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The microcanonical dynamics of an ensemble of random magnetic dipoles in a needle has been
investigated. Analyzing magnetic reversal times, a transition between a chaotic paramagnetic phase
and an integrable ferromagnetic phase has been numerically found. In particular, a simple criterium
for transition has been formulated. Close to the transition point the statistics of average magnetic
reversal times and fluctuations have been studied and critical exponents numerically given.
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I. INTRODUCTION

A truly comprehensive understanding of magnetism at
the nanoscale is still lacking and has important conse-
quences in the technology of memory and information
processing devises.

Many unsolved problems about magnetic properties of
diluted spin systems attracted recently great attention.
Among the open problems there is the emergence of ferro-
magnetism in doped diluted systems[1], where the Curie
temperatures can be as high as 300 K, and a deep theo-
retical understanding of the magnetic properties of dilute
dipole systems (spin glass transition, ferromagnetic and
anti-ferromagnetic transitions).

Here we will concentrate on randomly arranged dilute
classical dipoles, which are called dipole glasses. Many
results in literature, sometimes controversial, exist on
such kind of systems. Magnetic properties of dipole-
dipole interacting spins are particularly difficult to study
due to many factors: long range nature of the interaction,
anisotropy and frustration. Long range and anisotropy
can induce ergodicity breaking[2] in a system. Break-
ing of ergodicity, a concept introduced by Palmer[2], and
recently found explicitly [3, 4] in a class of long-ranged
anisotropic spin systems, is a key word to understanding
phase transitions too, even if it should not be confused
with breaking of symmetry[5]. Speaking loosely, few con-
stants of motion, such as the energy, or the angular mo-
mentum, in a particular geometry, produce a separation
of the allowable phase space in two or more subspace over
which the motion is constrained. In Ref.[3] the energy at
which the separation occurs has been calculated explic-
itly for an anisotropic 1–D classical Heisenberg systems.
In that case both the anisotropy and the long ranged
nature[6] of the inter-spin interaction, are essential in-
gredients in order to have breaking of ergodicity[7]. On
the other hand, frustration, that is the impossibility to
attain a global minimal energy minimizing locally the
interactions, induces a dependence of the ferromagnetic
and anti-ferromagnetic properties on the lattice geometry
[8].

Many results concern also the so-called Ising dipole

glass, where Ising simply means uni-axial. To quote but
a few: spin glass transition for high concentration, us-
ing Monte Carlo simulation[9, 10], mean field spin glass
transition at low concentration depending on the lattice
geometry[11], no spin glass transition for low concentra-
tion using Wang-Landau Monte Carlo simulation [12] or
the recent spin glass transition at non zero temperature
from extensive numerical simulation[13].

In this paper we will focus our analysis on dipole glass
of freely rotating classical dipoles. First of all the dipole
glass is a typical example of very frustrated system [14–
16], so that different ground state configurations can exist
depending on the geometry and the spin concentration.
Results in the canonical ensemble typically consider a
mean field approach, and it is common lore that the ran-
dom positions of the dipoles induce magnetic field fluc-
tuations. These fluctuations do not vanish at T → 0,
unlike thermal fluctuations, and tend to suppress mag-
netic order even at T = 0[15, 16]. So, magnetic order,
is expected to happen only for high impurity concentra-
tion (and small temperature) [16–18]. Mean field theo-
ries consider only the equilibrium properties and do not
take into account the time needed to reach the equilib-
rium situation and finite size effects. On the other side
the question of how long a metastable state can last is a
major issue in determining the magnetic properties of a
system.

In this paper we study the microcanonical dynamics,
reserving the study of the influence of a thermal bath
for further investigations. We analyze the microcanon-
ical dynamics of dipoles put at the vertexes of a cubic
lattice (so that their relative distance cannot be smaller
than the lattice size), only on the basis of the Landau-
Lifshitz-Gilbert equations of motion. 3–D dipole-dipole
interacting systems can be realized quite easily in labo-
ratory, for instance doping a non magnetic media with
paramagnetic ions, weakly integrating with the lattice
and with a relative inter-dipole distance sufficiently large
in order to neglect Heisenberg interaction (therefore with
a low concentration).

Anticipating few of the results, we have found that
taking into account a typical experimental situation with
needle-shaped sample, a further constant of motion ap-
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pears that induce another kind of “phase” transition re-
lated to invariant tori, which separate the allowable phase
in many disconnected regions. In this particular case, the
ergodicity breaking is not due to an increase of energy,
but to an increase of perturbation, which means the ten-
dency to a transformation from a needle shape (quasi 1–D
system) to a cubic shape (3–D shape). In a sense, these
results are more akin to the standard perturbation the-
ory in classical dynamical systems[19, 20], re-interpreted
in the light of phase transitions induced by magnetic re-
versal times [21].

In the future we intend to study the same system in
contact with a thermal bath. In this case the presence
of the ergodicity breaking found in [3, 4] should influ-
ence the magnetic reversal times. In the microcanonical
case, the presence of this ergodicity breaking is hidden
by quasi-integrability of motion.

II. THE CLASSICAL MODEL AND THE
PERTURBATIVE APPROACH

Let us consider a system of N classical dipoles ~µi ran-
domly put at the nodes of a 3–D gridded box R×R×L,
with L � R, and low concentration δ � 1, as indicated
in Fig. 1,

R

x

L

z

y

FIG. 1: Needle geometry. The classical dipoles are put in a
random way on the vertexes of a cubic lattice of size a. R and
L are given in units of the lattice size a.

From the physical point of view it represents a dilute sys-
tem of paramagnetic ions in a non magnetic bulk, with a
concentration δ = N/Ns where Ns = R2L is the number
of allowable sites in the 3–D lattice. As explained above,
such a system can be realized in laboratory, doping a
non–magnetic system having a cubic lattice with param-
agnetic impurities. In the last decade, a lot of experimen-
tal and theoretical results have been collected for doped
TiO2 and other[1]. If the dipoles weakly interact with
the lattice and if their average distance is much greater
than the Bohr radius, we can simply neglect the Heisen-
berg (exchange) interaction and represent their mutual
interaction and dynamics with a pure dipole-dipole in-
teraction energy:

E =
µ0µ

2

4πa3

N∑
i=1

∑
j>i

1

|rij |3
[
~Si · ~Sj − 3(~Si · r̂ij)(~Sj · r̂ij)

]
.

(1)

Here ~S is the dimensionless spin vector

~S · ~S = 1, (2)

µ is the magnetic moment of the paramagnetic doping
ions and rij is the distance between the i-th and the j-th
spin in units of the lattice spacing a.

The dynamics is described by the Landau-Lifshitz-
Gilbert equations of motion:

d

dt
~µk = γ~µk ×

δE

δ~µk
, (3)

where ~µk = µ~Sk and γ is the gyromagnetic ratio.
They can be rewritten in the dimensionless form,

d

dτ
~Sk = ~Sk ×

δE0

δ~Sk
, (4)

where the following dimensionless quantities have been
introduced:

E0 = E
4πa3

µ0µ2

τ = ωt, with ω =
γµµ0

4πa3
.

(5)

To fix ideas, let us put some numbers: for µ = µB (Bohr
magneton) and a = 10−10 m, one has ω = 81.5 Hz.

The system of equations considered above conserves
the energy (1) and the squared modulii of the spins (2).

The diluted doped quasi 1–D system can be magne-
tized with a strong magnetic field directed along L, the
longest axis (z-axis). The questions we would like to
answer is the following: What is the dependence of the
average magnetic reversal time and its fluctuations on
the system parameters?

The relevant parameters to take into account are the
concentration δ of paramagnetic ions and the aspect ratio
ε = R/L. In principle, due to the long-ranged nature
of the dipole interaction, one could ask whether there
are effects dependent on both the system size and the
number of doping spins N , even if in quasi 1–D systems,
the dipole interaction can be treated as a short range
interaction.

From the point of view of the equations of motion (4),
if the N dipoles are lying along a straight line (R =
0 ⇒ ε = 0), there is a further constant of motion, i.e.
Mz = (1/N)

∑
k S

z
k . Therefore, for a 1–D system, the

answer to the first question above is very simple : a state
with any initial magnetization Mz(0) 6= 0 will keep the
initial magnetization forever. The natural question thus
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FIG. 2: Three different trajectories, for R = 4, L = 4000,
δ = 10−3, N = 64, in the integrable case. Initially spins are
chosen with random components on the unit sphere.

becomes: what happens for ε 6= 0? Will a magnetized
state demagnetize and how much time it takes to?

The classical dynamical picture can be simplified
adopting a perturbative approach, namely approximat-
ing the distance between two spins as follows:

r̂ij ' ẑ + ε(cosφij x̂+ sinφij ŷ), (6)

where x̂, ŷ, ẑ are the unit versors and φij are the az-
imuthal angles with respect the z-axis. The energy (1),
to first order in ε, becomes: E0 = H0 + εV , where H0 is
the energy part that conserve Mz, and V is the pertur-
bation,

H0 =
1

2

N∑
i=1

∑
j 6=i

1

|rij |3
[
Sxi S

x
j + Syi S

y
j − 2Szi S

z
j ,
]

V = −3

N∑
i=1

∑
j 6=i

1

|rij |3
[
cosφijS

z
i S

x
j + sinφijS

z
i S

y
j

]
.

(7)
The equations of motion for the macroscopic variables,
Mx,y,z can be written as,

dMz

dτ
=

3ε

N

∑
k

∑
i 6=k

1

|rik|3
Szi (Syk cosφik − Sxk sinφik)

dMy

dτ
=

3

N

∑
k

∑
i 6=k

1

|rik|3
{Szi Sxk+

ε [SxkS
y
i sinφik + (SxkS

x
i − SzkSzi ) cosφik]}

dMx

dτ
= − 3

N

∑
k

∑
i 6=k

1

|rik|3
{Szi S

y
k+

ε [SxkS
y
i cosφik + (SykS

y
i − SzkSzi ) sinφik]},

(8)

and, in particular, for ε = 0 they assume the suggestive
form:

dMz

dτ
= 0

dMy

dτ
=

1

N

∑
k

ωkS
x
k

dMx

dτ
= − 1

N

∑
k

ωkS
y
k ,

(9)

having defined, the average “local” frequencies:

ωk = 3
∑
i 6=k

1

|rik|3
Szi . (10)

These equations describe a kind of rotation in the plane
perpendicular to the z–magnetization (which is a con-
stant of motion). Therefore one could expect that for
ε� 1 a rotational-like motion about the z–axis persists,
while Mz remains a quasi constant of motion. This is
what can be observed for instance by a direct inspection

of the trajectories of the macroscopic vector ~M , in the
plane x, y, see Fig. 2, where few selected trajectories has
been iterated in time, for ε = 10−3. Quite naturally, on
increasing the perturbation strength ε, one could expect
that the invariant tori Mz = const will be broken, and,
eventually, a stochastic motion of the macroscopic vari-
able Mz will appear. In the next Section we will study
the survival of invariant tori, under the dimensional per-
turbation ε > 0.

III. THE CHAOTIC–PARAMAGNETIC AND
THE INTEGRABLE–FERROMAGNETIC

PHASES

The dynamical behavior of the system can be charac-
terized by a “regular region” ε < εcr in which the magne-
tization Mz(τ) is bounded in a small interval δMz, while,
for ε > εcr, Mz(τ) quickly decays and after that it fluctu-
ates around 0. To be more precise, the transition across
εcr is smooth, namely there is a region of ε values in
which the initial magnetization decay to some non zero
constant when the time τ becomes large.

The critical value of the perturbation strength εcr can
be obtained with the following hand-waving argument.
Let us divide the 3–D box in n = 1/ε small cubic boxes
of side R. If the impurities concentration δ is sufficiently
small in order to have only one spin inside each R-side
box then the system is approximately one dimensional
and Mz can be considered an approximate constant of
motion. Otherwise, for large δ, the system behaves like
a 3–D system and Mz can spread everywhere. In other
words, the average distance between two spins (in units of
lattice spacing) d = (V/N)1/3 = (LR2/N)1/3 should be
larger than the transverse distance R in order to behave
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like a 1–D systems (ferromagnetic). The critical ε is thus
given by

LR2

N
' R3 → εcr '

1

N
(11)

Since δ = N/Ns, and Ns = R2L, the condition in order
to have ferromagnetism can also be written in the form

R3 <
1

δ
. (12)

Since R (the transverse distance in lattice units) must
be greater than 1 it is clear that ferromagnetism due to
quasi constant of motion can occur only in a very diluted
system δ � 1.

An example is shown in Fig. 3, where the dynamics
of magnetization has been plot in the overcritical case
(ε > εcr Fig. 3a) and in the undercritical one (ε < εcr
Fig. 3b). Different trajectories, corresponding to differ-
ent initial conditions Mz(0) have been shown in differ-
ent colors. As one can see, in the “paramagnetic” phase
(ε > εcr) the magnetization first decays to zero and then
it fluctuates randomly around zero. On the contrary, in
the “ferromagnetic” phase (ε < εcr), it show a periodic
behavior around the initial conditions.

This behavior is quite typical in the study of dynamical
systems, where the increase of a suitable perturbative
parameter is related to the breaking of invariant tori and
to the emergence of chaotic motion [19, 20].

It is also remarkable to study the fluctuations around
the asymptotic behavior: in the undercritical case
(Fig. 3d) fluctuations are much smaller than in the over-
critical case (Fig. 3c), roughly 10 times for this case, as
can be seen comparing the width of the probability dis-
tribution functions in Fig. 3 c) and d).

The large fluctuations around the average values and
in order to fit a possible experimental situation, suggests
to perform an average over disorder, namely an ensemble
of samples with different random configurations, initially
magnetized along the z–axis.

The results for the ensemble average 〈Mz〉 are shown in
Fig.4a, where the black line separates the two “phases”
ε < εcr and ε > εcr. The average magnetization in the
undercritical regime reaches some equilibrium value dif-
ferent from zero after some initial decay, while in the
overcritical regime it goes to zero in an algebraic way.

Ensemble fluctuations at the equilibrium are approxi-
mately independent of ε in the paramagnetic phase while
in the ferromagnetic one are typically smaller and in-
creasing as

√
ε. They are presented in Fig. 4d), where

∆Meq
z = lim

τ→∞
∆Mz(τ)

has been shown as a function of ε. Each point on the
plot corresponds to an ensemble of magnetized sticks,
with the same concentration and number of spins (para-
magnetic ions) but different aspect ratio ε. It is quite
remarkable that a critical value εcr exists, characterized
by two different behaviors.
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FIG. 3: Time behavior of the magnetization for different ini-
tial conditions in the overcritical case ε = 0.125 (a) (L =
160, R = 20) and in the undercritical case ε = 10−3 (b)
(L = 4000, R = 4). Other data, i.e. concentration δ = 10−3

and the number of spins N = 64 are the same for both cases.
In c) and d) the probability distribution functions for the fluc-

tuations ∆Mz = (〈M2
z 〉 − 〈Mz〉2)1/2 around the equilibrium

value is shown for the data given respectively in a) and b).

Both the independence on the perturbation strength
and the square root dependence on ε in the undercritical
can be understood on the basis of classical dynamical the-
ory. Breaking invariant tori with a perturbation strength
ε corresponds to create stochastic layers between invari-
ant tori whose size is proportional to

√
ε[19, 20]. On the

other side when the system is completely chaotic, since
the variable Mz is bounded, it can only occupy all the
allowable stochastic region, and a further increasing of
perturbation strength can not modify this size.

IV. MAGNETIC REVERSAL TIME

Another important information can be obtained, in
the paramagnetic phase, from the study of the mag-
netic reversal time τ0, defined by the first time at which
Mz(τ0) = 0. Of course, even in this situation, we will
consider the average magnetic reversal time 〈τ0〉 where
the mean is considered with respect to many different
random realizations.

Having defined two “phases” characterized respectively
by an infinite magnetic reversal time (integrable) and a
finite one (chaotic), it can have some interest to study, if
any, the critical exponent in which the magnetic reversal
time approaches infinity when ε → εcr. Indeed, anal-
ogous microcanonical investigation for long range spins
systems gave indication of a power law divergence with
an exponent dependent on the number of spins[21].

Before to show our results, let us say that a sufficiently
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FIG. 4: a) Time behavior of the average magnetization for
different values of the aspect ratio ε, as indicated in the legend.
b) Dependence of the equilibrium value of fluctuations as a
function of ε. Dashed vertical line indicates the critical value
εcr = 1/N . Red line indicates the dependence

√
ε. Here is

N = 220, δ = 10−3, and each line correspond to the average
over 100 different random configurations. Initially we choose
Sz
i (0) = 1, i = 1, . . . , N .

small concentration δ � 1 is not a relevant parameter of
our system, since magnetic reversal times scale in a very
simple way with it. In order to prove that, let us observe
that due to the particular quasi 1–D geometry, and the
low concentration, closest dipoles give the major contri-
butions to the energy. For instance, the configuration
with all spins aligned along the z–axis will have an en-
ergy,

E′ ∝
∑
〈i,j〉

1

|rij |3

where the sum is taken over N couples 〈i, j〉 of neighbor
dipoles. In other words E′ ∼ N/d3 ∼ Nδ, where d is the
average distance between two dipoles.

On the other side the Landau-Lifshitz-Gilbert equa-
tions of motion are invariant under a simultaneous scal-
ing of time and energy τ ′ = τ/δ and E′ = Eδ so that
we will expect τ ∝ 1/δ. This simple relation has been
verified considering a system with the same aspect ratio
ε, and the same number of particles N (so to have the
same critical value εcr) and changing concentration over
3 orders of magnitude. Results are presented in Fig. 5a,
where 〈ln τ0〉 has been shown vs ln δ. To guide the eye a
dashed line with slope −1 has been superimposed. The
last point to the right corresponds to δ ∼ 1 where our
approach is not valid.

The choice 〈ln τ0〉 instead of 〈τ0〉 is not only for a good
fitting but it is due to the log-normal character of the dis-
tribution of magnetic reversal times, as shown in Fig. 5b,
where three different distributions for three different con-

0 1 2 3 4

ln (τ0/δ)

0.2

0.4

0.6

0.8

P[
ln

 (
τ 0/δ

)]

Gaussian fit

δ = 10−3

δ = 10−2

δ = 10−1

-8 -6 -4 -2 0

ln δ
0

2

4

6

8

10

<
ln

 τ
0>

a)

b)

FIG. 5: a) Dependence of the average magnetic reversal time
〈ln τ0〉 as a function of concentration ln δ, for systems with
ε = 0.1 and N = 72. The average has been taken over an
ensemble of 1000 different samples. Initially all samples have
all spins aligned along the z–axis : Sz

i (0) = 1, i = 1, . . . N .
Dashed line represents 〈τ0〉 ∝ 1/δ. b) Probability distribution
function for the variable ln(τ0/δ) in the paramagnetic phase
for 3 different concentrations as indicated in the legend and
same ε = R/L = 0.1 and number of particles N = 1/εcr = 72
in order to have the same distance |ε − εcr| from the critical
border. As a dashed line a Gaussian fit to the sum of the
three distribution is also shown.

centrations has been superimposed, using the rescaling
variable ln τ0/δ. A remarkable fact from Fig. 5b is that,
not only the average magnetic reversal times are inversely
proportional to the concentration δ, but the shape itself
of the probability distribution function is the same.

The presence of a wide distribution of reversal times
is due to the large number of possible spin configuration
in a dilute random arrangement. Roughly speaking, the
more the spins will be aligned along the z-direction, the
more the system will resemble a 1–D system, implying
long magnetic reversal times. In Fig. 6 we fix the con-
centration, δ, and we considered 104 different random
configurations. For each configuration we computed the
number of spin pairs with the same z position, which
is the numer of spins which are aligned perpendicularly
to the z direction. In Fig. 6 we show a clear correla-
tion between the average magnetic reversal times and the
number of spin pairs with the same z position. Indeed
the larger is the number of spin pairs with the same z
position, the lesses a system resembles a 1–D system.

Since the concentration is not a relevant parameter, we
fix it, and we consider in which way magnetic reversal
times behave on approaching the critical border. There
are essentially three ways to approach the critical border
keeping fixed the concentration. The first one is keeping
fixed the aspect ratio ε and changing the number of spins.
A second way consists of keeping fixed the number of
spins but changing R and L (and so the aspect ratio ε).
A third way is to keep fixed R and changing both the
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FIG. 6: Dependence of the average magnetic reversal time
〈log10 τ0〉 as a function of number of spin pairs with the same
z position, for systems with δ = 0.1, R = 3, L = 71 and and
N = 63. In this case ε = R/L = 0.042 while εcr = 1/N =
0.015, so that we are in the paramagnetic chaotic ”phase”.
Dashed line is the linear regression with slope −0.068. The
average has been taken over an ensemble of 10000 different
samples. Initially all samples have all spins aligned along the
z–axis : Sz

i (0) = 1, i = 1, . . . N .

length L and the number of spins N .
The numerical results are reported in Fig. 5 and agree

with the following behavior,

〈ln τ0〉 ∼ |ε− εcr|−α, (13)

where α = 0.153 ± 0.016. This exponent is at vari-
ance with the exponents found[22], for which, typically
α ∼ Nσ, where σ depends on the interaction range. This
indicates that the mechanism underlying this kind of
transition, is different from the ergodicity breaking in-
vestigated in literature[3, 21, 22].

As one can see each point in Fig. 7 is characterized by
an error bar, defined as the variance of the distribution of
ln τ0. It is important to observe that, apparently, error
bars do not increase on approaching the critical border.
This is due to the fact that the variance of the probabil-
ity distribution function depends on both the number of
particles N and the distance from criticality |ε− εcr|. In-
deed, keeping fixed the distance |ε− εcr| and varying the

number of particles N one finds a 1/
√
N dependence, as

shown in Fig. 8a. Such dependence masks the real depen-
dence of fluctuations, on approaching the critical border.
Indeed, defining the renormalized variance

√
N∆ ln τ0,

one gets a similar power law divergence at criticality for
fluctuations, with an exponent very close to that found
for the average time:

∆〈ln τ0〉 = 〈ln2 τ0〉 − 〈ln τ0〉2 ' |ε− εcr|−β , (14)

with β = 0.187± 0.039.
This means that also fluctuations diverge at the critical

point thus sharing another important feature with phase

10
-2

10
-1

10
0

|ε−ε
cr

|

1

10

 <
ln

 τ
0>

R=4
N=64
ε=0.1 
α = 0.153(16)

FIG. 7: Average first zero times vs |ε − εcr|, for different
set of data as indicated in the legend. The dashed line is
the best fit with exponent α = 0.153 ± 0.016. Initially we
choose Sz

i (0) = 1, i = 1, . . . , N . An ensemble of 1000 different
configurations has been considered.

transitions. Unfortunately we have no theoretical argu-
ments in order to predict the exponents α and β, and so,
even if they are quite close one to each other we cannot
infer any conclusion about the behavior of the relative
variance on approaching the critical point.
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β = 0.187(39)
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b)

FIG. 8: a) Variance of the probability density function ∆ ln τ0
for fixed |ε − εcr| = 0.082 as a function of the number of

spins N . b) Renormalized variance
√
N∆〈ln τ0〉 vs |ε − εcr|

for different series of data as indicated in the legend. Initially
we choose Sz

i (0) = 1, i = 1, . . . , N . An ensemble of 1000
different configurations has been considered for each point on
the picture.
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V. CONCLUSIONS

In this paper the microcanonical dynamics of a sys-
tem of random dipoles, interacting with a pure dipole-
dipole interaction has been considered. Contrary to
what happen for a system of random dipoles in the
canonical ensemble, where a transition to a ferromag-
netic phase occurs for high concentration, we have shown
here, that a “phase” transition, correspondent to a tran-
sition from regular (ferromagnetic) to stochastic (param-
agnetic) regime happens, in the microcanonical ensemble,
for low concentration. Such transition is characterized as
in similar systems investigated in literature, by a power
law divergence of magnetic reversal times at the critical
point. Supported by extensive numerical results we give
an estimate of the critical point, but not of the power
law exponents, which appear to be different from those
reported in literature from similar models but character-
izing the ergodicity breaking [21, 22].

In the future we intend to investigate dilute dipole sys-
tems in the canonical ensemble, that is letting the system
be in contact with a thermal bath. Our analysis in the
microcanonical ensemble indicated that the behavior of
very dilute dipoles in a needle geometry is very similar

to a 1–D arrays of dipoles. In the 1–D case dipole inter-
action induces a ferromagnetic ground state, and, due to
its anisotropy, to a breaking of ergodicity [3]. As shown
in previous papers[22], this ergodicity breaking threshold
can induce very large magnetic reversal times thus pro-
ducing ferromagnetic behavior in finite samples. Thus,
even if one would expect that invariant tori will be de-
stroyed under a suitable thermal perturbation, the ques-
tion on the magnetic reversal times in presence of tem-
perature and on the relevance of the ergodicity breaking
is still open.

The ergodicity breaking discovered in Ref. [3] refers to
the total magnetization as an order parameter. On the
other side different order parameters can be defined in
dipole systems, depending on the ground state configura-
tion, for instance an anti-ferromagnetic order parameter
or a spin glass order parameter. We intend to investigate
the existence of an ergodicity breaking energy threshold
with respect to different order parameters in a future pa-
per.

In conclusion dipole-dipole interacting spin systems of-
fer a realistic playground to analyze many properties of
magnetic systems which challenge our comprehension.
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