Thermomechanics of Hypersonic Surface Phononic Crystals

Damiano Nardi

dnardi@dmf.unicatt.it www.dmf.unicatt.it/elphos

Università Cattolica del Sacro Cuore

Dipartimento di Matematica e Fisica, Via dei Musei 41, Brescia, Italy

SCOPE

Description of the thermomechanics of hypersonic surface phononic crystals excited by ultrafast laser pulses

OUR INTERESTS IN LATTICE OF NANOSTRUCTURES

 \checkmark Phononic crystals in the GHz range

λ= 1 µm

H.-N. Lin, H. J. Maris, et al., *Journ. Appl. Phys.* 73, 37 (1993)

Excite and control SAWs with fs laser pulses

D. M. Profunser et al., *Phys Rev. B* **80**, 014301 (2009) C. Giannetti et al., *IEEE Photonics Journal* **1**, 20 (2009)

✓ All-optical time-resolved calorimetry at the nanoscale

F. Banfi et al., Phys. Rev. B 81, 155426 (2010)

Permalloy (Fe₂₀Ni₈₀)

C. Giannetti et al., *Phys. Rev. B***76**, 125413 (2007)

 $\langle / / /$

OUTLINE

A theoretical framework to investigate the thermomechanics of hypersonic surface phononic crystals excited by ultrafast laser pulses

Introduction

Thermomechanics

Conclusion and perspectives

Thermomechanics of Hypersonic Phononic Crystals PHONONS 2010 Taipei, 21st April 2010

200 nr

EHT = 5.00 k

WD = 10.6 mm

Signal A = SE3

Photo No. = 789

1000

1992

Date :18 Dec 2009

Time :18:07:40

Mechanical model and pseudo-SAWs

SURFACE-BASED PHONONIC CRYSTAL

Influence of a periodically structured overlayer on the acoustic-field eigenmodes of an homogeneous slab

Solution of the acoustic eigenvalue problem via finite-elements method

B λ 2 1 μm C

$$\partial_j [c_{ijmn}(\mathbf{r}) \partial_n u_m] = -\rho(\mathbf{r}) \omega^2 u_m$$

D. Nardi et al., Phys. Rev. B 80, 104119 (2009)

MACRO CU

OUTLINE

A theoretical framework to investigate the thermomechanics of hypersonic surface phononic crystals excited by ultrafast laser pulses

Introduction

Mechanical model and pseudo-SAWs

Thermomechanics

Conclusion and perspectives

Thermomechanics

IMPULSIVE HEAT-DRIVEN DISPLACEMENT

Thermomechanics

2D PROJECTIONS: Stripes (d=320 nm)

Projection of the thermal expansion displacement on the eigenmodes of the composite system:

Thermomechanics

BENCHMARK: TR DIFFRACTION MEASUREMENTS

\sim

BENCHMARK: EXPERIMENTAL WAVELET

OUTLINE

A theoretical framework to investigate the thermomechanics of hypersonic surface phononic crystals excited by ultrafast laser pulses

Introduction

Mechanical model and pseudo-SAWs

Thermomechanics

Conclusion and perspectives

Conclusion and perspectives **CONCLUSION** Tool to address the nature of surfacelike eigenmodes in a hypersonic surface phononic crystal: SAW-likeness coefficient Address the full thermomechanical problem and identify the launched pseudosurface acoustic waves Thermomechanics of Hypersonic Phononic Crystals PHONONS 2010 Taipei, 21st April 2010

PERSPECTIVES

Fully relate the excited mechanical modes to the detected optical signal;

✓ Disentangle mechanical and thermal energy decay channels.

Array of metallic nanodotsArray of suspendedPolymeric coating as dampingwith aperiodic holesmetal nanodotslayer for pseudo-SAWs

Ultrafast optics group (Università Cattolica del Sacro Cuore, Brescia) Francesco Banfi, Claudio Giannetti, Gabriele Ferrini

FELGElettra (Università degli Studi, Trieste)

Fulvio Parmigiani

Thermodynamics and nanomechanics

Bernard Revaz (EPFL, Lausanne), Federico Pressacco (Regensburg),

Devices fabrication Pasqualantonio Pingue (NEST, Pisa)

Thank you

