at different delay times.

Since the study of the temporal behaviour of the dielectric function of an HTSC is
a difficult task and many effects connected to the occurence of the superconductiv-
ity could further complicate the analysis, we tackle the problem starting from the
normal state of HTSC, where the system has a metallic-like behaviour.

7.3 Experimental data

In fig. 7.1 we report the time and frequency resolved reflectivity (∆R/R(ω, t)) car-
ried on the underdoped (UD83), the optimally doped (OP96) and the overdoped
(OD86) samples in normal state at room temperature (T=290K). The frequency
window used to explore the dynamics is limited by the sensitivity of the photodiode
array (PDA) and ranges from 1.25 eV to 2 eV. The maximum temporal delay be-
tween pump and probe is 4.5 ps. As we can notice from the color scale, the fractional
change of reflectivity is positive and fast, and it is similar at different doping levels as
already observed in the one color time-resolved measurements (Fig. 6.2). For each
2D plot, the time traces are reported: the temporal behaviour at each frequency
displays a fast transient component and a slow decay which could be interpreted
respectively as the electron-phonon relaxation and the phonon thermalization.
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Figure 7.3: (a) Pump-supercontinuum probe reflectivity measurements (top)
jointed with pump-OPA probe reflectivity measurements (bottom) carried on
OD86 at T=300K. Ifl=10 µJ/cm2 per pulse. (b) Energy resolved spectra at
different delay times.

The energy-resolved spectra, obtained at different delay times monotonically in-
crease with the probe energy and seems to vanish in the ultraviolet region without
showing any particular structure.
In fig. 7.2 and 7.3 we report the data obtained from the supercontinuum probe
technique extended in the infrared region down to 0.5 eV employing the signal and
idler pulses provided by an OPA system. We report here the spectra for OP96 and
OD86 samples. The total energy extension of the probe now ranges from 0.5 eV to
2 eV. The pump fluence and in general the experimental conditions are the same
used in supercontinuum probe measurements (laser fluence=10 µJ/cm2). Looking
closely at the OPA time traces of OD86 sample (fig. 7.4a-b), we can appreciate how
the transient response of the system is complex in the infrared region. Near the
visible region, above ωprobe=1.1 eV, ∆R/R(t) is characterized by a sum of a positive
fast and slow components with a decay time of τ1=400 fs and τ2=3 ps respectively.
Shifting the probe energy towards the infrared, both the dynamics change sign. The
reversing of ∆R/R(t) makes the transient signal more difficult to analyze near the
crossing point. In the spectral region far from the crossing point we find out a similar
two component temporal dynamics reversed in sign.
The energy resolved spectra extended in the infrared region are shown in fig. 7.2b
and 7.3b. Both the OP and OD traces display a positive maximum at about 1.3
eV and monotonically decrease as the photon energy increase. In the OPA probe
region, ∆R/R(t) decreases, changing sign at about 1.1 eV, and it keeps constant
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Figure 7.4: (a) Energy and time-resolved reflectivity on OD86 near the crossing
point. The white line represents the temporal dynamics of the crossing point.
The time evolution of this trace is fitted (black solid line) using a model with
two component decays. The fast dynamics as a decay time τ of 350±20 fs. (b)
∆R/R(t) traces at different at different probe wavelength. The fast component
of the trace at 0.5 eV has the same decay time that the crossing point

at about 2 × 10−4. It is interesting to note that an additional dynamics is clearly
visible by examining the 2D plots in the frequency domain at different delay times
i.e. a blue shift dynamics of the crossing point, reported in fig.7.4b. The decay time
of the fast component of this dynamics, reported in the inset of the figure, turns to
be ∼350±20 fs.

7.4 Three-temperature model

Since the model we adopt to study the temporal behavior of the dielectric function
depends on both the electronic and bosonic temperature, it is necessary to know the
temporal profile of Te and Tb after the absorption of the pump pulse. The three
temperature model (TTM), described in section (3.3.3), it is a generalization of
Allen model [5] to the case of the cuprates, where the electron population is strongly
coupled with a subset of phonons with a short decay time and then thermalizes on
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Figure 7.5: ∆R
R (t) traces at λprobe=800nm and λprobe=1320nm (OP96). Ifl=10

µJ/cm2. The fitting result is obtained by integrating numerically the solutions
of the three temperature model. The result of the fit are reported in table 7.1

a longer time scale with the rest of the phonons.
This model [101] was introduced to fit the temporal behaviour of Te directly

obtained from the electron distribution function extracted from time-resolved pho-
toemission spectra at different delays.
In fig. 7.5 we report the fit of the TTM to ∆R/R(t) at different probe energies. The
coupling constant between electrons and strongly coupled phonons λ resulting from
the fit of Te, depends on the frequency of the phononic modes Ω0 and varies from a
maximum of ∼0.21 to a minimum of ∼0.08, in correspondence to the choice Ω0=40
meV and Ω0=70 meV. Since the electron-boson coupling function Π(Ω) extracted
from the static optical reflectivity displays a low-energy narrow peak near 70 meV
(69±4 meV), we assume λ as a fixed parameter and we set its value to λ=0.08 in
the fitting procedure.
We chose to fit time-traces at a probe energy far from the crossing point where there

Table 7.1: Parameters obtained from the 3TM fit.

Ω0 (meV) λ f τβ (ps) T (K) Fluence ( µJ
cm2 )

69±4 0.08±0.02 0.06±0.03 0.55±0.2 290 10

is no influence of the crossing point dynamics. In fig. 7.5 we report the ∆R/R(ω0, t)
taken at ω0=800 nm and ω0=1320 nm. The fit (blue line) is obtained by integrating
numerically the rate equations 7.15 and it satisfactorily reproduces the data assum-
ing that the fractional variation of reflectivity is proportional to the electronic and
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Figure 7.6: Simulation of the temporal behaviour of Te,Tb and Tl. The pa-
rameter of the simulation are obtained by the fit of ∆R/R(t).

the cold phonon modes temperature, as in metals: ∆R = a∆Te + b∆Tl.
In order to make the model more realistic, we use in the rate equations the experi-
mentally measured values of the electronic specific heat coefficient (γel = Cel/T ) and
of the lattice contribution to the specific heat of Y-doped Bi2212 [77]. The fitting
parameters of the model are reported in table 7.1. Another interesting information
comes from the fraction of hot phonons f: the results of the fit suggests that only a
small fraction of all the phonon modes is strongly coupled with the electronic carri-
ers. This result is in accord with the time-resolved photoemission studies and it was
explained in term of the strong anisotropy of the phononic modes in HTSC [101].
The temporal profile of Te, Tp and Tl obtained from the fit parameter is sketched
in fig. 7.6.

7.5 Phenomenological differential approach

The modification of the reflectivity experimentaly observed on an ultrafast time scale
is the effect of the pump-induced variation of the physical parameter that describe
the equilibrium dielectric function of the system. In our case, the parameters that
are perturbed by the light pulse and contribute to ∆R/R(ω, t) in the probe pulse
spectral range are (see table 5.2):

• the Drude plasma frequency ωp

• the width Γ of the Drude peak

• the optical oscillators in the mid-infrared and the visible region

Both ωp and Γ depends on the temperature. When the sample is heated by the
pump pulse, we expect a variation of the these two term. It is indeed demonstrated
that if the effective single band Hamiltonian, describing the motion of the Drude
carriers, is simplified by a near-neighbour hopping approximation, ωp is related to
the kinetic energy.
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Figure 7.7: ∆R/R simulations obtained from the differential Drude model.
The equilibrium dielectric function, used in the differential fit, is obtained by
the interpolation of the static reflectivity with a Drude model. ∆R/R obtained
by varying (a) only the plasma frequency ωp, (b) only the width Γ, (c) linear
variation of ωp and Γ (d) variation of Γ with ωp not in equilibirum. The last
possibility is the one that simulate a shift of the crossing point (red points).

To be more precise a positive variation of the kinetic energy corresponds to an ωp

variation of the opposite sign. The T-dependence of ωp is exploited by considering
the Sommerfeld expansion of the total energy U of a non-interacting electron gas:

U = U0 +
π2

6

(
kbT

2
)
g (EF ) (7.1)

where U0 is the ground state energy and g (E) is the density of energy levels [8].
Γ includes the impurity scattering rate Γimp and, in the case of HTSC, another term
related to both Te and Tb (see formula 3.11). The T-dependence of Γ results in
a narrowing of the Drude peak with decreasing the temperature which has been
observed by many experimental groups [11]. The variation of the optical oscillators
is not related to a simple heating effect which affects only the thermal distribution
of electrons and bosons but to a rearrangement of the electronic bands.
In this section we try to determine the physical parameters that cause the transient
variation of the signal by adopting a phenomenological differential model. We fit
the equilibrium reflectivity in the intraband optical region, by using a simple Drude
model, with a temperature dependent width of the Drude peak. The reflectivity in
the interband optical region, is reproduced by adding to the equilibrium dielectric
function the oscillator reported in table 5.2. We make the assumption that the
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7.6. Differential model

variation of the signal in normal state can be explained in term of a thermal effect
and, for the moment, we limit to vary only ωp and Γ. In fig. 7.7 we show the result
of the simulation of the simplified differential model. The variation of ωp (fig. 7.7a)
gives rise to a more prominent negative signal with a no-varying crossing point at
higher frequencies. 7.7a) we simulate the reflectivity variation caused by a simple
broadening of Γ: ∆R/R seems to reproduced well the shape of the signal and the
crossing point frequency is near to the experimental value but it doesn’t shift in
time. Even if we change ωp and Γ both linearly (left-bottom figure) we don’t obtain
any shift. The unique way to obtain this effect consists on changing Γ while keeping
fixed ωp (right-bottom figure). This means that the blue shifting of the crossing
point, observed in our measurements, has to be ascribed to a different temporal
dynamics (with different decay times) of ωp and Γ. In the spectral region far from
the crossing point the experimental ∆R

R is mainly affected by the thermal induced
variation of Γ.
In conclusion, the tunability of the frequency of the probe pulse has allowed us to
explore the temporal evolution of ∆R/R(t,ω) over a wide energy window. A change
of sign of the fractional reflectivity is found at !ωprobe ∼ 1eV both for optimally
and overdoped sample. In the frequency region far from the crossing point the
dynamics depends only on the broadening of the Drude peak and is characterized
by two decays in agreement to what observed in metals. Since in an HTSC the
conduction electrons interact with a broad spectrum of bosons, the resulting Drude
peak broadness extends until the visible region and its transient variation is sensed
as a reflectivity change. Near the crossing point the temporal dynamics is more
complex because ∆R/R depends on the temporal modification of both ωp and the
Drude width. In the extended Drude model the last term is expressed in term of
the electronic Te and bosonic Tb temperature. Since in a time resolved experiment,
the electrons population is driven in a condition out of equilibrium with respect the
boson and on a subpicosecond time scale Te )= Tb, it is necessary to study the effect
of the temperature disentangling on the Drude broadening. This will be done in the
next section.

7.6 Differential model

7.6.1 Non-equilibrium dielectric function

We describe now in detail, the differential model developed to account the Te and Tb

decoupling and fit our measurements. As we have reported in the last section, the
variation of the reflectivity, in normal state, is ascribed to ωp and to the broadening
of the Drude peak that depends both on Te and Tb.
Since in a non-equilibrium measurement, the system is perturbed by a laser pulse,
its physical properties change and depend on the delay time τ between pump and
probe pulse. In particular the relative variation of the reflectivity is given by:

∆R

R
(ω, τ) =

Rexc (ω, τ)−Req (ω)

Req (ω)
(7.2)

where Rexc (ω, τ) and Req (ω) are the out of equilibrium and equilibrium reflectivi-
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Figure 7.8: Simulated ∆R/R obtained by varying (a) only the electronic tem-
perature,(b) only the bosonic temperature, (c) boson and electron temperature
in equilibrium

ties. The reflectivity and the dielectric function are connected by this relation:

R (ω) =

∣∣∣∣∣

√
ε (ω)− 1

√
ε (ω) + 1

∣∣∣∣∣

2

. (7.3)

Req is well described by the extended Drude model of the dielectric function ε (ω)
(3.8), described in chapter (3.2.1). The parameters used to interpolate Req are
reported in table (5.2). We start to develop the differential model from the static
model used to fit Req and introducing the temporal dependency of the parameters.
Req contains all the physical change induced by the pump and it is written in term
of the time-dependent version of dielectric function ε (ω) reported here for sake of
clarity:

ε (ω, τ) = ε∞ −
ω2
p

ω (ω + Σopt (ω, τ))
+ interband oscillators (7.4)

Σopt(ω, τ) is the time dependent optical self-energy defined as:

Σopt (ω, τ)

ω
=

(∫
f (ξ, Te (τ))− f (ξ + ω, Te (τ))

ω + Σ∗ (ξ, Te (τ) , Tb (τ)) + Σ (ξ + ω, Te (τ) , Tb (τ)) + iΓimp

)−1

−1.

(7.5)
The temporal dependence of Σopt(ω, τ) comes from both the electronic Te(τ) and
the bosonic temperature Tb(τ) through the kernel function L (ω,Ω, T ) (3.11) since
the single particle self-energy, in the strong coupling formalism, is written as the
convolution integral between the electron-boson coupling function and the kernel-
function (see chapter 3.2.1). The bosonic temperature enters into the imaginary
part of L (ω,Ω, T ) through nBE (Ω, Tb) while the former enters both in the real part
of L (ω,Ω, T ) and in the Fermi-Dirac distribution fFD (ω, Te).
Our approach is finally to fit the experimental variation of the reflectivity∆R/R(ω, τ)
with the function (7.2) at different delays modifying only the parameters: Te, Tb

and ωp. We will show later on that, in the normal state, it’s not necessary to change
the parameters of the interband oscillators to obtain a good fit.
The use of the formalism in (7.5) also opens the possibility to disentangle the effects
of Te(τ) and Tb(τ) on the differential signal.
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Figure 7.9: (a) Simulated temporal evolution of the differential reflectivity
obtained by putting in the differential model the temporal variation of value
of Te and Tb shown in (b). In (c-d) the cut at different delay times, of the 2D
simulation are reported. During the first 200 fs (c) the signal is consistent with
an increase of Te decoupled from Tb. When Tb starts to increase the crossing
point shift towards higher frequencies until the equilibrium between Te and Tb

is reached (d). In (b) the shift of the crossing point (black point) is reported.

In fig.7.8a-b we report the expected ∆R/R(ω) obtained by simulating alternatively
the heating of the electrons and bosons. In the first case, the resulting signal is
positive below ∼9000 cm−1 and close to zero at higher energy. On the contrary, the
heating of the bosons alone induces a ∆R/R signal which is negative in the infrared
region and changes sign at about 8000 cm−1. The differential reflectivity caused
by a quasi-thermal temperature variation (i.e. Te∼Tb), simulated in fig. 7.8c, has
a similar shape of the Tb-heating induced signal, suggesting that, at equilibrium,
the boson temperature overwhelms the contribution of the electronic temperature
increase. This shape of the reflectivity variation is typical of a temperature-related
broadening of the Drude peak (see fig. 7.7b).
Once Te(τ) and Tb(τ) are determined by fitting the one-color pump-probe measure-
ments with the numerical solutions of the three temperature model (fig. 7.6), we can
simulate the temporal behaviour of ∆R/R(ω, τ) using the formula (7.2). The result
of the simulation is reported in fig. 7.9a together with the cut at different delay
times (fig. 7.9c-d)). We stress that, in this case, the parameters, used to calculate
Req and Rexc, are obtained from the fit of the OP96 sample at T=290 K, and the
temporal profile of Te and Tb is calculated with a laser fluence of 10µJ/cm2 and an
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electron-boson coupling constant λ=0.08.
Following closely the behavior of the ∆R/R(ω), we find that since the electron and
boson populations are not yet thermalized, during the first 200 fs, the main contri-
bution to the resulting signal comes from the out of equilibrium electronic carriers.
When the bosonic temperature starts to increase, the crossing point shift towards
higher energies and a negative signal develops in the infrared region. The crossing
point temporal dynamics fades out after 0.3 ps when the electron-boson thermal-
ization is reached, as shown in fig. 7.9b. At larger delays the simulated signal is in
accord with a quasi-thermal decreasing of the equilibrium temperature (fig. 7.9d).
Comparing the simulations based on the three temperature model to our results,
we find a discrepancy between the experimental ∆R/R(ω, τ) at τ=0 ps (i.e. the
energy-resolved spectrum integrated over the first 100 fs) and the simulated one (see
fig. 7.9c). This discrepancy is observed only on a fast time scale (<0.3 ps) and
can be understood in term of the temporal behaviour of Te and Tb. The fast and
positive signal below 1.2 eV, which is totally absent in our measurements, is due to
the fact that Tb has a rise time slower than Te (fig. 7.9b) and the electrons reach
the highest temperature when the bosons start to get excited. In our case the shape
of the reflectivity variation at τ=0 ps can be explained in term of a sudden increase
of the bosonic temperature.

7.6.2 Kramers-Kronig constraint

Before showing the results of the differential fits, it is necessary to check if the non-
equilibrium model presented before satisfy the Kramers-Kronig (KK) transform.
These integral relations connects the real and imaginary part of the response function
of a physical system and they are the consequence of the principle of causality.
In the case of the complex optical conductivity σ (ω) the KK-relations assume the
following form:

σ1 (ω) =
1

π
P

∫ +∞

−∞

σ2(ω
′

)

ω′ − ω
dω

′

(7.6)

σ2 (ω) = −
1

π
P

∫ +∞

−∞

σ1(ω
′

)

ω′ − ω
dω

′

(7.7)

where P is the principal part of the integral.
In the frame of the generalized Drude model (chapter 3.2.1), the constant damping
term in σ(ω) is substituted by a complex and frequency dependent optical self-energy
function Σopt(ω). Inverting the formula 3.3, we can express the real and imaginary
part of Σopt(ω), respectively 1/τ(ω) and λ(ω), in term of σ(ω):

1

τ (ω)
=
ω2
p

4π
Re

(
1

σ (ω)

)
(7.8)

1 + λ (ω) = −
ω2
p

4π

1

ω
Im

(
1

σ (ω)

)
(7.9)

Since σ(ω) is causal, λ(ω) and 1/τ(ω) are not independent but they are related by
the KK relations [3, 11].
On the contrary the validity of these relations is not discussed in the literature,

68



7.6. Differential model

-40

-20

0

20

40

σ
1

500040003000200010000
wavenumber (cm-1)

-50

-40

-30

-20

-10

0

10

σ
2

 Δσ2=σ2(Te=390K,Tb=290K)-σ2(Te=290K,Tb=290K)
 Δσ1=σ1(Te=390K,Tb=290K)-σ1(Te=290K,Tb=290K)
Δσ'2= KK(Δσ1)

 

b)

-200

-100

0

100

200

σ
1

500040003000200010000
wavenumber (cm-1)

-300

-200

-100

0
σ

2

 Δσ2=σ2(Te=390K,Tb=390K)-σ2(Te=290K,Tb=290K)
 Δσ1=σ1(Te=390K,Tb=390K)-σ1(Te=290K,Tb=290K)
 Δσ'2= KK(Δσ1)

 

a)

Figure 7.10: Real (blue) and imaginary (red) part of the differential optical
conductivity obtained by a quasithermal increase of Te and Tb(a) and by an
independent increase of Te (b). The KK transform of ∆σ1 overlaps ∆σ2 indi-
cating that the differential model satisfies the KK relations in both the case.

for σ(ω) written in term of the electron and hole self-energies (eq 3.8) both in the
equilibrium and in the non-equibrium scenario, when Te is no longer tied to Tb.
To tackle this question, we adopt a simplified model given by a Drude oscillator
strongly coupled with a bosonic spectrum Π (Ω). The parameters of the model are
reported here in succession: ε∞=1, ωp=5000 cm−1, Γimp=50 cm−1. The electron-
boson coupling function is a simplified version of the one reported in fig. 5.7 at
T=290 K where the broad spectrum of electronic origin is removed. The real and
imaginary part of the differential conductivity ∆σ(ω) (respectively the red and blue
curve) are calculated in two different cases: an increase of the equilibrium tempera-
ture (∆Te=∆Tb), reported in fig. 7.10a, and of the electronic temperature decoupled
from the bosons (∆Te > ∆Tb) in fig. 7.10b.
In both situations, the KK-trasform of the real part of the differential conductivity
∆σ1(ω) (black points) exactly reproduces the ∆σ2(ω) calculated from the model.
The result demonstrates that the non-equilibrium model is consistent with the KK
relations and confirming the reliability of our approach.
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Figure 7.11: Energy resolved spectra carried on OP96 and OD86 at different
delay times. The fit to the curves is given by the function 7.2 (continuous
lines). The parameter of the fit are listed in table 7.1

7.6.3 Fits and discussion

In fig. 7.11 we report the energy resolved relative variation of reflectivity∆R/R(ω, τ)
at different delay times for OP96 and OD86 samples. The solid lines are the best
differential fit of the function 7.2 to the data. The fit satisfactorily reproduces the
shape of the experimental data and the table 7.2 lists the best values of the free
parameters in the fitting procedure. The parameters reported in the table show
that the transient variation of the signal can be explained in term of an increasing
of the electronic and bosonic temperatures which thermalize on a picosecond time
scale. This thermal effect is accompanied by an impulsive lowering of the Drude
plasma frequency ωp. The combination of these two temporal dynamics gives rise
to the crossing point blue shift discussed in the previous section. The resulting ωp

variation confirms the temperature dependence of ωp observed in equilibrium optical
measurements [90] and corresponds to an impulsive increasing of the carriers kinetic
energy.
Looking at the energy resolved spectrum measured at τ =0 ps, we note that the

fitting results indicate a sudden increase of the temperature of all the bosonic modes
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Table 7.2: Parameters used in the differential fit of ∆R
R (ω, τ) to fit the data

reported in fig.7.11 at various delay times. The free parameters of the fit are
Te,Tb,ωp.

sample parameters τ=-1ps τ=0ps τ=1ps τ=2ps τ=3ps

OP96

Te (K) 290 295.4 292.3 292 291.6

Tb (K) 290 291.2 290.5 290.35 290.2

ωp (cm−1) 16901.4 16900.2 16900.5 16900.7 16900.9

OD86

Te (K) 290 296 291.6 291 290.8

Tb (K) 290 290.5 290.16 290.1 290.1

ωp (cm−1) 17389 17387.4 17388.5 17388.5 17388.5

described by Π (Ω). This result calls for a discussion about the nature of the bosons
which are involved in this process since, as we have pointed out in the previous chap-
ters, the coupling mechanism between the electronic carriers and the other degree of
freedom of an HTSC is a matter of debate. The possibility of a sudden increase of the
phonon temperature is rather unlikely since almost the entire energy carried by the
pump pulse would be absorbed directly by the lattice on a fast time scale, because
of the large difference between the phonon and electron specific heat, and we would
observe a quasithermal variation of the temperatures rather than an independent
increse of Te with respect to Tph. Moreover, both time-resolved photoemission [101]
and ultrafast electron diffraction measurements [19] results indicate a variation of
the electronic temperature ∆Te much larger than that of the phonon temperature
∆Tph.
The hypothesis that bosonic modes of electronic origin, like spin fluctuations, are
involved is more viable because, in this case, the boson contribution to the specific
heat Cb is expected to be much smaller than the phonon contribution. The determi-
nation of Cb represents a very difficult task because of the difficulty to disentangle
it from the electronic contribution Ce. A tentative estimation of the order of magni-
tude of Cb, was carried on in a theoretical work by Singh et al. [113] where the the
magnetic specific heat Cm is calculated for the undoped compounds. In the specific
case of La2CuO4, Cm is estimated to be 6.5 × 10−7 J/cm3K2 at T=30 K, i.e. two
order of magnitude lower than that the electronic specific heat measured on OP Y-
doped Bi2212 at the same temperature (γel(T = 30K) = 4.2×10−5 J/cm3K2). The
specific heat of the spin fluctuations in a doped sample, where the antiferromagnetic
order is broken, can only be smaller than Cm.

7.6.4 Disentangling the electronic and phononic glue

The differential fit, reported in the previous section, is obtained by assigning a single
temperature to all boson glue described by Π(Ω). This is not completely correct,
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Table 7.3: For each bosonic excitation, we report the electron-boson coupling
constant λ, the characteristic boson frequency ω̃ and the corresponding critical
temperature Tc resulting from the strong-coupling formalism (eq. 2.6).

Excitations λ ω̃ (cm−1) Tc (K)

Electronic bosons 0.21-0.4 1615.7-1253.5 6.5-45.8

Strongly coupled phonons 0.06-0.1 631-631 1.8·10−5-1.5·10−2

Cold phonons 0.47-0.7 631-631 33.4-65.8

All bosons 0.97 940.4 147.8

because the high-energy part of the boson glue has an electronic origin and it is rea-
sonable to suppose that immediately after the pump excitation, it reaches the same
temperature of the electronic carriers because of the low specific heat, while the low-
energy peak has a controversial origin and could be associated to both phonons and
electronic-like bosons. We can try to address this problem assuming that a fraction
of this peak is ascribed to the coupling to the electronic degrees of freedom while
the remaining part describes the lattice modes. As a consequence, the electronic
part of the glue Πel(Ω), represented by the blue colored hystogram in fig. 7.12, is a
sum of the broad high-energy continuum and a part of the peak. The phononic part
of the peak includes two contributions: the strongly coupled phonons (i.e. in-plane
breathing modes-red peak) and the cold phonons (i.e. out-of-plane buckling modes-
black peak) which are characterized by two different relaxation dynamics. The first
contribution has been determined by the three temperature model fit of the single
color pump-probe reflectivity measurements and results to be λ=0.08±0.02.
We repeat the same differential analysis, reported in the previous section, but taking
now into account the different parts of the glue function. The free parameters of the
fit procedure are the electronic temperature Te, the hot phonon temperature Tph,
the temperature Tel−bos and the fraction g of the peak related to the electronic-like
bosons. Since the electron population thermalizes instantly with the excitations of
Πel(Ω), we fit the ∆R/R(ω) with this constraint: ∆Te=∆Tel−bos. The temperature
variation of the cold lattice modes is considered negligible.
The best value g obtained by the differential fit in fig. 7.12 is included between
0.05 and 0.3, meaning that a fraction included between the 5% and the 30% of the
peak represents the electronic glue, while the remaining part is ascribed to the cold
phonon modes.
The error bars of g are derived by propagating the errors on the temperatures de-
termination. Employing the McMillan formula (2.6), we can evaluate the coupling
strength λ and the contribution to Tc of the different excitation belonging to Π(Ω).
The results are reported in table(7.3).
Although the contribution of the electronic bosons to Tc is lower than the phononic
one, we can assert that the two components alone are not sufficient to account for
the high value of the critical temperature. For that reason we can assert that both
these different pairing mechanisms play a significant role in HTCS and the phonon-
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Figure 7.12: (a) Energy resolved spectra carried on OP96 at a delay time
of 0 and 1 ps(squares) and the fit to the curve (brown lines) obtained with
the eq. 7.2 and the parameters listed in table 7.2. The differential fit are
performed by treating all the boson modes as a population out of equilibrium
at a temperature different from the electronic temperature as shown in (b).
The blue thick lines are the ∆R/R differential fit obtained by disentangling
the electronic and phononic part of the glue spectrum. The fitting constraints
are reported in the inset. The free parameters of the differential fit are Te,
Tel−bos, the hot phonon temperature Tp, and the fration g of the low-energy
peak related to the spin fluctuation modes.(c) Different portions of the boson
glue obtained as the result of the fit. The blue histrogram represents the
contribution to the pairing between the electrons and the bosons of electronic
origin. The low-energy excitations of electronic origin represent a fraction
between the 5% and the 30% of the total peak spectral weigth. The red and
black peaks are attributed respectively to hot and cold phonon modes.

mediated pairing mechanism is accompanied by a pre-existing strong electron-boson
interaction as suggested by many recent works [60, 61, 88].
These results seem to suggest a physical scenario in which the temporal dynamics
of the electronic carriers brought out of equilibrium by an ultrafast laser pulse, is
governed, on a fast time scale, by a strong coupling to the electronic part of the
spectrum Π (Ω). In particular an important role is played by the low-energy part of
the bosonic excitations spectrum which seems to include more contributions of dif-
ferent nature. The thermalization between electrons and spin-fluctuations occurs in
a very short delay time; after that the system starts to lose energy interacting with
a subset of phonon modes (hot phonons) which, in turn, relax by inelastic scattering
with the other phonon modes (cold phonons) according to the three temperature
model.
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Figure 7.13: Differential reflectivity measured on OP96 sample at T=290K
using a probe pulse at 800 nm (red curve). Fit of the data with the numeric
solution of the equation 6.10 (blue curve). Since the bosons of electronic origin
thermalize instantly with the electrons, the relative variation of the reflectivity
on a fast time scale (<1 ps) depends on the transient variation of Tel−bos. The
fit result provides a value of Cb ∼0.002 J/cm3K2 which is ten times lower than
Ce. In the inset the temporal profile of the pump pulse is shown.

7.7 Four temperature model

It is possible to extend the three temperature model to our case, including a term
related to the thermalization between the electronic carriers and the electronic part
of the boson glue. The formalism adopted to describe the electron-phonon relaxation
can be generalized to any other boson mode [5]. The electronic energy relaxation
rate can be written as:

dEe

dt
= 2πNcN (εF )

∫ ∞

0
dΩΠ (Ω) (!Ω)2 (ne − nb) (7.10)

where nb is a generic boson distribution function at a temperature Tb. If we treat
the electrons system as a free particles gas the heat capacity coefficient γel is:

γel =
π2

6
NcN (εF ) (kbTe)

2 (7.11)

where Nc is the number of primitive cells and N(εF ) is the density of states of both
spins per unit cell. We can use the formula (7.11) to convert eq. (7.10) into a
temperature relaxation rate, obtaining the following rate equations system:
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Figure 7.14: Temporal profile of the temperature (electrons, electronic bosons,
hot phonons, cold phonons) obtained by the numeric integration of the rate
equations 6.9-12 with the parameters obtained by the fit of the data shown in
fig. 7.12. The pump fluence is 10 µJ/cm2.

dTe

dt
= −

2

k2bπTe

∫ ∞

0
Πel (Ω) (!ω)

2 (ne − nb) dΩ+
P

Ce
(7.12)

dTel−bos

dt
=

Ce

Cb

2

k2bπTe

∫ ∞

0
Πel (Ω) (!ω)

2 (ne − nb) dΩ−
Tel−bos − Tp

τα
(7.13)

dTp

dt
=

Cb

Cp

Tb − Tp

τα
−

Tp − Tl

τβ
(7.14)

dTl

dt
=

Cp

Cl

Tp − Tl

τβ
(7.15)

where Cb is the bosonic specific heat. Note that it is straightforward to obtain the
equation (2.17) directly from the equation (6.9) approximating the boson spectrum
by an Einstein model.
The first equation of the system represents the temporal evolution of the electronic
temperature: the rapid increase of Te is due to the photon absorpition and to the
strength of the electron-electron interaction and electron-boson interaction, the last
given by the integral over the frequency of Πel(Ω), obtained by the differential fit
previously shown. The time dependence of the bosonic excitation is exploited in the
second differential equation: the rise-time depends both on Πel(Ω) and on the ratio
between Cb and Ce. Because of the low Cb value (i.e. lower than Ce in the case of
spin fluctuation), τr is extremely fast (i.e. of the order of fs) and it is limited by
the temporal resolution of the pulse. Moreover the electrons exchange istantly their
energy with the electronic bosons and a quasithermal evolution of Te and Tel−bos is
expected to occur even on an ultrafast time scale. The last term of the second equa-
tion describes the following cooling process due to the scattering with the strongly
interacting subset of phonon modes. The last stage of energy relaxation is described
by the remaining rate equations and it is related to the anharmonic decay of hot
phonons.
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We use now this extended version of the three temperature model to reproduced
the one-color time-resolved measurements, as we did in fig.(7.5). We focus on the
rise dynamics of ∆R/R and we try to give an estimation of Cb. Because of the in-
stantaneous thermalization between electrons and bosons, it is justifiable to assume
that ∆R/R ∝Tel−bos(τ) and to fit the data with the temporal profile of Tel−bos.
The result of the fit is reported in fig.(7.13) together with the relative variation of
the reflectivity taken at λprobe=800 nm. Since Ce is experimentally determined and
Πel(Ω) was previously obtained by the differential analysis, the parameter Cb is ad-
justed by the fit in order to reproduce the rise dynamics giving the result: Cb ∼0.002
J/cm3K2, which is one order of magnitude lower then Ce (∼0.029 J/cm3K2 at room
temperature).

7.8 Conclusion

The time and frequency-resolved variation of reflectivity, measured in normal state,
is reported in this chapter. We have studied the frequency-resolved traces at dif-
ferent delay times by developing a differential dielectric function to reproduce the
temporal evolution of the spectral feautures. The equilibrium dielectric function and
the bosonic glue have been derived previously in the frame of the Extended Drude
model. The strong-coupling formalism, used here to describe the equilibrium phys-
ical properties, has allowed us to study separately the contribution to the transient
signal of the electrons and bosons. The differential fit to ∆R/R, integrated over the
first 100 fs of delay time, strongly differs by the physical scenario depicted by the
three temperature model and can be explained in term of a sudden increase of the
temperature of part of the bosons. The istantaneous coupling between the electronic
carriers with a part of the bosonic glue is a signature of the electronic origin of these
bosonic modes. The physical scenario, we have proposed to explain the dynamics of
∆R/R(ω, t) on a fast time scale, relies on the strong coupling between the electrons
and the electronic part of the spectrum Π(Ω). On a slower time scale, the system
starts to exchange energy with the hot phonons modes, which in turn relax in a
hundreds of picoseconds by an anharmonic decay with the remaining cold lattice
modes. We have given an estimation of the strength λ of the different excitations
belonging to Π(Ω) and we have determined the corresponding contribution to the
critical temperature Tc by employing the strong-coupling McMillan formalism. We
have obtained a λ that ranges between 0.21 and 0.4 for the bosons of electronic origin
and a Tc between 6.5 K and 45.8 K. In the phonon case (i.e. cold and hot phonon
modes) λ varies from 0.053 to 0.8 with a Tc that reach the maximum value of ∼66
K. Considering that the total coupling, obtained by integrating Π(Ω), is 0.97 and
Tc is ∼148 K, we can conclude that the high critical temperature in HTSC is de-
termined by the electronic coupling with both bosonic and phononic modes and the
two mechanism alone are not sufficient to explain the superconductivity in cuprates
as suggested in many works (see [60, 61, 88] and references therein).
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Chapter 8
Pseudogap phase

8.1 Introduction

In this chapter we study the optical response in both the time and frequency domains
in the pseudogap phase at T=100 K. The variation of reflectivity measured below
the pseudogap temperature T∗ is completely different from that measured in normal
state. When T∗ is crossed, the transient optical response of the system changes
drastically with respect the normal state response. This effect can not be explained
in term of an excited state absorption or an effect due to a modification of the
equilibrium dielectric function but it is a genuine response of the system in the
pseudogap phase. The differential fit indicates a transient increasing of the Drude
plasma frequency and a weakening of the electron-boson coupling suggesting that
the pseudogap is accompanied by an opening of a gap in the density of the electronic
state and is characterized by a temperature dependent modification of the bosonic
glue.

8.2 Experimental data

In fig. 8.1 we report the time and frequency resolved reflectivity ∆R/R(ω, t), be-
tween 1.25 eV and 2 eV, carried on the samples UD83, OP96 and OD86 at T=100K.
In chapter 6 we have estimated, by studying the sign-flip of the transient signal
∆R/R(t), the edge of the pseudogap phase temperature T∗ to be ∼220 K and ∼150
K for UD83 and OP96 respectively. In OD86 we did not observed any change of sign
of the relative reflectivity. This result seems to suggest that the pseudogap phase
in the overdoped sample is strongly quenched, in accord with physical scenario in
which the pseudogap line merges into the superconductive dome in the overdoped
region. At this temperature, the frequency resolution unveils a more structured
ω-dependance of the reflectivity variation. In under and optimally-doped samples
a positive variation is measured below ∼1.35 eV, while a negative and flat signal
extends up to the UV region. In the over-doped sample, the high-energy negative
response is quenched, while the positive structure at 1.3 eV persists. This feauture
is absent in the normal state.
For each 2D plots we report the time traces obtained by cutting the supercontin-
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Figure 8.1: Energy and time-resolved reflectivity on Bi2Sr2Ca0.92Y0.08Cu2O8+δ.
The 2D scan are reported for different doping range at T=100K. The colour
scale of the reflectivity variation amplitude is reported on the top left of the
figure. The insets display the position of each scan in the T-δ phase diagram.
The white lines are the ∆R

R (t) traces obtained at λprobe=800nm. The green
line represents the cut at the delay time τ=0 ps. The energy resolved spectra
∆R/R(ω, τ = 0) are reported next to the respective 2D plot.

uum measurements at λprobe=800 nm, which display the same temporal behaviour of
that observed in chapter 6 in one color pump-probe reflectivity. In particular a fast
transient component, with a decay time of ∼400 fs, followed by a slow component
is recorded. It is interesting to note that, at higher delay times (>2 ps), the signal
becomes positive even for the under and the optimally doped sample.
In fig. 8.2a we report the data obtained from the supercontinuum probe technique
extended in the infrared region down to 0.5 eV employing the ultrashort pulses pro-
vided by the OPA system for the OP96 sample. The total energy extension of the
probe ranges from 0.5 eV to 2 eV. Shifting the probe energy towards the infrared
region, the transient signal decreases and changes sign at about 0.55 eV.
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Figure 8.2: (a) Pump-supercontinuum probe reflectivity measurements (top)
jointed with pump-OPA probe reflectivity measurements (bottom) carried on
OP96 at T=100K. The total probe energy range is 0.5-2 eV. The pump fluence
Ifl=10 µJ/cm2 per pulse. The straight line represents the temporal cut of the
2D spectra. (b) Energy resolved spectra at different delay times.

8.3 Fit and discussion

At this point, we want to address the question about the origin of the transient
optical response observed in pseudogap phase.

8.3.1 Quasithermal modification of the reflectivity

Fig. 8.3 displays the equilibrium temperature variation of the reflectivity ∆Req on
the OP96 sample, being ∆Req the difference between the reflectivity measured by
optical ellipsometry at a given temperature. The positive value of ∆Req over all
the probe photon frequency range shows how the structured responses measured
in the pseudogap and in the superconductive state (as we will see in the follow-
ing chapter) are incompatible with a quasithermal scenario where the underlying
electronic structure is unchanged, while the effective temperatures are impulsively
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Figure 8.3: Reflectivity difference ∆R obtained by subtracting the fit of the
equilibrium reflectivity of OP96 at different temperatures as shown in the inset.

increased of ∆T (t). In this case the transient reflectivity variation can be expressed
as ∆R/R(ω, t) = [(1/R)(∂R/∂T )(ω)]∆T and would be expected proportional to
the time-integrated measured ∆Req, reported in fig. 8.3, which does not exhibit any
structure or change of sign.
The reflectivity variation in pseudogap state is not due to a simple heating effect and
can not be explained as a difference between two thermal equilibrium states charac-
terized by different temperatures T and T+∆T being ∆T related to the increase of
the internal energy provided by the pump pulse.

8.3.2 Role of the εeq(ω)

∆R/R(ω) does not depend on the starting equilibrium dielectric function by checking
fig. 8.4a where we report on the same graph the calculated differential reflectivity
induced by a quasithermal variation of the temperatures (Te(t)∼Tb(t)) when the
sample is in normal state and in pseudogap state at T=100 K.
Although the equilibrium dielectric functions and the bosonic glue spectra Π(Ω),
shown in the inset, at T=290 K and T=100 K are different, the shape of the reflec-
tivity variation is qualitatively similar in both the cases.
The simulation of an increase of the electronic temperature decoupled from the tem-
perature of the high-energy bosonic modes is shown in fig. 8.4b. Also in this case the
resulting shape of ∆R/R(ω) in pseudogap phase mimics the normal state behaviour
and it is completely different from the experimental results, demonstrating that an
effective temperature variation of the different parts of the glue is not suitable alone
to reproduce the transient signal variation.
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8.4 Differential fit

In the previous sections we have demonstrated that the transient optical response
of the system in the pseudogap phase can not be explained as a thermal effect and
does not depend on the equilibrium dielectric function but it is an intrinsic response
of the system caused by the pump light pulse.
The differential fit function, shown in fig. 8.5, reproduces qualitatively well the ex-
perimental energy resolved traces and indicates a transient increasing of the Drude
plasma frequency accompanied by a lowering of the intensity of the low-energy part
of the electron-boson coupling function. We want to show how the variation of these
parameters can change the ∆R/R(ω). The impulsive increasing of the plasma fre-
quency ωp, simulated in fig. 8.4c, gives rise to a positive variation of the reflectivity
in the infrared region below ∼1 eV and a lower signal in the visible (red curves).
The differential fit of the OP96 and OD86 samples, are displayed in fig. 8.4 along
with the corresponding energy-resolved spectra integrated over the first 200 fs of
delay time, and qualitatively capture the shape of the experimental data in both the
cases.
The results of the best fits to the data suggest that, beyond the increasing of the

temperature Te(t) and Tb(t), the reflective variation on a fast timescale in pseu-
dogap phase, can be attributed to an impulsive increase of ωp accompanied by a
weakening of the lowest-energy boson peak. The variation of ωp shows an opposite
trend with respect that observed in normal state where the Drude plasma frequency
undergoes a transient lowering according to a corresponding increasing of the kinetic
energy of the charge carriers. The observed variation of ωp could be associated to
the presence of a gap above Tc. The opening of a gap causes the piling up of the
electronic density of states at the gap edge while the unoccupied states are pushed
toward higher energies above the gap. This means that, when the carriers are ex-
cited above the gap, they find to have an increased kinetic energy. When the pump
pulse hits the sample, it strongly perturbes the electronic distribution causing the
closing of the gap. The pump-induced quenching of the gap, causes the transient
decreasing of the carriers kinetic energy which corresponds to an opposite variation
of ωp.
The physical scenario we have proposed before, is true only if the pseudogap is a
”‘real”’ gap in the electronic density of states. This point is strongly discussed and
no general consensus has been reached. A large number of spectroscopic techniques,
which can probe directly the pseudogap phase like ARPES and STS, are not able
to distinguish if this gap is related to a suppression of the density of states at the
Fermi level rather than a suppression of spectral weight in the single-particle spec-
tral function [55]. The differential fit results seems to point to the first hypothesis.

The glue function extracted from the equilibrium optical measurements in pseu-
dogap phase sensibly differs from the one in normal state. In particular a low-energy
peak, centered on 36 meV, appears in Π(Ω), upon lowering the temperature and it
could be involved in the transient response of the system.
The impulsive weakening of the bosonic peak, simulated in fig. 8.4d, could be related
to the magnetic collective mode observed in inelastic neutron scattering measure-
ment in many families of cuprates [73]. Its energy ranges between 52 and 56 meV
in the case of HgBa2CuO4+δ and it is close to the energy of the peak (36±16 meV)
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Figure 8.4: (a) Calculated differential reflectivity assuming that the electronic
population is thermalized with all the spectrum of bosons (i.e. ∆Te ∼ ∆Tph)
and starting from the equilibrium dielectric function of the OP96 sample at
T=290 K (green curve) and T=100 K (black curve). The glue functions Π(Ω)
in normal and pseudogap phase are reported in the insets of the graph.(b)
Differential reflectivity obtained by decoupling the temperature of the elec-
tronic part of Π(Ω) (red area) and the low-energy bosons (blue area).(c) The
shape of ∆R/R(ω) obtained by simulating the positive and negative variation
of ωp. In the inset we report the temporal profile of the temperatures variation
at T=100 K, obtained by the three temperature model simulations.(d) The
shape of ∆R/R(ω) obtained by simulating the increasing and the lowering of
the low-energy peak which appears in the Π(Ω) in pseudogap state (see the
inset).

appearing in the bosonic spectrum at T=100K (see the inset of fig. 8.4a-b). The
mode’s intensity starts to rise at T=T∗ and it has been associated to an unusual long-
range magnetic order in the pseudogap phase. This experimental finding constitutes
an argument in favour of the hypothesis that the pseudogap phase is a new phase
of the matter characterized by a given order parameter. Varma and coworkers de-
scribes this order in term of pairs of electron-current loops, flowing within the same
unit cell, which give rise to pairs of oppositely directed magnetic moments [128].
The electronic nature of this peak is in accord with our differential fit because its
variation occurs on an a fast time scale (<200 fs). Moreover the absence of struc-
tural changement in Bi2212 makes difficult to associate this mode to a new lattice
excitation occuring in pseudogap phase.
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Figure 8.5: (a) Energy-resolved spectra taken at 200 fs of time delay on OP96
and OD86.(b) The best fit to the data with the differential dielectric function.
The fit qualitatively reproduces the data assuming a transient increasing of ωp

and a weakening of the lowest-energy bosonic peak.

8.5 Conclusions

In conclusion the differential fit qualitatively reproduces the energy-resolved reflec-
tivity spectra in pseudogap phase by assuming, beyond a simple variation of the
electronic and bosonic temperatures, also a transient increasing of the Drude plasma
frequency ωp and a weakening of the low-energy bosonic mode. The positive varia-
tion of ωp, opposite to the fit results obtained in normal state, could be explained
in term of a pump induced closing of a gap above Tc which causes the decreasing of
the carriers kinetic energy. This physical scenario seems to support the hypothesis
according to which the pseudogap is a real gap in the density of states.
The electron-boson coupling function at T=100 K displays a new mode at ∼36
meV, close to the narrow peak centered at ∼70 meV, which could be related to the
magnetic collective mode recently observed in inelastic neutron scattering measure-
ments. The fit results indicates also a weakening of this bosonic mode showing that
its appearance could be considered as an intrinsic feature of the pseudogap phase.
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Chapter 9
Superconductive phase

9.1 Introduction

In this chapter we report time and frequency resolved reflectivity measurements on
Y-doped Bi2212 in the superconductive phase at T=20 K. In this case, the system
exhibits a structured response in the 1-2 eV range that can not be reproduced by
modifying the extended Drude parameters as in normal and pseudogap phase but
can be satisfactorily reproduced assuming a modification of the optical oscillators
at 1.5 and 2 eV. The spectral weight variation related to these transitions accounts
for the kinetic energy variation claimed by previous works based on equilibrium
spectroscopies [15, 20, 70, 82, 90, 107, 108, 125].

9.2 Experimental data

In fig. (9.1) we report the time and frequency resolved reflectivity ∆R/R(ω, t),
between 1.25 eV and 2 eV, carried on the samples UD83, OP96 and OD86 in the su-
perconductive state at T=20K. The energy resolved spectra at delay τ=0, reported
on the right-hand side, show that ∆R/R behaviour is more structured as compared
to the normal state response and strongly depends on the hole concentration. In
UD83 the transient response is positive for all the energy range reaching ∼10−3 and
drops at higher probe frequency. In OP96 a negative dip occurs in ∆R/R between
1.4 eV and 1.5 eV followed by a steep rise at lower energy. In OD86 the negative dip
evolves becoming broadened and more intense. For each 2D plot, the time traces at
λprobe=800 nm are reported (white curves) and exactly reproduce the time-resolved
reflectivities obtained in the standard single-colour configuration, i.e., with fixed
probe wavelength [76]. As previously observed in one-color pump-probe reflectivity
measurements, reported in chapter 6.3, the decay time of ∆R/R increases upon cool-
ing the sample below Tc, changing from ∼350 fs to 3-5 ps. The sudden increase of
the decay time is generally attributed to a bottleneck effect [62], the dynamics being
dominated by the high-frequency bosons (!Ω > 2∆) emitted during the reformation
of the Cooper pairs.
This dynamical process is phenomenologically described by the Rothwarf-Taylor
model [106], as reported in detail in chapter 3.3.3.
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Figure 9.1: Energy and time-resolved reflectivity on Bi2Sr2Ca0.92Y0.08Cu2O8+δ.
The 2D scan are reported for different doping range at T=20K. The colour
scale of the reflectivity variation amplitude is reported on the top left of the
figure. The insets display the position of each scan in the T-δ phase diagram.
The white lines are the ∆R/R(t) traces obtained at λprobe=800nm. The red
line represents the cut at the delay time τ=0 ps. The energy resolved spectra
∆R/R(ω, τ = 0) are reported next to the respective 2D plot.

Before studying the non-equilibrium dielectric function below Tc, we describe the
recovery dynamics of a non-equilibrium electronic population. We can identify three
different time-scales.
After being excited at 1.5 eV by the pump pulse, the electronic carriers thermalize
on a fast timescale (0-50 fs) and through inelastic electron-electron scattering. The
scattering rate, obtained through optical measurements, is roughly proportional to
both the frequency and temperature, i.e., ∝ 1/τ(ω, T ) [123]. At 1.5 eV energy, the
frequency-dependent scattering rate is ∼4000 cm−1, corresponding to a lifetime of
∼1 fs. In the first tens of femtoseconds, the non-equilibrium electrons lose energy
through a cascade process and low-energy excitations are accumulated at the top
of the gap. As the electronic excitations decrease their energy, the scattering rate
proportionally decreases. The non-equilibrium population created within the pulse
duration can be assumed as quasi-thermal, being described by an effective chemical
potential (µeff ) [99] or a temperature (Teff ) [100].
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Figure 9.2: Differential reflectivity at different pump wavelength (λpump=800
nm and λpump=400 nm) at T=20 K in the low fluence regime (Ipump=20 µJ

cm2 ).
The slowing down of the dynamics is observed at both the wavelengths and
the decay time is nearly the same

In this frame, the photoinduced non-equilibrium population created during the
pulse duration is independent of the particular pump photon energy. To test this
prediction, we repeated the ∆R/R(ω, t) measurements with a photon pump energy
of 3.14 eV, obtaining the same results (see fig.9.2).
Moreover, from the measurements carried on in normal state, we found that the elec-
tron population, on this fast timescale, is strongly coupled with the electronic part of
the boson spectrum. On a longer timescale, below 500 fs, the excited quasiparticles,
exchange energy with the phonon population at the equilibrium temperature Teq.
The energy exchange can be related either to a direct inelastic scattering process
between gap-energy excitations and phonons or to the selective emission of bosons
during the recombination of the quasiparticles to reform Cooper pairs. On the sub-
ps timescale the physical scenario is that of a non-equilibrium population of the
quasiparticles thermalized with a subset of phononic modes at a temperature larger
than Teq. Above 500 fs, the subset of bosons strongly coupled to the quasiparticles,
thermalizes with the phonon thermal reservoir through inelastic phonon-phonon
scattering processes.
To wrap up, after approximately 500 fs, the excited electronic carriers are thermal-
ized with both the bosons of electronic origin and the strongly coupled lattice modes.
Further more, the indipendent variation of the electronic and bosonic temperatures
on the 0-500 fs timescale, simulated in fig. 7.8a, significantly affects the measured
time-resolved reflectivity only below 1.2 eV, i.e. the lower limit of the supercontin-
uum probe frequency range.
For this reason and to simplify the calculations, in the following we will fit the
1.2-2 eV time-resolved reflectivity at higher delays omitting the effects related to
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Figure 9.3: Energy-resolved spectra measured at different delay times. The
black curves represent the best fit lines to the data assuming a transient mod-
ification of the 1.5 eV and 2 eV interband oscillators. The differential fit
parameters related to the 0ps time-traces are reported in table 9.1.

the disentangling between Te and Tb, and assuming a quasi-thermal variation of
the temperature. As a consequence of this assumption, we use a differential model
based on the so-called Allen approximation of the memory function (equation 3.5).
In this case the fitting methods is faster than that used for the data in normal and
pseudogap phase, because only one integration relates the boson coupling function
and the memory function, and it is more effective to evidence possible modifications
in the interband transitions.

9.3 Fitting results and discussion

In fig.9.3 we report the ∆R/R(ω, t) measured in the superconducting phase in the
1.2-2.2 eV energy range at different delay times. As we can see the shape of the re-
flectivity variation is significantly different from the temperature-related broadening
effect of the Drude peak which is characterized by a positive signal that monotoni-
cally decreases with the probe energy.
In order to reproduce the structured signal, it is necessary to change the param-
eters of the interband optical oscillator at 11800 cm−1 (1.46 eV) and 16163 cm−1

(2 eV) (ω2 and ω3 in the table 5.2). The conservation of the total spectral weight is
guaranteed by the constraint that the sum of the squared plasma frequencies of the
extended Drude model and of the interband oscillators is constant.
Moreover the fit to the data automatically satisfy the Kramers-Kronig (KK) rela-
tions, since they are obtained as a difference between KK-constrained Lorentz os-
cillators, and are used to calculate the relative variation of the optical conductivity
(∆σ1/σ1(ω, t)) shown in figure . The trend from positive ∆σ1/σ1(ω, t) in the under-
doped to a slightly negative ∆σ1/σ1(ω, t) in the overdoped samples reveals that the
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Table 9.1: Tables of the paramenters modified in the differential fit procedure
related to the time delay traces at 0.4 ps. The impulsive variation of the fitted
data are reported in fig.9.3

parameters UD83 OP96 OD86

Extended Drude T (K) 38.6 38.8 41.3

Interband transition

ω2 (cm−1) 11802 11799 11803

ω2
p2 (cm−2) 5.38e+06 5.68e+06 5.80e+06

γ2 (cm−1) 3657 3698 3689

ω3 (cm−1) 16160 16176 16177

ω2
p3 (cm−2) 3.93e+07 4.06e+07 4.18e+07

γ3 (cm−1) 8314 8283 8278

interband spectral weight variation (∆SWtot = ∆ω2
p(1.5)/8+∆ω2

p(2)/8, ωp(1.5) and
ωp(2) being the plasma frequencies of the 1.5 and 2 eV oscillators) strongly depends
on the doping as we can clearly see in fig. 9.4.
In the simple energy-gap model for conventional superconductors, small changes of
the interband transitions, over a narrow frequency range of the order of ωo,i± ∆

!
, can

arise from the opening of the superconducting gap at the Fermi level. In contrast
to this model, these measurements clearly shows a photoinduced change of R(ω,t)
over a spectral range (∼1 eV), significantly broader than ∆ ∼40 meV [135]. This re-
sult reveals a dramatic superconductivity-induced rearrangement of the mixed Cu-O
electronic states extending from 1 eV to 2 eV binding energy.
In a time-resolved pump-probe experiment, carried on below Tc, the pump pulse
effect is to break the Cooper pairs injecting a density of quasiparticle above 2∆.
Depending on the fluence of the pulse, this can result in a photoinduced phase
transition to the normal state. In Y-doped Bi2212, a photo-induced phase transi-
tion was observed at ∼60µJ/cm2 [50]. Since the working fluence of the experiment
(10µJ/cm2) is well below this threshold, the effect of the pump is to impulsively
increase the temperature of the system without inducing a transition to the normal
state. In this way, the impulsive increase of the interband spectral weight ∆SWtot

observed in UD83 and OP96 corresponds to a reduction of ∆SWtot upon lowering the
temperature of the system. Since the spectral weight change of the charge transfer
oscillators is compensated by an opposite change on the intraband spectral weight,
this result suggests that the superconductivity, in this doping range, is accompanied
by a reduction of the carriers kinetic energy.
As we move from the under to the overdoped side of the superconducting dome,
our results point toward a scenario of a transition from a superconductivity-induced
gain of kinetic energy, involving electronic states at 1.5-2 eV binding energy, to a
BCS-like loss of kinetic energy, overcompensated by a gain in binding energy.
The results of the differential fitting procedure are very stable on the choice of the
equilibrium dielectric function. The same results are obtained assuming a different
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Figure 9.4: Relative variation of the optical conductivity, obtained from the
Kramers-Kronig transformation of the fit at 0 ps delay time. The spectral
weigth variation, obtained as the ∆σ/σ integral over the frequency range,
changes from positive to negative with the increasing the doping rate.

εeq(ω, t) (for example with a different number of interband oscillators). For this
reason, the equilibrium dielectric function used can be considered as a ”realistic” di-
electric function, even if, possibly, not the best dielectric function one can get (since
the procedure to obtain it is often questionable). In any case, the details of the
equilibrium dielectric function do not alter the results of the differential analysis. In
fig. 9.5, the error bars indicate the range of ∆SWtot values that can be obtained
starting form different εeq(ω, t).
In table 9.1 we report the values assumed by the non-equilibrium dielectric function
at a delay of 0.4 ps in order to obtain the best fit of the data. Fig. 9.6 shows
the temporal dynamics of the total variation of spectral weight ∆SWtot compared
to the time evolution of the superconductive gap ∆. We can clearly see that the
two dynamics display the same temporal dacay and the maximum value of ∆SWtot

corresponds to the minimum value of ∆ after ∼400fs, i.e. when part of the boson
has thermalized with the electronic carriers. This results suggests that the variation
of the optical properties in the visible region is exclusively related to the impulsive
suppression of ∆. At longer times ( 5 ps), when the complete electron-boson ther-
malization broadens the Drude peak, the ∆SWtot variation is completely washed
out.
A further confirmation of the strict relation between the partial photoinduced clos-
ing of the gap and the modification of the optical properties in the visible range
comes from the temperature dependence of ∆SWtot reported in fig. 9.7. In this case
∆SWtot is estimated from the slow decay component of the one-color pump-probe
measurements taken at the same fluence (i.e. 10 µJ/cm2) and results to vanish
approaching Tc from below.
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9.3.1 Kinetic energy variation

In BCS system the superconductivity-induced appearance of the optical spectral
weight at zero frequency is compensated by a decrease of the spectral weight of
intraband transitions, as a consequence of the conservation of the electric charge.
This physical result is expressed by the Ferrel-Glover-Tinkham sum rule. In HTSC,
possible violations of this sum rules for the in-plane dielectric function have proposed
and discussed [15, 53, 96, 90]. In this scenario possible spectral weight shift from/to
the interband transitions has to be taken into account in a more general sum rule,
reported in equation 3.14.
The total intraband spectral weight (including the zero-frequency condensate spec-
tral weight) can be related to the kinetic energy Tδ of the charge carriers (holes)
associated to hopping process in the δ direction, via the relation 3.15 that we report
here [53]:

1

4π

∫ ∞

0
ωεD (ω) dω =

π2a2δe
2

2!2VCu
〈−Tδ〉 (9.1)

where aδ is the lattice spacing in the Cu-O plane, projected along the direction
determined by the in-plane polarization δ of the incident light and VCu is the volume
per Cu atom. We obtain < K >= 2 < Tδ > from the spectral weight variation of
the interband oscillators, through the relation:

〈K〉 = 2 〈Tδ〉 =
4!2VCu

π2a2δe
2

[
SWN

h − SWSC
h

]
(9.2)

93



9. Superconductive state

3

2

1

0

δS
W

to
t (

m
eV

2  x
 1

03 )

3210-1
delay time (ps)

 UD83
 OP96
 OD86

1.0

0.9

0.8δΔ
SC

(t)
/Δ

SC
(0

)

3210-1
delay time (ps)

a)

b)

400 fs

Figure 9.6: (a) The dynamics of the superconducting gap, assuming that
∆R/R(ω, t) is proportional with the photoexcited quasiparticle density. At
a pump fluence of 10 µJ/cm2, the maximum gap decrease is ∼20% at 400 fs
delay time. (b) The spectral weigth variation at different delay times for the
three dopings. The maximum value of ∆SWtot corresponds to the minimum ∆
value at ∼400 fs, i.e., after a partial electron-boson thermalization. The error
bars represent the standard deviation obtained from the fit.

Considering VCu=Vunitcell/8∼1.1·10−22cm3 and aδ=aunitcell/
√
2 ∼3.9A, we obtain

that the kinetic energy can be calculated as:

< K >= 8!2
[
SWN

h − SWSC
h

]
· (83meV/eV 2), (9.3)

where 8!2
[
SWN

h − SWSC
h

]
is the interband spectral weight variation expressed in

eV 2.
A finite value of

[
SWN

h − SWSC
h

]
thus implies a superconductivity-induced varia-

tion of the kinetic energy.
Since the interband spectral weight variation ∆SWtot = ∆ω2

p(1.5)/8 + ∆ω2
p(2)/8

extracted from the differential fit corresponds to a given density of quasiparticles in-
jected by the pump pulse, it is necessary to know the density of the broken Cooper
pairs to give an estimation of

[
SWN

h − SWSC
h

]
. The density of photoinjected excita-

tions can be roughly estimated considering the absorbed laser fluence of 10 µJ/cm2

per pulse, corresponding to an absorbed energy density of 0.6 J/cm3, λd=160 nm
being the penetration depth at 800 nm wavelength.
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Figure 9.7: The ∆SWtot value, relative to the extrapolated zero-temperature
value, is estimated from single-colour measurements and reported as a function
of the temperature for OP96. Similar results are obtained for UD83 and OD86.

Considering a volume per Cu atom of 1.13·10−22 cm3 and assuming that the num-
ber of gap-energy excitations produced by each 1.5 eV photon is approximately
∼ !ω

2∆ = 1.5 eV
0.04 eV ∼ 40, the density of broken Cooper pairs is 5.5·10−3 per Cu atom.

This value is about the 7% of the superfluid density in optimally-doped Bi2212 [56].
This estimation is too high because it does not take into account the d-wave char-
acter of the superconducting gap and the possibility that energy can be released to
bosons before the complete electron thermalization [94].
A more precise calculation of the density of photoinjected excitations is based on
a phenomenological approach. We take advantage of the upper limit in the pho-
toexcitation density set by the photo-induced phase transition to the normal state
reported at high pump fluence on HTSC [50, 69, 84]. This nonthermal phase tran-
sition has a first-order character and takes place at a finite superconducting gap
value [Coslovich2010], as predicted by the µeff non-equilibrium superconductivity
model [50, 94, 99]. In the Y-Bi2212 we observe a photo-induced phase transition
at ∼60 µJ/cm2 [50, 27]. From numerical calculations, performed by Nicolet al. [94]
within the µeff model, the instability of the superconducting state is predicted when
15-20% of Cooper pairs are broken. Extrapolating back to our working fluence (10
µJ/cm2), we can estimate the number of photo-excited Cooper pairs to be around
3%. The total kinetic energy variation

[
SWN

h − SWSC
h

]
corresponding to the break-

ing of all the Cooper pairs, is determined from the experimental interband spectral
weight variation ∆SWtot and it turns to be ∼1-2meV/Cu for the underdoped sam-
ple.
This value is very close to the superconductivity-induced kinetic energy gain pre-
dicted by several unconventional models and estimated by standard spectroscopic
techniques, integrating over all the high-energy spectral region.
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9. Superconductive state

9.3.2 Gap suppression

As we have anticipated in the previous section the superconductive gap is expected
to exhibit strong variations in time, when the system is perturbed by an ultra-short
laser pulse. Since the parameters of the RT model [106] can be affected by these
varitions, we developed a time dependent model based on the RT equations [45]:

ṅ = IQP (t) + 2γp− βn2

ṗ = IBos (t)− γp+
βn2

2
− γesc (t) (p− pT ) (9.4)

In the phonon bottleneck regime (γ > γesc), the excitation relaxation is ultimately
regulated by the escape rate of the non-equilibrium gap-energy phonons (γesc(p−pT ))
term, pT being the thermal phonon density). The γesc value is determined both
by the escape rate of the non-equilibrium phonons from the probed region and by
the energy relaxation through inelastic scattering with the thermal phonons and is
directly dependent on the superconducting gap value [45]. The time evolution of ∆
can be obtained from the ∆R/R(t) time-traces at 800 nm probe wavelength, under
the following assumptions:

• The ∆R/R(t) time-trace is assumed to be proportional to the solution n(t) of
Eqs.9.4, in agreement with the literature [27, 50, 47, 48, 63, 62, 64, 69, 76].

• The time-dependent non-equilibrium superconducting gap ∆(n(t)) can be ex-
pressed as a function of n(t), considering the effective temperature (Teff ) and
chemical potential (µeff ) models [45, 50, 94, 99]. In both cases the normalized
∆(n(t)) depends on (1− a ·n(t)3/2) (being a a conversion factor) for a d-wave
gap symmetry [45, 94].

• While γ and β can be assumed as constant during the decay dynamics,
γesc(∆(n(t))) is the only time-dependent parameter.

• γesc(t) quadratically depends on the instantaneous gap value, as demonstrated
in Ref. [45], i.e. γesc(t) = γesc(0) · [∆(n(t))/∆(0)]2 being the γesc value corre-
sponding to the unperturbed gap ∆(0).

Fitting the ∆R/R(t) time-traces, measured at 10 µJ/cm2 pump fluence, with
the solution of Eqs.9.4 we are able to extract the instantaneous ∆(t) value, reported
in fig. 9.6. The minimum gap value is obtained at t=400 fs delay and corresponds
to ∼80% of ∆(0).

9.4 Conclusion

The differential dielectric function fitting procedure allows us to conclude that, as Tc

is crossed, the ∆R/R(ω, t) signal measured in the near IR/visible region is associated
to a modification of the interband transitions, beyond a simple impulsive broadening
of the Drude function. This conclusion holds for all the doping regimes investigated
in the present measurements. These results finally shed light on the long-standing
question [33] about the origin of the ∆R/R(t) measured in the one-colour time-
resolved reflectivity experiment [63]. The measured signal is not originated by an
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9.4. Conclusion

excited state absorption, related to the variation of the electronic distribution within
the unvaried electronic bands, but to a real modification of the underlying electronic
bands and, in particular, of the interband transitions at 1.5-2 eV. Nonetheless, the
measured ∆R/R(ω, t) is proportional to the density of photo-injected quasiparticles,
as commonly assumed (see Ref. [69] and references therein).
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Chapter 10
Conclusions

In this thesis work we study for the first time the temporal optical response of
cuprates over a wide spectral region ranging from the visible to the near-infrared
optical region. To achieve this result we exploit the supercontinuum coherent spec-
trum produced by a non-linear photonic crystal fiber and the tunable pulses pro-
vided by an optical parametric amplifier system as a probe. The time and frequency
resolved reflectivity measurements we report and discuss, are carried on different
Bi2Sr2Ca0.92Y0.08Cu2O8+δ crystals at three different dopings and temperatures. Due
to its simultaneous high spectral and temporal resolution, this experimental tech-
nique is able to investigate the non-equilibrium dielectric function of the system.
Since the study of this physical quantity relies on the knowledge of the equilibrium
dielectric function εeq(ω), a great importance is given to find a model able to de-
scribes the optical properties of an HTSC.
In chapter four we report the reflectivity measurements carried on in the equilib-
rium condition. The extended Drude model and a sum of optical oscillator are
successfully employed to reproduce εeq(ω) in a broad spectral region. Moreover the
electron-boson coupling function Π(Ω) is directly extracted from the data, following
the same procedures described in [127]. The extracted glue function is characterized
by a low-energy narrow peak, centered at ∼70 meV, whose origin is strongly debated
and a broad continuum extending up to 300 meV which accounts for the strength
of the coupling between the carriers and the other bosons of electronic origin.
The core of the thesis is given by the last three chapter where we study the recovery
dynamics of the excited dielectric function respectively in normal, pseudogap and
superconductive phases.

• In order to make a quantitatively study of the pump induced variation of
the signal over the frequency window of interest at different delay times, we
developed a differential model, which is described in detailed in chapter 7. Ex-
ploiting the possibility of this non-equilibrium approach to spectrally resolve
and to disentangle the contribution of electronic and bosonic temperature, we
obtain interesting results about the pairing mechanism in cuprates. In par-
ticular, focusing on the dynamics of ∆R/R(ω) on an a fast time scale (<200
fs), we find that the carriers, after being excited by the laser pulse, thermalize
istantly with the electronic part of Π(Ω). The differential fit results indicates
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that, not only the high-energy part of Π(Ω), but also a fraction of the narrow
peak have to be ascribed to the coupling with electronic bosons. The complete
physical scenario, resulting by extending the probe photon spectral window,
involves a sudden thermalization between electrons and bosonic modes which
is followed, on a slower time scale, by the relaxation with the phonon modes
(hot and cold phonons) according to the three temperature model [101]. In
addition, using the strong-coupling formalism, we have determined the contri-
bution to the critical temperature of the different part of Π(Ω). Our conclu-
sion is that Tc is determined by the electronic coupling with both bosonic and
phononic modes and the two mechanism alone are not sufficient to explain the
superconductivity in cuprates.

• In the pseudogap state (chapter 8), the variation of reflectivity is totally differ-
ent from the normal state behaviour. This drastic change can not be explained
in term of an excited state absorption or an effect due to the different pump-
induced heating, but it is an intrinsic response of the system. The differential
analysis of the optical response seems to evidence a transient and positive
variation of the Drude plasma frequency according to a possible gap closing
effect. This result is in accord with the theory that the pseudogap consists in
an effective spectral weight suppression of the density of states near the Fermi
level EF and it is consistent with a temperature dependent glue funtion [73].

• The superconductivity induced variation of reflectivity, reported in chapter
9, cannot be reproduced by simply modifying the extended Drude model pa-
rameters, as in normal and pseudogap phase. The structured signal measured
below Tc can be fully accounted by assuming a modification of the optical
oscillators at 1.5 and 2 eV, confirming that, in cuprates, the electronic struc-
ture close to EF is strictly connected to that on a higher-energy scale and the
opening of the superconductive gap is accompanied by a modification of the
optical properties in the visible region.
A reflectivity change in this spectral region was already observed in equilib-
rium optical measurements in term of a spectral weight transfer from the in-
traband to the interband optical region [90]. However the difficulty to resolve
small signal variations and to set with precision the finite cutoff frequency
necessary to evaluate the optical integral and the temperature-dependent nar-
rowing of the Drude-like peak, prevented these techniques from addressing
the major question whether the measured spectral weight variation is equally
spread over all the interband transitions or related to particular electronic
states participating in the condensate formation [96].
These results are in accord with the theory of hole superconductivity proposed
by Hirsch and Marsiglio [52]. According to that, in cuprates the carriers lower
their kinetic energy upon pairing, contrary to the case of BCS superconduc-
tors where a lowering of the potential energy stabilizes the superconductive
ground state. Moreover the superconductivity-induced decrease of the kinetic
energy, estimated from our fit result, is ∼1-2 meV/Cu atom, in accord to
that obtained by standard spectroscopic techniques integrating over all the
high-energy spectral region.
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In conclusion, we have applied a time and frequency resolved technique to in-
vestigate the excited state of a cuprate. This experimental technique has the ad-
vantage to combine both the temporal and spectral resolution with the sensitivity
to the different phase of the system. For this reason, it constitutes a very powerful
and promising tool to study the non-equilibrium physics of the strongly correlated
systems. A further step to improve this technique consists in extending the probe
spectral window. This could allow to study the optical response of such systems in
the far infrared and terahertz region i.e. very close to the relevant energy scale in
HTSC like the d-wave superconducting gap and pseudogap.
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P. Steffens, X. Zhao, P. Bourges, and M. Greven. Hidden magnetic excitation
in the pseudogap phase of a high-Tc superconductor. Nature, 468:283, 2010.

[74] N. Lin, E. Gull, and A. J. Millis. Optical conductivity from cluster dynamical
mean-field theory: Formalism and application to high-temperature supercon-
ductors. Phys. Rev. B, 80:161105.

[75] W.A. Little, M.J. Holcomb, G. Ghiringhelli, L. Braicovich, C. Dallera, A. Pi-
azzalunga, A. Tagliaferri, and N.B. Brookes. A determination of the pairing
interaction in the high-Tc cuprate superconductor Tl2Ba2CaCu2O8 (Tl2212).
Physica C, 460:40, 2007.

[76] Y. H. Liu, Y. Toda, K. Shimatake, N. Momono, and M. Odaand M. Ido.
Direct Observation of the Coexistence of the Pseudogap and Superconducting
Quasiparticles in Bi2Sr2CaCu2O8+y by Time-Resolved Optical Spectroscopy.
Phys. Rev. Lett., 101:137003, 2008.

[77] J. W. Loram, J. L. Luo, J. R. Cooper, W. Y. Liang, and J. L. Tallon. The Con-
densation Energy and Pseudogap Energy Scale of Bi2212 from the Electronic
Specific Heat. Physica C, 341.

[78] J. W. Loram, K. A. Mirza, J. R. Cooper, and J. L. Tallon. Specific heat
evidence on the normal state pseudogap. J. Phys. Chem. Sol., 59:2091, 1998.

[79] H. Maeda, Y. Tanaka, M. Fukutumi, and T. Asano. A New High-Tc Oxide
Superconductor without a Rare Earth Element. Jpn. J. Appl. Phys., Part 2,
27:209, 1988.

[80] E. G. Maksimov. High-temperature superconductivity: the current state.
Physics Uspekhi, 43:965, 2000.

[81] F. Marsiglio. Inversion of Optical Conductivity Data in Metals. J. Supercond,
12:163, 1999.

[82] F. Marsiglio, F. Carbone, A. B. Kuzmenko, and D. van der Marel. Intraband
optical spectral weight in the presence of a van hove singularity: Application
to bi2sr2cacu2o8. Phys. Rev. Lett., 74:174516, 2006.

[83] F. Marsiglio and J. E. Hirsch. Hole superconductivity and the high-Tc oxides.
Phys. Rev. B, 41:6435, 1990.

[84] T. Mertelj, V. V. Kabanov, C. Gadermaier, N. D. Zhigadlo, S. Katrych,
J. Karpinski, and D. Mihailovic. Distinct Pseudogap and Quasiparticle Re-
laxation Dynamics in the Superconducting State of Nearly Optimally Doped
SmFeAs0.08F0.2 Single Crystals. Phys. Rev. Lett., 102:117002, 2009.

[85] A. Migdal. Sov. Phys. JEPT, 7:996, 1957.

[86] W. L. Mc Millan and J. M. Rowell. Lead Phonon Spectrum Calculated from
Superconducting Density of States. Phys. Rev. Lett., 14:108, 1965.

108



BIBLIOGRAPHY

[87] A. J. Millis, H. Monien, and D. Pines. Phenomenological model of nuclear
relaxation in the normal state of YBa2Cu3O7. Phys. Rev. B, 42:167, 1990.

[88] A. S. Mishchenko. Manifestation of the Electron-Phonon Coupling in the
Spectroscopy of High-Temperature Superconductors. J. Phys. Chem. Sol.

[89] N. Miyakawa, P. Guptasarma, J. F. Zasadzinski, D. G. Hinksand, and K. E.
Gray. Strong dependence of the superconducting gap on oxygen doping from
tunneling measurements on Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett., 80:157, 1998.

[90] H. J. A. Molegraaf, C. Presura, D. van der Marel, P. H. Kes, and
M. Li. Superconductivity-Induced Transfer of In-Plane Spectral Weight in
Bi2Sr2CaCu2O8+δ. Science, 295:2239, 2002.

[91] H. Monien, P. Monthoux, and D. Pines. Phenomenological model of nuclear
relaxation in the normal state of YBa2Cu3O7. Phys. Rev. B, 43:275, 1991.

[92] N. Nagaosa and P. A. Lee. Ginzburg-Landau theory of the spin-charge-
separated system. Phys. Rev. B, 45:966, 1992.

[93] Y. Nambu. Quasi-Particles and Gauge Invariance in the Theory of Supercon-
ductivity. Phys. Rev., 117:648, 1960.

[94] E. J. Nicol and J. P. Carbotte. Comparison of s- and d-wave gap symmetry
in nonequilibrium superconductivity. Phys. Rev. B, 67:214506, 2003.

[95] M. R. Norman, , D. Pines, and C. Kallin. The pseudogap: friend or foe of
high Tc? Adv. Phys, 54:715, 2005.

[96] M. R. Norman, A. V. Chubukov, E. van Heumen, A. B. Kuzmenko, and
D. van der Marel. Optical integral in the cuprates and the question of sum-rule
violation. Phys. Rev. B, 76:220509.

[97] M. R. Norman and H. Ding. Collective modes and the superconducting-state
spectral function of Bi2Sr2CaCu2O8. Phys. Rev. B, 57, 1998.

[98] M. R. Norman and C. Pepin. The Electronic Nature of High Temperature
Cuprate Superconductors. Rep. Prog. Phys, 66:1547, 2003.

[99] C. S. Owen and D. J. Scalapino. Quantum critical behaviour in a high-Tc

superconductor. Phys. Rev. Lett., 28:1559, 1972.

[100] W. H. Parker. Modified heating theory of nonequilibrium superconductors.
Phys. Rev. B, 12:3667, 1975.

[101] L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Eisaki, and
M. Wolf. Ultrafast Electron Relaxation in Superconducting Bi2Sr2CaCu2O8+δ

by Time-Resolved Photoelectron Spectroscopy. Phys. Rev. Lett., 99:197001,
2007.

[102] P. Phillips. Identifying the propagating charge modes in doped Mott insulators.
Rev. Mod. Phys., 82:1719, 2010.

109



BIBLIOGRAPHY

[103] W. E. Pickett. Electronic structure of the high-temperature oxide supercon-
ductors. Rev. Mod. Phys., 61:433, 1989.

[104] M. Presland, J. Tallon, R. Buckley, R. Liu, and N. Flower. General trends in
oxygen stoichiometry effects on Tc in Bi and Tl superconductors. Physica C,
176:95, 1991.

[105] A. V. Puchkov, P. Fournier, D. N. Basov, T. Timusk, A. Kapitulnik, and N. N.
Kolesnikov. Evolution of the pseudogap state of high-tc superconductors with
doping. Phys. Rev. Lett., 77:3212, 1996.

[106] A. Rothwarf and B. N. Taylor. Measurements of recombination lifetimes in
superconductors. Phys. Rev. Lett., 19:27, 1967.

[107] A. F. Santander-Syro, R. P. S. Lobo, N. Bontemps, Z. Konstatinovic, Z. Z. Li,
and H. Raffy. Pairing in cuprates from high-energy electronic states. Europhys.
Lett., 62:568, 2003.

[108] A. F. Santander-Syro, R. P. S. M. Lobo, N. Bontemps, W. Lopera, D. Gi-
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mi ha mai fatto mancare niente. Infine, un grazie sincero a Martina perchè quando
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