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Abstract

Thequantum theory of a single-spin measurement using magnetic resonance force microscopy is
presented. We use an oscillating cantilever-driven adiabatic reversal technique. The frequency shift
of the cantilever vibrations is estimated. We show that the frequency shift causes the formation of a
Schrödinger catstate for the cantilever. The interaction between the cantilever and the environment
quickly destroys the coherence between the two cantilever trajectories. It is shown that using partial
adiabatic reversals one can obtain a significant increase in the frequency shift. We discuss the
possibility of sub-magneton spin density detection in molecules using magnetic resonance force
microscopy.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The oscillating cantilever-driven adiabatic reversal (OSCAR) technique first proposed
in [1] is currently the most promising way to achieve single-spin detection using magnetic
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resonance force microscopy (MFMR). We consider the set-up first implemented in [2].
In this set-up the cantilever axis is perpendicular to the surface of the sample. The cantilever
tip (CT) with an attached ferromagnetic particle oscillates along thex-axis, which is
parallel to the surface of the sample. The external permanent magnetic field,ext, is
perpendicular to the surface of the sample in the positivez-direction. A single spin, placed
near the surface of the sample, experiences both the external fieldext and the dipole field

d produced by the ferromagnetic particle.
Suppose that at timet = 0 the CT isin its right end position, and one applies a rotating

rf field in the transversex–y plane with frequencyγ (Bext+ Bd0), whereγ is the magnitude
of the electronic gyromagnetic ratio andBd0 is the dipole fieldBdz for theequilibrium CT
position Xc = 0. At t = 0 thedipole field Bdz is greater thanBd0. Onequarter of the
CT period later we haveBdz = Bd0, and the resonance frequency of the spin matches
the rf fieldfrequency. Then the dipole fieldBdz becomes smaller thanBd0, and soon. The
effective magnetic field in the rotating frame has the componentseff = (B1, 0, Bdz − Bd0).
This field experiences periodic reversals with the frequency of the CT vibrations. If the
adiabatic conditions are satisfied, the spin experiences adiabatic reversals following the
effective magnetic field. The magnetic force produced by the spin on the ferromagnetic
particle attached to the CT is−gµB |∂ Bz/∂x |Sz . Here we consider only thex-component
of the magnetic force caused by the adiabatic reversals of thez-component of the spin.g is
the electrong-factor and∂ Bz/∂x is the magnetic field gradient at the location of the spin.
When the CT coordinateXc is positive, thenSz is negative, and the magnetic force on the
CT points in the positivex-direction. WhenXc < 0, then the magnetic force points in
the negativex-direction. Thus, the magnetic force is opposite to the effective spring force
and causes a decrease of the CT vibrational frequency. The change of the CT vibrational
frequency is the OSCAR signal, which must be detected. If the rf field is turned on when
the CT is at the left end position, then the spin points in the direction of the effective
magnetic field, and the CT vibrational frequency increases.

2. The Hamiltonian of the CT–spin system and quantitative analysis of its dynamics

We use the following dimensionless parameters:xc = Xc/X0, pc = Pc/P0, ε =
γ B1/ωc, andη = γ /2(�/kcωc)

1/2|∂ Bz/∂x |, whereXc andPc are the coordinate and the
momentum of the CT,kc andωc are the effective spring constant and the angular frequency
of the CT. X0 and P0 are the “quantum units” of the coordinate and the momentum:
X0 = �ωc/kc, P0 = �/X0. In theseunits the Hamiltonian of the CT–spin system can
be written asH = (x2

c + p2
c)/2 + εSx + 2ηxcSz . Here the first term describes the

unperturbed CT energy, the second term describes the interaction between the spin and the
rf field, and the last term describes the CT–spin interaction. This Hamiltonian is written
in the rotating system of coordinates; the rotating magnetic field points in the positive
x-direction.

Neglecting oscillations with twice the CT frequency, we can estimate the magnetic
force on CT as−2ηSz = ±η2x/

√
2η2x2

m + ε2, where xm is the CT amplitude. The
corresponding frequency shift is�ωc/ωc = ∓η2/

√
2η2x2

m + ε2. From the experimental
data [2] we have for the CT amplitude xm = 1.2 × 105 and|�ωc/ωc| = 4.7 × 10−7.
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The condition for adiabatic motion in terms of dimensionless parameters is 2ηxm � ε2.
To provide full reversals of the effective field one requiresε � 2ηxm. It follows from this
thatone could increase the frequency shift by reducing the amplitude of the CT vibrations
xm and the rf fieldε. Takingε ≈ 2ηxm we still satisfy the adiabatic condition but violate
the condition of full reversals. Thus, one could increase the frequency shift by sacrificing
the total reversal ofthe spin.

We simulate the Schr¨odinger dynamics using the dimensionless Schr¨odinger equation
i∂Ψ/∂τ = HΨ , τ = ωct . The initial conditions describe the quasiclassical state of the
CT and the spin pointing in thepositive z-direction. The results of our simulations are
similar to those described inour previous publications [3–5]. The probability distribution
for the CT gradually splits into two peaks.The first peak corresponds to the average
spin pointing in the direction of the effective magnetic field for the first trajectory; the
second peak describes the spin pointing in the direction of the effective field for the
second trajectory. The Fourier spectrum of theCT motion clearly indicates two possible
frequencies of the CT vibrations. This phenomenon can be considered as the manifestation
of the Stern–Gerlach effect in the OSCAR technique. The Hamiltonian dynamics describes
a Schrödinger cat state of the CT. Two CT trajectories develop simultaneously in the
process of quantum evolution. To simulate the decoherence caused by the interaction of
the CT with the environment we used the simplest master equation: an ohmic model in the
high-temperature approximation [6]. The results of these simulations are similar to those
obtained in [4, 5]. The Schrödinger cat state transforms into a statistical mixture of two
possible CT trajectories.

Finally, we would like to discuss the possibility of sub-magneton detection of the single-
electron spin density. To analyze this possibility we have chosen the beta carotene cation
radical, which plays an important role in theactive sites of proteins. In this molecule a
single spin is delocalized along a chain of double bonds. To obtain the spatial distribution
of the spin density we have used spin-restricted Kohn–Sham method with the B3LYP
exchange–correlation functional in Dunning’s double-zeta basis set. We assume that the
molecule is placed in thex–z plane near the surface of the sample with its axis parallel to
thex-axis. Suppose that we “divide” the molecule into three equal parts of length 1.05 nm.
Our computations show that the integrated spin densities in these fragments are 26%,
48.4%, and 25.6%. If the CT amplitude were about 1 nm the OSCAR technique would
detect the sub-magneton local spin density in this molecule.
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