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Birth of an hypersonic surface acoustic wave

INTRODUCTION

The possibility to prepare macroscopic areas of ordered arrays of metallic nano-
objects on different substrates led to intensive efforts toward the use of these 

structures as potential transducers and sources of coherent acoustic excitations 

in the GHz and THz range.

Time-resolved measurements of the diffracted pattern

TIME-RESOLVED DIFFRACTION MEASUREMENTS

A dedicated diffraction time-resolved optical technique has been developed, in order to investigate the 

mechanical and thermodynamic properties of square arrays of permalloy (Fe20Ni80) nanodisks deposited on a 
Si(100) surface [11]. Exploiting the periodicity of the system, we have measured the relaxation dynamics of 

the intensity of the first-order diffracted beam, after the excitation by sub-ps laser pulses. And by changing the 

parameters of the samples, we demonstrated that:
• Two-dimensional surface acoustic waves (SAW), are excited in the silicon.

FUTURE

• Study of localization of SAWs in disordered systems.

• Decoupling the thermal and elastic contribution → CALORIMETRY ON NANOPARTICLES
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Time-resolved reflectivity experiments have been performed on gratings of metallic nanometric stripes (2D 
confined) on semitransparent (Si) substrate, evidencing oscillations in the GHz range [7-10]. However, the 

attribution of the measured modulations to one-dimensional SAWs, induced in the substrate, or to the 

oscillation modes of the single nano-objects has been a debated question. 
Less data are available on the mechanical properties of 3D confined nanoparticles, as a consequence of the 

difficulties in measuring and modeling the elastic and thermodynamic properties of these systems.• COUPLING OF THE SOUND WAVES TO THE PERIODICITY: HYPERSONIC BANDGAPS [1]
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• Acoustic waves at GHz frequencies are generated by thermal excitation, i.e. phonons
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• COUPLING OF SURFACE PLASMONS TO THE PERIODICITY:

EXTRAORDINARY TRANSMISSION & SUBWAVELENGTH OPTICS IN THE VISIBLE [2,3]
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• ACOUSTIC CHARGE TRANSPORT [4,5]

LONG RANGE EXCITON TRANSPORT [6]

Surface acoustic waves
generated by a 
Piezoelectric transducer
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current flowing through

the n-i-n junction and 
steer them towards the 
Ohmic output contact
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BIRTH OF A HYPERSONIC SURFACE ACOUSTIC WAVE

In order to clarify the interaction between the nanodisks and the substrate, numerical 
calculations of both the elastic eigenmodes and the time-dynamics of the system, following the 

impulsive heating excitation by the laser, are performed.

Simulations based on finite-elements analysis, together with a wavelet analysis of our 
experimental data, show the detailed thermal mechanism responsible for surface acoustic waves 

generation in the substrate.
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1/γ= 950 ±30 p s

2π/ω =1 34.8± 0.1 ps
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1 /γ= 1 6 90 ±6 0 p s

2π/ω=17 5 ±0.1  p s
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1 /γ =3 9 8 0± 3 00  p s

2 π/ω=2 11 .2 ±0 .1  ps
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1 /γ =1 70 0 0 ±5 5 00  p s

2π/ω=4 0 9 .4±0 .3 p s

D=2018±30 nm

2a=990 ±10 nm
h=31±1 nm

D=1020±50 nm

2a=470 ±10 nm

h=21±2 nm

D=810±10 nm
2a=380 ±20 nm

h=33±5 nm

D=610±3 nm
2a=320 ±10 nm

h=60±20 nm

FROM PUMP & PROBE TECHNIQUE TO FINITE ELEMENTS ANALYSIS
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• IMPULSIVE HEATING

→ 3 TIMESCALES

• INDUCED STRESS IN THE 

SUBSTRATE

→ Surface Acoustic Waves
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EIGENMODES ANALYSIS: Si SUBSTRATE (NO DISKS)

Eigenvalue equation with periodic boundary conditions:
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• SAWs are mixed modes
• No damping
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EIGENMODES ANALYSIS: ORDERED ARRAY (WITH DISKS)

COUPLING TO BULK MODES AND LIFETIME

1st harmonics 2nd harmonics
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DISPLACEMENT RELATED TO IMPULSIVE HEATING

Temperature profile within 1 ps Displacement due to thermal expansion

The initial displacement is the superposition of the calculated eigenmodes:

WAVELET ANALYSIS OF THE DIFFRACTED SIGNAL
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Time-frequency analysis: frequency content within time-windows

W(s,t)=∫x(t’)�ψ(t-t’/s)dt’ Morlet wavelet
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