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Abstract

We study the effects of wave function collapses in the oscillating cantilever driven adiabatic reversals (OSCAR) m
resonance force microscopy (MRFM) technique. The quantumdynamics of the cantilever tip (CT) and the spin is analyze
and simulated taking into account the magnetic noise on the spin. The deviation of the spin from the direction of the
magnetic field causes a measurable shift of the frequency of the CT oscillations. We show that the experimental stu
shift can reveal the information about the average time interval between the consecutive collapses of the wave functio
 2004 Elsevier B.V. All rights reserved.
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Recently invented[1,2], the oscillating cantileve
driven adiabatic reversals (OSCAR) technique
been successfully used for a single spin detection[3].
In this technique the cantilever tip (CT) vibratio
in combination with a radio-frequency (rf) resonan
field causes adiabatic reversals of the effective m
netic field. Spins of the sample follow the effecti
magnetic field causing a small shift of the CT fr
quency, which is to be measured. The quasiclass
theory of the OSCAR technique has been develo
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in [4–7]. The quantum theory of a single-spin me
surement in OSCAR MRFM was presented in[8,9].

It was shown in[8,9] that the CT frequency ca
take two values corresponding to two possible dir
tions of the spin relative to the direction of the e
fective magnetic field,�Beff. If the spin points initially
in (or opposite to) the direction of�Beff, then the CT
has a definite trajectory with the corresponding p
itive (negative) frequency shift. In the general ca
the Schrödinger dynamics describes a superposition o
two possible trajectories—the Schrödinger cat stat
was also shown in[8,9] that the interaction betwee
the CT and the environment causes two effects.
.
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first one is a rapid decoherence: the Schrödinger
state transforms into a statistical mixture of two pos
ble trajectories with the definite directions of the sp
relative to the effective field. Physically this mea
that the CT quickly selects one of two possible traj
tories, even if initially the spin does not have a defin
direction relative to the direction of�Beff. The second
effect is an ordinary thermal diffusion of the CT tr
jectory.

What was not taken into account in[8,9] was the
effect of the direct interaction between the spin an
the environment. In general, for an MRFM system o
should consider two environments: one for the CT a
the other for the spin. If the initial spin wave functio
describes a superposition of two spin directions re
tive to �Beff, then the spin generates two trajectories
the CT. The cantilever is a quasiclassical device wh
measures the spin projection relative to the direction
of �Beff. The CT environment collapses the CT–sp
wave function selecting only one CT trajectory and
definite direction of the spin relative to�Beff. This sit-
uation is similar to the Stern–Gerlach effect, but fo
time-dependent�Beff. The direct interaction of the spi
with its environment is extremely weak in comparis
to the interaction between the CT and its environm
However, this weak interaction causes a deviation
the spin from the direction of�Beff after a collapse o
the wave function. In turn, this deviation generates t
CT trajectories. This scenario occurs again and aga
in the OSCAR MRFM. Normally, a collapse “forces
the spin back to its initial (after the previous collaps
direction relative to�Beff. But sometimes this collaps
pushes the spin to the opposite direction, revealing
quantum jump—a sharp change of the spin direc
and CT trajectory. It was shown in[5–7] that the main
source of the magnetic noise on the spin was a
ciated with the cantilever modes whose frequenc
were close to the Rabi frequency.

There are two basic problems associated with
single spin OSCAR MRFM. The first problem
the theoretical description of the statistical proper
of quantum jumps. Unfortunately, the direct simu
tion of quantum jumps consumes too much compu
time to be implemented. Recently, we have cons
ered a simplified model which describes the statist
properties of quantum jumps[10]. The second prob
lem is more sophisticated: what is the characteri
time interval between two consecutive collapses of
wave function? This Letter discusses the second p
lem.

The CT position and momentum have finite qua
tum uncertainties. Thus, when the spin direction de
ates from the direction of�Beff, the collapse does no
occur instantly. During a finite time interval, the sp
and the CT are entangled. The spin does not ha
definite direction, and the CT does not have a defi
trajectory. The dynamics of the CT–spin system on
time scale less than the time interval between two c
secutive collapses can be described by the Schrödi
equation. During this time, the average CT freque
shift is expected to be smaller (in absolute value) t
the frequency shift corresponding to the definite
rection of the spin relative to�Beff. We show that the
experimental study of this effect can reveal the ans
to a fundamental problem of quantum dynamics
what time does the collapse of the wave function oc
if the quasiclassical trajectories are not well separa

Indeed, if the quasiclassical trajectories are initia
well separated (the Schrödinger cat state) then
characteristic time of the collapse is the decohere
time, i.e., the time of vanishing of the non-diagon
peaks of the density matrix (the non-diagonal pe
describe the quantum correlation between two tra
tories when these trajectories coexist during the s
time interval[11,12]). However, the Schrödinger c
state is a specific bizarre phenomenon in the ma
scopic world. Namely, in a typical situation the co
lapse of the wave function occurs long before a w
defined separation develops between the two qu
classical trajectories. There are a few simple ca
for which the exact solutions of the master equat
have been obtained (see, for example,[12]). The ex-
act solution describes a generation of the two qua
siclassical trajectories, their decoherence, and a t
mal diffusion. Before the two quasiclassical trajec
ries are well separated, the exact solution describe
the complicated dynamics of the density matrix e
ments. It is not clear if the master equation is capa
to describe the wave function collapse when the
trajectories are not well separated. Even if the c
lapse time for this case is “hidden” in the solution
the master equation, we still do not know how to e
tract it analytically and numerically. Only experimen
could resolve this fundamental problem. We show t
OSCAR MRFM could become one of these expe
ments.
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Fig. 1. Cantilever set-up.�Bext is the external static magnetic field
�B1 the rotating magnetic field,�m the magnetic moment of the fe
romagnetic particle glued on the cantilever tip,�S the spin to be
measured.

The OSCAR MRFM setup considered here
shown inFig. 1.

The dimensionless Hamiltonian for the OSCA
MRFM in the rotating system of coordinates is tak
as

(1)H = p2
x + x2

2
+ εSx + 2ηxSz,

where we use the quantum units of the momen
P0 = h̄/X0 and the coordinateX0 = √

h̄ωc/kc. Here
ωc is the cantilever frequency,kc is the cantilever ef-
fective spring constant,ε = γB1/ωc, γ is the mag-
nitude of the electron gyromagnetic ratio andη =
(1/2)(γX0/ωc)G, whereG = ∂Bz/∂x, is the mag-
netic field gradient at the spin location. The first te
in (1) describes the unperturbed oscillations of the CT
the second term describes the interaction between
spin and the resonant rf field, and the last term
scribes the interaction between the spin and the CT
take into consideration the magnetic noise on the s
caused by the thermal CT vibrations we add a rand
term∆(τ)Sz to the Hamiltonian(1), whereτ = ωct is
the dimensionless time.

The wave function of the system is assumed to h
the form

(2)Ψ = uα(x, τ )α + uβ(x, τ )β,

where α and β are the basis spin functions in th
Sz representation corresponding to the valuesSz =
±1/2. The Schrödinger equation splits into two co
pled equations foruα(x, τ ) anduβ(x, τ ). If these two
functions are identical (up to a constant factor) th
the wave function can be represented by a produc
the CT and spin wave functions. In this case the a
age spin〈�S〉 has a magnitude 1/2. In the general case
the spin is entangled with the CT, and the average
is smaller than 1/2. In our estimates we will use th
following parameters from experiment[1]:

ωc

2π
= 6.6 kHz, kc = 600

µN

m
, B1 = 300 µT,

(3)

G = 4.3× 105 T

m
, Xm = 10 nm, T = 200 mK,

whereXm is the amplitude of the CT. Using these va
ues, we obtain the following values of parameters
our model

X0 = 85 fm, P0 = 1.2× 10−21 N s, η = 0.078,

(4)xm = Xm

X0
= 1.2× 105.

The relative frequency shiftξ0 = |
ωc/ωc| of the can-
tilever vibrations can be estimated to be[7,8]:

(5)ξ0 = 2Sη2

(2η2x2
m + ε2)1/2 = 4.7× 10−7.

(We insert the factor 2S for future discussion.)
Suppose that initially the spin points opposite

the direction of �Beff. The frequency shift of the CT
vibrations is then−ξ0. The magnetic noise acting o
the spin causes a deviation of the spin direction fr
the direction of the effective magnetic field. Thus
produces two trajectories of the CT with the freque
cies±ξ0. Because of the quantum uncertainty of
CT position during the finite time (which we call th
collapse timeτcoll), the wave function of the CT de
scribes a single peak with an absolute value of
frequency shift less thanξ0. The collapse of the wav
function changes the frequency shift to the value−ξ0
(or, sometimes,ξ0, in the case of a quantum jump).

We simulate the quantum dynamics between
consecutive collapses of the wave function of the s
tem. In our simplified model the magnetic noise∆(τ)

takes consecutively two values,±∆0. The time in-
terval between two consecutive “kicks” of the fun
tion ∆(τ) was taken randomly from the interv
(3τR/4,5τR/4), whereτR = 2π/ε is the dimension-
less Rabi period. (In a more advanced theory the c
acteristics of the magnetic noise should be deri
from the parameters of the thermal CT vibration
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The initial wave function is assumed to be a dir
product of the CT and spin wave functions. The init
state of the CT is a coherent state

(6)

|α0〉 = π1/4
∑
n

2n/2αn
0Hn(x)exp

{−(
x2 + |α0|2

)
/2

}
,

where Hn(x) is a Hermite polynomial, andα0 =
1√
2
(x0+ip0); herex0 andp0 are the quantum mecha

ical averages ofx andp at τ = 0. The initial direction
of the spin is taken to be opposite to the direction
the effective magnetic field�Beff = �iε + 2�kηx0, where
�i and �k are the unit vectors in the positivex- and
z-directions.

In our numerical simulations we expand the fun
tionsuα(x, τ ) anduβ(x, τ ) in (2) over 400 eigenfunc
tions of the unperturbed oscillator Hamiltonian. Du
ing the time interval between two consecutive “kick
of the noise function∆(τ) we have a time-independe
Hamiltonian. Thus, we find the evolution of the wa
function by diagonalizing the 800× 800 matrix and
taking into consideration the initial conditions aft
each “kick”. The output of our simulations is th
time interval
τj = τj − τj−1 between two consec
utive returns to the origin for the average value〈x〉:
〈x(τj−1)〉 = 0 and〈x(τj )〉 = 0. To save computationa
time, we have used the values of parametersε = 10,
η = 0.3,p0 = 0,x0 = 13. These values provide a larg
relative frequency shift of the CT oscillations[8,9]

(7)ξ0 ≈ 7.9× 10−3.

The results of our simulations are shown inFig. 2,
which demonstrates the deviation of
τj from the un-
perturbed half-period of the CT oscillationsπ . We
introduceδτj = |
τj − π |. With no magnetic noise
(∆0 = 0) the deviationδτj does not change with tim
(ξ0 is dimensionless)

(8)δτj = δτ0 = πξ0 ≈ 0.025.

If ∆0 �= 0, the value ofδτj decreases with tim
until the collapse of the wave function destroys
Schrödinger cat state. (Fig. 2demonstrates the case f
which the time interval between the collapses equ
six half-periods of the CT vibrations.)

We introduce the effective (relative) frequency sh
ξj = δτj /π . FromFig. 2 we can find the average e
fective frequency shift〈ξ〉 between two collapses o
the wave function. If our model of the noise were t
Fig. 2. Deviation of
τj from the unperturbed half period of th
CT oscillationsπ , as a function of the number of half periodsj , for
different ∆0 as indicated in the legend. Solid lines are the stand
linear fits. On the vertical axisδτj = |
τj − π |.

adequate one, then from the experimentally meas
quantity〈ξ〉 we could determine the time interval b
tween two collapsesτcoll. (It is clear fromFig. 2 that
〈ξ〉 is directly related to the value ofτcoll for the as-
sumed magnetic noise parameters.) Certainly, in a
situation this opportunity does exist if the average f
quency shift〈ξ〉 is significantly smaller than the ex
pected shiftξ0. We will call such situation “the case o
the strong noise”.

Note, that a decrease of the frequency shift may
interpreted as an effective decrease of the spinδS. Us-
ing Eq.(5) we obtain

(9)δS = (〈ξ〉 − ξ0)(2η2x2
m + ε2)1/2

2η2
.

Previously we have shown that in the case of str
noise, an experimentalist could determine the time
terval τcoll between two consecutive collapses of
wave function by measuring the decrease of the
quency shift of the CT vibrations. Here we propos
special experiment which allows one to determine
time τcoll for the case of weak noise in which the a
erage frequency shift between two collapses is c
to ξ0.

The problem is the following. Even a very wea
noise generates a second CT trajectory with a
quency shift opposite to that of the first trajecto
Thus, two trajectories tend to separate at the s
rate for any magnetic noise. Correspondingly, the t
interval between two collapses is expected to be
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However, in the case of weak noise, the probability
the second trajectory is small, so its contribution to
average frequency shift becomes negligible.

To overcome this obstacle, we propose an a
ficial change of the frequency shift using the “i
terrupted OSCAR technique” recently implemen
in [1]. In [1], the rf field is turned off for a time inter
val equal to half of the CT period, which is equivale
to the application of theπ -pulse which changes th
direction of the spin relative to the effective magne
field. We propose to turn off the rf field for the duratio
of the quarter of the CT period, which is equivalent
the application of theπ/2-pulse. Suppose that initiall
the spin is parallel to the effective magnetic field,�Beff.
If we apply a “π/2-pulse”, the spin will become pe
pendicular to�Beff. Thus, we have two CT trajectorie
each with the same probability. Before these two
jectories are separated, the CT will oscillate with
unperturbed frequencyωc.

After the collapse the frequency shift is±ξ0, with
equal probabilities. Thus, using a “π/2-pulse” we can
achieve a maximum possible reduction of the f
quency shift. If we apply a periodic sequence of “π/2-
pulses” with the periodτp (τp > τcoll), then the aver-
age frequency shift〈ξ〉 is

〈ξ〉 = [
0 · τcoll + ξ0(τp − τcoll)

]
/τp

(10)= ξ0(1− τcoll/τp).

Manipulating τp one can achieve a significant d
crease of〈ξ〉 in comparison withξ0. Using Eq.(10)
one can determine the collapse time from the exp
mental value〈ξ〉. Thus, the collapse time can be me
sured for the case of weak magnetic noise.

One may argue that for application of the effect
“π/2-pulse” we must be sure that the spin is plac
at the center of the resonant slice. We believe that
positioning of the spin can be achieved by moving
cantilever near the spin and measuring the freque
shift after the “pulse”. If the values±ξ0 will be ob-
served with equal probability then the implemen
“pulse” is a “π/2-pulse”.

Finally, based on quasiclassical theory[6] we
will estimate the reduction of the average freque
shift caused by the noise for the experimental con
tions [1]. The amplitude of the thermal CT vibration
near the Rabi frequency can be estimated to be:

(11)aT = ωc

ωR

(
kBT

2kc

)1/2

= 38 fm.

The square of the characteristic spin deviation dur
a single reversal (half of the CT period) is

(12)(
θ1)
2 ≈ 3.4

Ga2
T

ωcXm

= 9× 10−7.

(In the diffusion approximation the square of t
spin deviation is proportional to the number of r
versals[6].) We have no idea about the order of t
collapse timeτcoll. If we assume that the collapse o
curs when the separation between the two trajectorie
with the frequencies 1± ξ0 is equal to 1/2 (the quan-
tum uncertainty of the CT position in the coherent st
is 〈(
x)2〉 = 1/2), then we obtain forτcoll

(13)τcoll sinτcoll ≈ 1

4xmξ0
≈ 4.4.

It follows from Eq. (13) that the wave function col
lapses during the second period of the CT vibration
we estimate the probabilities of the two CT trajector
asP1 ∼ 1 − (
θ1)

2 (for the trajectory with the initia
frequency shift) andP2 ∼ (
θ1)

2 (for the trajectory
with the opposite frequency shift), then the average
frequency shift can be estimated to be

(14)〈δξ〉 = ξ0(P1 − P2) = ξ0
(
1− 2(
θ1)

2).
This estimated reduction of the CT frequency shif
clearly negligible.

Consider the doubtful extreme case. Suppose
the collapse occurs when the separation between th
two trajectories is of the order of the thermal CT flu
tuations(kBT /kc)

1/2 ≈ 150 pm or 1760 in dimension
less units (as before, we used the values of param
in (3)). In this case, the time interval between the t
consecutive collapsesτcoll is of the order of 104 peri-
ods of the CT oscillations. During this time, the ch
acteristic spin deviation is(
θ)2 ∼ 0.02. Then, we
have for the probabilityP1 ≈ (
θ)2/4 ≈ 5 × 10−3.
The average frequency shift is〈δξ〉 ≈ ξ0(1 − 10−2).
One can see that even in this extreme case the re
tion of the frequency shift is expected to be small.

Thus, the experimental conditions in[1] probably
correspond to the case of the weak noise. In such a
uation the collapse time could be measured using
periodic sequence of “π/2-pulses” described earlier.
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Finally, we will note the two requirements fo
the collapse time measurement. First, the charact
tic thermal fluctuation of the CT frequency must
smaller than the change of the CT frequency s
caused by the quantum collapse. (The signal avera
may relax this requirement. As an example in exp
ment[3] the reliable signal was detected for the sign
to-noise ratio about 0.06.) Second, the same requ
ment is valid for the frequency noise caused by
optical measurement of the cantilever position. (T
noise caused by the optical measurement in MR
was studied in[13].) It may happen that the decohe
ence caused by the CT–environment interaction
cause a quantum collapse long before the instant w
the separation between the two CT trajectories is clos
to the quantum uncertainty of the CT position. In th
case the requirements formulated above cannot be
isfied.

In summary, we suggested a procedure for m
suring the mysterious collapse time in the OSC
MRFM technique. We simulated the quantum dyna
ics of the spin–CT system. Unlike the previous stud
of the quantum dynamics we took into considerat
the direct interaction between the spin and the e
ronment (the magnetic noise). This noise causes
deviation of the spin from the direction of the effecti
magnetic field and (ii) entanglement between the s
and the CT. The spin–CT entanglement influences
frequency of the CT oscillations before the wave fu
tion collapse takes place. This effect can be descr
as an effective decrease of the single spin magnit
We demonstrated that the experimental measurem
of the OSCAR MRFM frequency shift could reve
information about the time interval between two co
secutive collapses of the wave function.
-
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