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Introduction

Optical frequency converters are widely used to generate coherent light at

frequencies at which laser light is unavailable. Standard devices can have a

very high efficiency, but they are usually based on pure, and hence expensive,

nonlinear single crystals that also require careful adjustments.

Recent works demonstrated that pure, perfectly regular crystals are not

essential for the efficient operation of nonlinear optical devices [1]. Now it

seems that polycrystalline materials might be interesting second harmonic

converter, even if with conversion efficiency lower than a standard nonlinear

crystalline converter.

For example, the potassium niobium silicate ceramic glasses (KNS) are

policrystalline transparent materials that show the second harmonic genera-

tion property, probably due to the inhomogeneity at the nanoscale. These

glasses have no ordered structure. They consist of a glassy matrix, where

nano-crystalline elements are disposed in a totally random way.

Different kinds of glasses may be obtained changing the percent quantities

of potassium (K), niobium (N) and silicon (S) in the preparation process.
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The size of nanocrystals can be controlled varying the duration of annealing

process, i.e. a secondary thermal treatment just above the glassification

temperature. [6, 7, 11]

Our aim is the analysis of KNS optical proprieties upon excitation with IR

pulsed laser light. We want to quantitatively estimate the second harmonic

generation (SHG) in five samples, different in composition and preparation

process.

In particular, we have proved that the SH was due to bulk effects. This

feature indeed is not peculiar of polycrystalline elements, where the SHG is

prohibited by symmetry conditions.

Finally we’ve examined the difference in SH conversion efficiency between

annealed glasses and glasses not subject to this thermal process. Our aim

was to determine if the annealing process increases the KNS glasses SHG

efficiency.



1. Characterization of samples

For our work, we analyzed samples prepared by the staff of the Department

of Materials and Production Engineering at the University of Naples.[6]

1.1 Harmonics generation in polycrystalline materials

In the last ten years, several works described amorphous or nano-crystallized

ceramic glasses showing a second harmonic generation (SHG) behavior (see

[12, 13, 14, 15, 16, 17]).

The potassium niobium silicate ceramic glasses (KNS) are polycrystalline

materials in which the second harmonic generation process was observed. The

polycrystalline nature of the materials was revealed with a x-ray diffraction

analysis [6, 7]. The SHG seems to be due to the nanocrystals that com-

pose the material and related to their dimensions. Hence the material, at

nanoscale, is not homogeneous.

At the present state, a physical model that allows the interpretation of
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second harmonic generation (SHG) in KNS glasses is not available1. In par-

ticular, it’s not trivial to write down the polarization vector for this kind of

materials, because they are macroscopically polycrystalline and we do not

know the form of dielectric tensor.

However, it should be emphasized that the SHG effect in glasses has

exclusively electric-induced nature and does not involve noticeable atomic

rearrangements on the scale of both short-range and medium-range orders.

1.2 Production of samples

The samples we have studied are potassium niobium silicate ceramic trans-

parent ceramic glasses. They are composed by potassium niobium silicate

nanocrystals precipitate on a glassy matrix. Each sample is identified with

the percent composition of K2O, Nb2O5 and SiO2, the duration and temper-

ature of annealing process.

Sample K(%) Nb(%) Si(%) annealing period annealing T(◦C)

S1 23 27 50 2h 680

S2 20 25 55 2h 705

S3 23 27 50 10h 680

S4 20 25 55 10h 705

S5 30 30 40 2h 650

Glasses, whose composition is reported in table, were obtained melting

KNO3, Nb2O5 and SiO2 in a platinum crucible at T=1500◦C for 1h. Then,

the melted was deposed on a brass plate warmed at T=300◦. Eventually the

1A first tentative of explain this phenomenon was made in [3] and [7]
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glass was annealed a temperature close to glass-solidification temperature

Tg. The value of the Tg temperature was obtained with a differential thermal

analysis (DTA) process.

This second thermal process causes the growth of nanocrystal in the glass

matrix. The crystallization of glasses occurs with two process: the nucleation

and the crystal growth. These processes occur only above Tg. The nucleation

speed is greater at Tg while the maximum of the crystallization growth speed

is above Tg.

So the samples, that are nanocrystalline glasses, was obtained maximizing

the crystalline nuclei number growth with respect to the crystalline growth.

Hence, the annealing process at Tg allows us to obtain a material with a lot

of crystals with slow growth.

We also have analyzed as-quenched glasses, i.e. they have not received

the annealing process we’ve just described. The role of annealing process will

be clearer in the measurements chapter.

1.3 Linear Lorentz Oscillator

We give only some basic elements concerning the process of second-harmonic

generation in nonconducting media. Thus our exposal will not use the quan-

tum theory of nonlinear optics. We will present a classical model but very

useful in order to explain the basic concept of nonlinear optics.

A very simple and intuitive model to explain the interaction of elec-

tromagnetic waves with matter is the Lorentz oscillator. Although it is a

classical-electrodynamics based model, it gives reason of a great numbers of

phenomena, such as the polarization of dielectric linear media.
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We study a dielectric isotropic medium interacting with an external, si-

nusoidal, electric field of an electromagnetic wave:

E(t) = E0 cos(ωt)

The behavior of the bound electron can be seen as the motion of a classical

damped oscillator driven by an external drive force with frequency ω. The

effects due to the magnetic field of the electromagnetic wave are negligible.

In general, the electrons are bound to the atoms with forces whose de-

scription can be very difficult. However, assuming that the potential depends

only on the position, we can expand the potential associated to bound forces

in Taylor series around the stable equilibrium position x = 0:

V (x) = V (0)+
∂V (x)

∂x

∣∣∣∣
0

x+
1

2

∂2V (x)

∂x2

∣∣∣∣
0

x2 + · · · =
∞∑

n=0

[
∂n

∂xn
V (x)

∣∣∣∣
0

xn

n!

]
(1.1)

For the first two terms of the expansion we have :

V (0) = const. (the constant is arbitrary, we choose const = 0)

∂

∂x
V (x)

∣∣∣∣
x=0

= 0 (x=0 is an equilibrium position)

Because x = 0 is a minimum for the potential, the quadratic term of the

potential is positive. So we can use the little oscillations approximation. The

damping is due to oscillating dipole radiation. The charge oscillates under

the action of the external field and so it irradiates.

The motion equation for a single charge (in a one-dimensioned space) is

composed by the following terms:

mẍ = Fbinding + Fdamping + Fdriving. (1.2)
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that is

mẍ = −∂V (x)

∂x
+ mγẋ + Fdriving, (1.3)

If we insert the potential written in (1.1), we obtain the equation for the

motion of the electron:

ẍ + γẋ +
∞∑

n=2

∂nV (x)

∂xn

∣∣∣∣
0

xn−1

(n− 1)!
=

qE

m
cos ωt (1.4)

If we expand only to n = 2, we will obtain the equation of an harmonic

linear oscillator, that is:

ẍ + γẋ + ω2
0x =

q

m
E0 cos(ωt) (1.5)

This is the real part of the complex equation:

˜̈x + γ ˜̇x + ω2
0x̃ =

q

m
Ẽ0 e−iωt. (1.6)

Because the driving force is sinusoidal with frequency ω, a solution for this

differential equation will be an oscillating solution with frequency ω:

x̃(t) = x0(ω)e−iωt.

The x0(ω) are the coefficient of Fourier expansion in ω of x(t), that is:

x0 =
q/m

ω2
0 − ω − iγω

E0,

where ω0 is the proper frequency of the oscillator.

In this case the charge emits only at ω, because we have supposed a par-

ticular condition on the potential. The dipole moment of the single electron

p is the real part of:

p̃(t) = qx̃(t) =
q2/m

ω2
0 − ω − iγω

E0e
−iωt.
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1.4 Polarization vector

A peculiar feature of isotropic media is that we can write the polarization

vector as

P = nqx =
nq2/m

ω2
0 − ω2 − iγω

E,

where n = N
V

is the number of electrons in volume unit. The coefficient

relating the polarization vector P to the external field E is a scalar value χ

(electrical susceptibility).

But, in a more general situation (such as in crystals), the polarization

induced by a wave in the matter can depend on the direction of propagation

of the wave. Thus in non-isotropic media, the force that binds electrons is

different along different direction of the medium. Therefore the dependence

of P from E is expressible only by the χ̂ susceptibility tensor:

Pi = ε0χijEj, (1.7)

or in matrix notation
Px

Py

Pz

 = ε0


χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33




Ex

Ey

Ez

 (1.8)

For ordinary non-absorbing crystals, this tensor is symmetric and we can

define a set of principal axes. In such a way the tensor becomes diagonal:

χ̂ =


χ11 0 0

0 χ22 0

0 0 χ33

 .
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1.5 Nonlinear perturbative approach

We are interested now to explore the case of more general potential, always

in nonconducting isotropic media. Therefore we shall consider the nonlinear

terms in the expansion (1.1) that will produce harmonics of ω.

If in equation (1.1) we continue the expansion up to term n = 3, we

obtain a cubic term for the potential. In such a situation, we are dealing

with nonlinear effects because we have a quadratic term for the force.

We solve the nonlinear equation, supposing that nonlinear effects intro-

duce a small perturbation in linear Lorentz oscillator (1.3).

We can write the position x as series of harmonics of the driven fre-

quency ω,

x = X1 cos(ωt + φ1) + X2 cos(2ωt + φ2) + X3 cos(3ωt + φ3) + · · ·

or, in complex notation

x̃ =
X1

2
(eiωt + e−iωt) +

X2

2
(e2iωt + e−2iωt) +

X3

2
(e3iωt + e−3iωt) + · · ·

with X1 � X2 � X3, · · · , for the consistence of perturbation approach.

After substitution in (1.4), we obtain linear and nonlinear terms in ω, 2ω.

We are interested to derive X1 and X2 (they will be useful for deriving the

polarization vector):

X1 =
qE0

m

1

D(ω)
(1.9)

X2 = − 1

2 · 2!

∂3V (x)

∂x3

∣∣∣∣
0

(
qE0

m

)2
1

D(ω)2D(2ω)
, (1.10)

with D(ω) = ω2
0 − ω2 − iγω.
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We know the polarization vector P induced by the field E(t) = E0e
−iωt,

in a isotropic medium. Now we expand this vector around E=0 as:

P = ε0χE(t) ' ε0(χ
(1)E0e

−iωt + χ(2)E0e
−2iωt + · · · ) (1.11)

But another expression for P is known, derived from

P = nqx ' nqX1e
−iωt + nqX2e

−2iωt + · · · =

nq2E0

mD(ω)
e−iωt − nq3

2

(
E0

m

)2
1

D(ω)2D(2ω)

1

2!

∂3V

∂x3

∣∣∣∣
0

e−2iωt + · · · (1.12)

Equating the two previous expressions, we obtain the values for χ(1) and

χ(2) as function of the incident field E:

χ(1) =
nq2

ε0m D(ω)
χ(2) = − nq3

2ε0m2

1

D(ω)2D(2ω)
. (1.13)

Notice that by assumption, the external field must be small with respect

to the field Eat that binds the electron to its atom, otherwise we can’t use

the perturbative method and consequently expand χ in series.

In case of crystalline media, we are no free charges so the divergence of

the displacement vector D is zero. The expansion (1.11) hence becomes:

Pi = ε0(χijEj + χ
(2)
ijkEjEk + · · · ) (1.14)

where χij is an element of the ordinary susceptibility tensor. χ
(2)
ijk represents

an element of a third order tensor.

We can separate the polarization as sum of linear and nonlinear terms.

The nonlinear term is

PNL
i = ε0χ

(2)
ijkEjEk + o(E3) · · · (1.15)



1. Characterization of samples 13

1.6 Second harmonic generation in crystals

The first term of (1.15) equation corresponds to a variation at twice the

fundamental frequency. This process is known as second harmonic generation

(SHG).

Notice that in a isotropic centrosymmetrical material (that has an inver-

sion symmetry), P is an odd function.

Thus, the application of the inversion operator I to polarization vector

P gives:

I(Pi) = I(χ
(2)
ijkEjEk)

−Pi = χ
(2)
ijk(−Ej)(−Ek). (1.16)

But a sign reversal of Pi gives:

−Pi = −χ
(2)
ijkEjEk, (1.17)

due to the vectorial nature of the polarization P. So the conditions expressed

in equation 1.16 and 1.17, cause the vanishing of the χ(2) tensor.

This fact may be also explicated saying that an inversion symmetry of the

potential produces the vanishing of all odd derivatives of the potential in the

equilibrium position. In particular, if the third derivative of V(x) vanishes,

we have no SHG effects.

Therefore, the SHG process is not allowed in centrosymmetric or amor-

phous material, but only in materials with asymmetric charge distribution,

such as piezoelectric crystals.

However, it is possible produce SH at surfaces of an amorphous material,

because surfaces are the unique zone of an amorphous material where there

is a lack of inversion symmetry[10].



1. Characterization of samples 14

Now suppose we have a slab of thickness l of a noncentrosymmetrical

crystal. Suppose we have an incoming wave Eωei(kωz−ωt) with a frequency

ω, that propagate in z direction. This wave induces in the medium a polar-

ization vector that has a linear and a quadratic term, such as in (1.14). So,

the nonlinear polarization of medium causes the reradiation of the electrons

energy at doubled frequency.

The out-coming second harmonic E2ωei(k2ωz−2ωt) has an amplitude pro-

portional to the square of the incoming electrical field, integrated upon all

the contributions of each element of thickness dz in the crystal, namely:

E(2ω, l) ∝
∫ l

0

E2(ω, z) dz ∝
∫ l

0

e2i[kωz−ω(t−τ)] dz. (1.18)

By solving the integral and taking the square absolute value, we find the

intensity of SH:

I2ω ∝
[
sin(kω − 1

2
k2ω)l

kω − 1
2
k2ω

]2

(1.19)

This yields the result that I2ω has its maximum when kω = 1
2
k2ω.

If ∆k 6= 0, the second harmonic generated in some plane z1 is not in phase

with the SH generated at z2. This results in the interference described by

factor given in (1.19). The spatial distance corresponding to 2π dephasing

between two z planes is called coherence length Λc

Λc =
2π

2kω − k2ω

,

that is the maximum crystal length that is useful to produce SH intensity.

The maximum of I2ω is obtained when the phase velocity of the funda-

mental wave equals to the phase velocity of the wave at doubled frequency.

This condition is named phase-matching.
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If we use the relation kω = ω
√

µε0nω, we obtain nω = n2ω. So, to have

phase-matching condition, the indices of refraction (and then the phase veloc-

ity) of the fundamental and of the second harmonic must be equal. Therefore

it is impossible to satisfy the phase-matching condition using a material with

a normal dispersion law because the phase velocity depends on the frequency.

The technique that is used to satisfy the ∆k = 0 condition takes advan-

tage of the natural birefringence of anisotropic crystals.

Figure 1.1: The SHG in different kinds of optical materials [2]

Thus, in order to obtain phase-matching, a birefringent crystal has to be
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used, in which the polarization of incident light and its direction influences

the speed of propagating waves. By a suitable choice of incidence angle of the

fundamental, the second harmonic waves generated by the planes in crystal

interfere constructively (situation (a) figure 1.1).

This allows to increase the second harmonic produced of several orders

of magnitude.

The intensity of SH depends on critically by the intensity of the incom-

ing radiation. In order to see an appreciable SH signal we have to use a

continuous radiation with an high power.

An alternative method is using pulsed radiation, with a low mean power

but high pulse intensity. In such a way, the second harmonic conversion

efficiency I2ω is greater than using a continuous light source.

In order to obtain crystalline SH generators, we have to grow the crys-

tal layer by layer and cut a thin slab, compatible with the phase-matching

conditions, with an expensive process.

In last years, some works demonstrated that such of a nonlinear crystal

is not necessary in order to produce SH [1, 2]. Now it seems that a competi-

tive alternative to the traditional approach might indeed be provided by the

random quasi-phase-matching (situation (c) figure 1.1).

We can use a polycrystalline disordered sample, consisting of a large num-

ber of single-crystal domains with random orientations, random shapes and

random sizes. The frequency-converted waves generated by different domains

– be they second harmonic waves, as in our example – achieve random phases

and interfere neither constructively nor destructively.

The total intensity of the generated wave is then the sum of the intensities
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arising from individual domains and it grows linearly with the number of

domains or the length of the sample.

Clearly the random phase-matching is less efficient than the usual phase-

matched process but it outperforms the phase-mismatched process for which

the interference of partial waves is destructive. Random quasi-phase-matching

does not require the growth of large single crystals, and needs neither a

careful alignment of the optical setup nor the high precision engineering of

microstructured samples.

The new technique is well suited to isotropic semiconductors (such as

ZnSe, GaAs and GaP), which are technologically important and industrially

mature materials.

KNS samples are very similar to the glasses presented in [2]. Macroscop-

ically, the KNS are glasses, i.e. they are amorphous and without a defined

crystalline lattice. However, a x-ray analysis revealed that KNS are nanos-

tructured, and these crystals evidenced SHG properties.

We have seen that KNS, generates SH in the bulk of the material and not

at surfaces.

The SHG process seems to be due to a random quasi-phase-matching

condition, where distinct single nano-crystal domains generate waves with

random phases, precluding any destructive interference effects. The resulting

intensity is the sum of intensities due to individual domains and hence grows

linearly with the number of domains in the length of the sample.

Clearly the SHG efficiency is very smaller than in case of a single nonlinear

phase-matched crystal. However KNS are interesting because they avoid the

preparation of refined nonlinear crystalline elements, in order to satisfy the
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phase-matching condition.

We want to examine in a quantitative way, the efficiency of SHG in KNS

and compare it with the efficiency of a BBO crystal. We will prove that the

SHG is a bulk effect that probably involves the crystalline structure at the

nanoscale.



2. Experimental set-up

We have performed three kinds of measurement (nonlinearity of the produced

radiation, bulk SHG and transmission coefficient) for which a specific setup

is needed. We employed a Ti:Sapphire laser, with output at λ=795 nm and

pulse duration τ=120 fs. This pulsed light induces the second harmonic

generation in KNS.

In this chapter, we will describe the devices used and we will discuss their

role in experimental setup.

2.1 Experimental set-up

The experimental setup is designed to study the second harmonic generation

(SHG) produced by the KNS glasses. The first target was to determine if the

KNS glasses could be really considered as SH converters. Then this signal was

compared with the SH produced by a BBO crystal, both in phase-matching

and out of phase-matching.

In figure 2.1, we show the experimental setup. The laser light, after the
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Figure 2.1: Basic setup

half-wave plate, is divided by the beam splitter that is oriented at a 45◦ with

respect to the laser beam. The reflected beam has the 4% of the intensity of

incident light. The reflected beam is recorded by a photodiode, which gives

a signal proportional to the incoming power. The laser light is attenuated

before the photodiode by a diffusion filter, in order to keep the device in a

linear response regime and avoid saturation.

The beam transmitted by the beam-splitter is focused by the achromatic

doublet on the sample, which is a 5x5x1mm sized parallelepiped. The sample

is held by a support that is mounted on a system of translators, that allow
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to move the sample:

1. along the z direction (the laser beam propagation direction, i.e. we

move the sample in such a way that the focus can explore the sample

bulk).

2. in the plane perpendicular to z direction (i.e we can move the sample

in such a way that the focus can explore the area of the sample).

After the sample, the fundamental radiation and the SH travel together.

They are collected by a 20x microscope objective positioned at about 1mm

from the sample. The fundamental is stopped by a BG18 blue filter and

the second harmonic is collected by the phototube with a bandpass filter

@400 nm.

The phototube saturation is avoided by attenuating the incoming radia-

tion trough neutral filters.

However, the SH of the phase matched BBO, was too intense and so we

had to change the detector, using the avalanche photodiode.

We’ve performed 3 kinds of measurements: nonlinearity of the emitted

radiation, bulk SHG and transmission. The primary operation was the align-

ment of all the setup, in particular of the achromatic doublet and of the

microscope with the phototube.

Nonlinearity After positioning the sample in the focus of lens, we have

changed the intensity of incoming radiation with the half-

wave plate and measured SHG. This process was identically repeated for all

the five samples and for the BBO out of phase-matching. Our goal was to

obtain a graph showing the nonlinear behavior of KNS.
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Bulk SHG It was important to determine if the SHG was due to a bulk or

a surface process. We exploited the fact that the SHG is larger

in the focus, because of the larger intensity. After maximizing the intensity

of laser beam, we “explored” the bulk of the sample, moving the focus in the

z direction. We obtained a spatial map of bulk SHG of KNS.

Transmission A slightly different setup is needed to perform the transmis-

sion coefficient measurement of KNS at 400 nm. The 400 nm

radiation is externally produced by a phase-matched BBO and then was sent

across the sample. Through an avalanche photodiode detector we measured

the light transmitted by KNS glasses. Then we have recorded the light with-

out the sample, deriving the KNS transmission coefficient.

2.2 Laser system

The Laser-system used is made by two main elements: a diode-pumped laser

(Coherent Verdi V10) and a Ti:Sapphire oscillator (Mira Coherent 900). The

laser, who acts as the optical pump of the oscillator, emits a green radiation

@532 nm and has a maximum CW power of 10 W.

The oscillator, whose optical active element is a Titanium-Sapphire crys-

tal pumped by Verdi, emits 120 fs pulses, with a repetition rate of 76MHz.

The output pulses have frequency tunable in the 700-1100 nm range. The

wavelength we used was 795nm and the maximum output mean power ob-

tained was 1.8 W.

The output beam has gaussian spatial profile. We are interested to know

the size of the spot, performing a knife-edge optical measurement. It consists

in “slicing” the laser light with a metallic slab and measure the transmitted
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Figure 2.2: Beam profile

intensity. This is made moving the slab perpendicularly the beam.

We register the position of the slab (which is moved by a translator) and

the light transmitted by the slab, using a photodiode. In such a way, we

built the spatial beam profile (figure 2.2).

It is more interesting the graph showing the derivative of the knife-edge

profile vs the knife position (figure 2.3). The obtained values can be fit with

a gaussian function whose FWHM is the width of our laser spot. In this case

we obtain the value D = 3.3 ± 0.5 mm. This element will be useful when

we have to study the propagation of the laser gaussian beam throughout a

focalizing lens.
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Figure 2.3: Beam profile fit with gaussian function

2.3 Photodiode

The Thorlabs DET210 photodiode was employed. This type of detector is a

Silicon PIN photodiode, with a little (∅=1.0mm) active area, i.e. the zone

of detector who interacts with the radiation. The fast response time it is

suitable for detecting pulses with an high repetition rate.

In the detector, a 12V bias battery inversely polarizes the junction in-

creasing the response time with respect to the case of unbiased diode (pho-

toconduction regime).

The response curve of the photodiode (figure 2.5) has the maximum re-

sponse at 800 nm (that is our work wavelength), where the responsivity is

about 0.4 A/W. The damage threshold is 100 mW in continuous wave (CW)

and 0.5 J/cm2 for 10ns pulsed wave. The linearity limit is 1mW in CW.
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Figure 2.4: Scheme of Thorlabs DET210 photodiode

Figure 2.5: DET210 photodiode spectral response

The detector is wired by a BNC coaxial cable to the oscilloscope. The

input impedance of oscilloscope is set on 1MΩ.

The photodiode detector can be visualized as a RC circuit, with a re-

laxation time τ = RC. The increase of τ means that we are making an

integration of the signal over a larger time window. Hence we will measure a

mean signal that is an average of peaked signal corresponding to the current
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pulse generated in measurement.

The detection device includes a diffusion filter to attenuate the laser light.

In such a way we avoid the saturation and the device works in his linear range.

2.4 Avalanche photodiode

In order to acquire a signal too low to be detected by a normal photodiode

but too high for a phototube, we use an avalanche photodiode.

An avalanche photodiode is a p-n junction with a high doping level. When

it is inversely polarized, the carriers created by illumination are accelerated by

the electric field. The carriers acquire kinetic energy to create by collision new

electron-hole pairs, trough electron-electron collision. This process happens

several times, so that the absorption of one photon generates several carriers.

Because the carriers are subjected to a strong acceleration due to electric

field, we can obtain very short transit times. This class of photodiode is used

to detect weak and short signal, below the detection threshold of a normal

photodiode.

We used the Menlosystems APD210, that has a 400nm-1100nm spectral

range (figure 2.6), to detect the SH generated by a phase-matched BBO

nonlinear crystal. The active area has very small dimensions (∅ = 0.5mm).

The detector was used at its maximum gain (2.5 ·105 V/W), because of the

low intensity of the incident signal. The avalanche was connected to the

oscilloscope with a BNC coaxial cable.
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Figure 2.6: Avalanche APD210 spectral response

2.5 Photomultiplier

This kind of detector is characterized by the high sensitivity, allowing to

detect single photons.

It consist of a photocathode, a chain of dynodes and an anode that works

as collector of electrons (figure 2.7). The light reaches the photocathode,

where electrons are emitted, due to photoelectric effect. The dynodes chain

accelerates the electrons which finally arrive at the anode, generating an

amplified current pulse.

The photocathode is composed by a low-work-function material (typically

multi-alkali compounds or semiconductors, such as GaAs or InGaAs).

We define the quantum efficiency η as the number of electrons emitted
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Figure 2.7: Photomultiplier scheme

per incident photon:

η =
nel

nphot

.

A typical parameter is also the responsivity R, that is the generated

current divided by the power of incident beam:

R :=
I

P
=

e ne

τ

τ

hν nph

=
eη

hν
=

e η λ

hc
,

where λ is the wavelength of incoming radiation, τ the pulse duration of the

radiation and e the electron charge.

The dynodes are composed by CsSb, a material with a very high sec-

ondary electron emission coefficient. Thus when an electron from the photo-

cathode reaches the first dynode, several electrons are emitted from it. These

secondary electrons kick the second dynode where an analogue process takes

place.

The amplification factor is given by the coefficient of secondary electrons

emission δ (i.e. number of electron emitted by dynodes per incident electron).
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Therefore the gain of photomultiplier depends on the number n of dynodes

and is given by G = δn. So that, the responsivity for a photomultiplier is

RPMT =
e · η · λ

hc
G

The system is in vacuum (10−4 bar) in order to increase the free mean

path of the electrons. The tube is assembled on a socket that provides the

voltage. Finally, the signal output is amplified by an operational amplifier.

We used an Hamamatsu R7518 with a C6270 socket supply. We used this

device to detect the intensity of SH (λ=400nm), where the spectral response

of detector is maximum. (figure 2.8)

Figure 2.8: R7518 spectral response

The device is connected to a digital oscilloscope by a BNC cable. We
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acquire the current generated by the tube as a voltage difference, by closing

circuit on a 1 MΩ resistance. To decrease the noise, we acquire the average

signal over a temporal window.

It is important work in a dark environment, because the laboratory light

could damage the dynodes in a permanent way.

An interferometric filter at 400 nm is inserted on the window of the pho-

tocathode. In this way, we detect only light with frequency centered around

that value.

We however noted that the measurement was affected UV radiation gen-

erated by some control displays. Thus we was careful to cover this UV

sources.

2.6 Power Meter

The photomultiplier tube gives us a voltage signal, related to the pulse cur-

rent produced by the photons for photoelectric effect. Unfortunately it is

difficult to directly relate the signal to the incident power.

In order to determine the conversion scale, we used a power meter. It’s

based on the principle that the optical power is converted to heating power

in some absorber structure, and the resulting temperature rise is measured,

e.g. with a thermopile. The Ophir 3A-SH gives a mean value of the incoming

power of the laser radiation.

The energy content of each pulse of the incident radiation is given by:

Ep = (Power meter signal in W)/Rr,

where Rr is the repetition rate of the laser. The peak intensity is given as:

Ip =
Ep

Aτ
(2.1)
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where τ is the duration of a single pulse and A the area on the sample. In

our case, we evaluated the area of the beam in the focus of an achromatic

doublet.

For example, if we measure with power meter a signal of 76 mW, for our

laser we have a pulse energy:

Ep =
PM signal [mW]

Rr

=
76mW

76MHz
= 1nJ.

2.7 Filters

The optical filter are used to attenuate the incident signal (NG5 and NG11

filters) or stop a component with a specific wavelength (BG18 filter).

The NG11 and NG5 filters are neutral glass filters that attenuate the

incoming radiation. They are designed to cover a spectral range from 400

to 1100 nm. The NG5 transmission coefficient at 800 nm is 0.5, the NG11

transmission coefficient for the same wavelength is 0.68.

Figure 2.9: NG5 transmission coefficient (d=1mm)

The BG18 filter is a blue bandpass filter, that is designed to block the

red component of the radiation. The transmission coefficient for a 800 nm
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Figure 2.10: NG11 transmission coefficient (d=1mm)

radiation is 7.6·10−5, whereas it is 6.8·10−1 for a 400 nm radiation (our SH).

For this reason, we will use the BG18 in order to separate the fundamental

to the second harmonic.

Figure 2.11: BG18 transmission coefficient (d=1mm)



2. Experimental set-up 33

2.8 Half-wave plate and beam-splitter

We used a polarizer combined with an half wave plate to control the incom-

ing radiation intensity. The polarizer is composed by two calcite prisms,

separated by an air interface.

The working principle of this device is the total internal reflection. As a

consequence of the birefringence of the calcite, the total reflection angle is

different between the two polarization of light.

So, at the critical angle, only a polarization of incident light pass trough

the polarizer. The other one is totally reflected and goes out the device

through an escape port. For this reason, the device does not absorbs the

energy of light in the polarizing medium, so that it is not damaged when

exposed to high light intensity.

At 800 nm, the polarizer has an high extinction factor (10−5). In our

experiment the polarizer has a fixed angle while we rotate the half-wave

plate to change the intensity of light incident on samples.

Rotating the half-wave plate, we change the polarization component of

the incident light. Combining this effect with the polarizer we obtain a

different out-coming intensity.

The beam splitter is a device built to work in IR optics, with ultra short

pulses. It splits the incident beam in 2 rays, with a reflection coefficient of

0.3 and a transmission coefficient of 0.7. It is designed in order to preserve

the pulse shape and to minimize the spatial and temporal dispersion.
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2.9 Achromatic doublet

An IR achromatic doublet was employed to focus the 800 nm beam on the

sample. This device is designed to avoid chromatic aberration effects i.e.

focus length different for different wavelength. The control of these effects is

crucial for femtoseconds light pulses with a quite large spectral content.

The doublet has a diameter of 25.4 mm and a focal length of 50 mm.

Moreover, it is anti-reflection coated for the wavelengths from 650 to 1100 nm.

We can estimate the dimension of the focus using the propagation theory

of gaussian beams. Consider the optical system in figure 2.12.

Figure 2.12: Gaussian propagation through a lens

We define the spatial range where the power decreases of the 5% with

respect to the power in the focus as the Rayleigh range, given by the expres-

sion:

xr =
0.32 πw2

0

λ
,

where w0 is the spot ray in the focus and λ the wavelength of the radiation,

in our case the central wavelength on which the pulse is centered.

The focus depth is 2xr. The spot diameter in the focus is given by the
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expression

d0 = 2w0 =
4λf

πD
,

where f is the focal length of the lens and D = 3.3mm is the spot diameter

before the lens, which was obtained with a knife-edge method described in

2.2.

In our case we have a focus depth 2xr = 150±10µm and a spot diameter

in the focus d0 = 15 ± 3µm. In order to verify these data, we repeated the

knife-edge measurement, but in the focus of the lens. We obtained a spot

diameter d0 = 9± 5µm, that is comparable with the estimate value.



3. Measurements

As explained in the previous chapter, we performed three kinds of measure-

ments: nonlinearity, bulk SHG and transmittance. The results obtained

allow to underline several interesting features of KNS glasses.

3.1 Nonlinearity

The first aim of our research was to show that KNS glasses behave as second

harmonic generators. For this reason, after mounting the setup as in figure

2.1, we have performed for each of the five samples a non linearity measure-

ment, i.e. the recording of the fundamental signal incident on samples and

the correspondent SH signal produced.

The reference photodiode and the phototube give a voltage signal pro-

portional respectively to the power of incoming radiation and to the power of

SH radiation. The system was previously calibrated, as described in section

2.6 to convert the voltage acquired on oscilloscope to the incident power.

In this first graph (figure 3.1), we show the nonlinear behavior of the five
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Figure 3.1: SHG in KNS glasses

samples. The graph is in a logarithmic scale. The black line represents a

quadratic function.

We find out that I(2ω) ∝ I2(ω), that is the relation that identifies the

SHG process.

As you can see, all the samples produce SH signal but there are some dif-

ferences among the various samples. The most intense SH signal is obtained

from sample S1 (KNS 23-27-50 2h 680◦C), the worst from sample S6 (KNS

30-30-40 2h 650◦C).

It is meaningful to calculate the SH conversion efficiency ESHG for KNS,

i.e. the ratio between the number of SH photons generated and the number

of incident photons:
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ESHG =
I(2ω)

I(ω)

We have compared the KNS efficiency with efficiency of a nonlinear

medium well-described in the literature, such as a BBO crystal. In particular

we used a BBO 8.5x5x0.3 mm sized, cut at θ=46◦ and φ=0◦ (type I). This

crystal could be employed for SHG with the Ti:Sapphire laser, considering a

phase-matching angle of about 30◦ with respect to the optical axis.

At first we have determined the SHG conversion efficiency of the phase-

matched BBO (PM-BBO) measuring the mean power of the fundamental and

the mean power of the second harmonic with the powermeter. For values of

incoming intensity close to 32 GW/cm2 on the crystal, the phase-matched

BBO has a second harmonic conversion efficiency of 0.002± 0.0004, i.e. two

photons over 103 are converted.

As said, our aim was to determine the SHG efficiency of KNS glasses.

However, the SH generated by KNS can’t be directly detected by the cali-

brated powermeter, but only with the phototube (because of low SH intensity

and mean power). In graph 3.2 we show the detection range of the devices

used.

Hence, the problem was the conversion of the relative SH voltage signal,

measured with the phototube from KNS, in an absolute power signal. We

proceeded in the following way:

1. We measured, using the powermeter, the mean power of the input IR

radiation and of the SH signal generated by the phase-matched BBO

determining the SHG efficiency of the crystal. Then we measured the

corresponding SH voltage signal with an avalanche photodiode. The
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avalanche was employed because with SH intensity generated by the

phase-matched BBO the phototube saturated, even at the maximum

available attenuation from neutral filters. In such a way we derived the

the conversion factor between the mean power of the SH radiation and

the voltage read on the oscilloscope from the avalanche photodiode.

2. We detected, using the calibrated avalanche, the SH intensity of an

out-of-phase-matching BBO, that has a lower SH conversion efficiency.

Then we measured the same signal with the phototube calibrating the

phototube against the avalanche photodiode. We employed suitable

neutral filters, with a known attenuation coefficient, in order to avoid

phototube saturation.

3. Finally, we measured the SH signal produced by KNS with the cali-

brated phototube.

Therefore, we measured the ratios among the SH signals produced by the

three different calibrated devices, converting the voltage signal of KNS to

power units and deriving the SHG efficiency. We estimate the errors on the

measurement within a range of twice the values collected.

In the graph 3.2 we plot the incoming power on samples vs their second

harmonic generation efficiency.

We also report the SHG from a out-of-phase-matching BBO, to underline

the different efficiency. The SH efficiency of the BBO is 5-6 order of mag-

nitude larger than the KNS one. The black lines in figure 3.2 represents a

linear function.

The KNS can convert about only one photon over 1010, while even the not

phase matched BBO produces SH photons with an efficiency of one photon
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Figure 3.2: SHG efficiency in KNS glasses and BBO crystal, with detection

range of the employed devices

over about 105.

Because the I(2ω) ∝ I2(ω) and the efficiency is defined as I(2ω)/I(ω),
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the conversion efficiency is linear with respect to the intensity of incident

radiation:

ESHG =
I(2ω)

I(ω)
∝ I2(ω)

I(ω)
= I(ω)

3.2 Bulk SHG

The second series of measurement, was aimed to investigate the SHG origin in

KNS glasses. As we explained in chapter 1, KNS glasses are polycrystalline

materials, formed by nanocrystals randomly arranged in the material and

surely smaller than the wavelength of the fundamental incoming radiation.

The measurement consists in moving the sample, using the translation

system, in order to scan with the doublet focus, at fixed power of the incoming

radiation, the bulk of the KNS, collecting with the phototube the SH signal.

In fact, the focus of lens is the point where the power is larger and conse-

quently the SHG has its maximum efficiency. The signal we read so represents

the SH generated in the focus length (in our case 150µm).

The first result is that the SH signal is almost the same in all the points

of the surface of sample. This indicates that the production is homogeneous

in all the material. The second consideration is that the SH is an evident

bulk effects, that is the SHG process takes place in the volume of the sample.

In the graph in figure 3.3 the SH signal vs the position of focus in the

sample is reported.

We have not a punctual focus, but a focus with a measurable length. For

this reason, we expect a SHG bulk pattern which is convolution of a gaussian

function (that represents the dimension of focus) with a step function (that

represents the real thickness of the sample).
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Figure 3.3: Bulk SHG in S2 sample, values in µm

We also expect that the convolution width will be comparable with the

thickness of the sample (1 mm).

We have divided the graph in figure 3.3 in three regions. The central one

(widht=500 µm) represents the passage of the focus totally in the bulk. The

lateral ones are corresponding to the passage of focus at the surfaces. Notice

also that the total width of the graph is about 800-900 µm, comparable with

the thickness of sample.

We have compared the bulk SHG in the KNS glasses with the SH gener-
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Figure 3.4: SHG bulk pattern in fused silica

ated by a fused silica slab, that is surely due to superficial effects.

The SH from surfaces is obtained with the same method employed for

the measurement of bulk SHG in KNS glasses. But, on the contrary, for a

surface SHG process, we would expect a double-peak pattern, where every

peak represents the SHG due to the light in the doublet focus interacting

with the single surface (figure 3.4).

Notice that no SH signal is produced in the bulk of fused silica. This

involves that the SHG process of KNS is radically different from the SHG

due to superficial effects.
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3.3 Transmittance

In order to realize performing and efficient KNS converters, a high SH signal

transparent glass matrix is needed, because the SH signal that is generated

inside the glasses by the interaction between light and nanocrystals can be

transmitted outside the material without power loss.

For these reasons, we are interested to measure the transmission coeffi-

cient of the KNS glasses. The technique employed in this case was to generate

the SH at 400nm outside the KNS glass, with a phase-matched BBO. Then,

we have submitted the KNS to this radiation, measuring its transmission

coefficient τ with a avalanche photodiode.

Id sample τ

S1 0.81

S2 0.82

S3 0.62

The results are that the transmission coefficients are very high, so that the

glass matrix that composes the KNS is ideal for performing SH converters.

We have performed this measurement only for three samples, but we can

hypothesize that the transmission coefficient is similar for all the samples,

because the samples are composed and prepared in the same manner.

3.4 As-quenched samples

We’ve examined also the SH signal generated by crystals not submitted to

the annealing process (i.e. a second thermal process that causes the crystal-

lization of glass), described in section 1.2.
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In graph we can see the conversion efficiency of these last samples com-

pared with results obtained in section 3.1.

Figure 3.5: SHG in as-quenched KNS
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We see that for all the kinds of sample, the annealing process improves

the SHG.

Notice also that the SH signal produced by the as-quenched samples is

less than the SH in samples exposed to a 2h long lasting process. The samples

exposed to a 10h long process show a signal less than the 2h annealed glasses.

So, long annealing processes do not improve the SH conversion efficiency.

This fact can be related to the effects induced on the growth of nanocrystals

by the annealing process.



4. Conclusions

We have investigated SHG process in potassium niobium silicate ceramic

glasses (KNS) and we have compared it with the SHG process in a phase-

matched and out-of-phase-matching BBO crystal. The SHG signal in KNS

glasses is 5 order of magnitude less than a non phase-matched BBO. How-

ever, the SHG is observed always without requiring peculiar phase-matching

conditions.

We have demonstrated that the SHG is a bulk effect of the glasses, not

due to superficial phenomena. but probably related to the KNS random

nanocrystalline structure. At the present state, the nanocrystalline phase

hasn’t been yet established.

If the crystal in the glass matrix are not-centrosymmetric, surely the SHG

is due to them, but if they are centrosymmetric, we have to elaborate a more

complicated theory to explain the effect.

The annealing process at Tg in two cases really improves the SHG con-

version efficiency even if the improvement factor is small.

At the present state, we can try to improve the SHG creating new com-
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positions, changing the percent quantity of the elements. We have observed

that a 2h annealing improves the SHG more than a 10h annealing.

The next step of the characterization of KNS glasses will be to discuss the

role of the nanocrystals (which compose the material) in the second harmonic

generation process. In particular, we are interested to investigate if the SH

is generated in the bulk of nanocrystals or produced as a surface effect on

the nanocrystals surfaces.

The evolution of these glasses will be the use in integrated chips or optical

fibers, because they are very cheap, easy to prepare and to operate and

they don’t requires a careful alignment nor the high-precision engineering of

microstructured samples.
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