in the GHz and THz range.

— Phononic crystals in the GHz range

+ Acoustic waves at GHz frequencies are generated by thermal excitation, i.e. phonons
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Birth of an hypersonic surface acoustic wave
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INTRODUCTION

The possibility to prepare macroscopic areas of ordered arrays of metallic nano- Time-resolved reflectivity experiments have been performed on gratings of metallic nanometric stripes (2D
objects on different substrates led to intensive efforts toward the use of these confined) on semitransparent (Si) substrate, evidencing oscillations in the GHz range [7-10]. However, the
structures as potential transducers and sources of coherent acoustic excitations attribution of the measured modulations to one-dimensional SAWs, induced in the substrate, or to the

oscillation modes of the single nano-objects has been a debated question.
Less data are available on the mechanical properties of 3D confined nanoparticles, as a consequence of the

* COUPLING OF THE SOUND WAVES TO THE PERIODICITY: HYPERSONIC BANDGAPS [1] difficulties in measuring and modeling the elastic and thermodynamic properties of these systems.

TIME-RESOLVED DIFFRACTION MEASUREMENTS

Gap opening at the border of e

Brillouin zone A dedicated diffraction time-resolved optical technique has been developed, in order to investigate the
mechanical and thermodynamic properties of square arrays of permalloy (FeyNig,) nanodisks deposited on a
Si(100) surface [11]. Exploiting the periodicity of the system, we have measured the relaxation dynamics of
the intensity of the first-order diffracted beam, after the excitation by sub-ps laser pulses. And by changing the
parameters of the samples, we demonstrated that:
« Two-dimensional surface acoustic waves (SAW), are excited in the silicon.
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In order to clarify the interaction between the nanodisks and the substrate, numerical
calculations of both the elastic eigenmodes and the time-dynamics of the system, following the
impulsive heating excitation by the laser, are performed.
Simulations based on finite-elements analysis, together with a wavelet analysis of our

experimental data, show the detailed thermal mechanism responsible for surface acoustic waves
generation in the substrate.
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FROM PUMP & PROBE TECHNIQUE TO FINITE ELEMENTS ANALYSIS

EIGENMODES ANALYSIS: Si SUBSTRATE (NO DISKS) EIGENMODES ANALYSIS: ORDERED ARRAY (WITH DISKS)
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DISPLACEMENT RELATED TO IMPULSIVE HEATING WAVELET ANALYSIS OF THE DIFFRACTED SIGNAL
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The initial displacement is the superposition of the calculated eigenmodes: Time-frequency analysis: frequency content within time-windows

Different coupling to bulk modes:
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« Decoupling the thermal and elastic contribution —~ CALORIMETRY ON NANOPARTICLES (4] V. Piazza et al., Appl. Phys. Lett. 88, 212101 (2008).
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