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Our derivation of the distribution function for future returns is based on the risk neutral approach
which gives a functional dependence for the European call (put) option price, C(K), given the strike
price, K, and the distribution function of the returns. We derive this distribution function using for
C(K) a Black-Scholes (BS) expression with volatility, σ, in the form of a volatility smile. We show
that this approach based on a volatility smile leads to relative minima for the distribution function
(“bad” probabilities) never observed in real data and, in the worst cases, negative probabilities. We
show that these undesirable effects can be eliminated by requiring “adiabatic” conditions on the
volatility smile.
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I. INTRODUCTION

One of the simplest “products” on the derivative fi-
nancial market is the European call (put) option [1, 2].
Considering the risk neutral approach, the price of the
European call option, C ≡ C(ST ,K, T, r), is defined by

C = e−rT
∫ ∞
K

(ST −K)P (ST )dST , (1)

where ST is the stock price at time t = T , K is the strike
price of the option, T is the expiration time (time to ma-
turity) of the option, r is the interest rate and P (ST ) ≥ 0
is the distribution function of the stock prices in a “risk-
neutral world” (

∫∞
0
P (ST )dST = 1).

Eq. (1) is too general since it does not place any re-
strictions on the underlying stock price distribution func-
tion, P (ST ). To calculate explicitly the option price, C,
using Eq. (1), one must know the distribution function,
P (ST ). Consequently, one must make some assumptions
about the stock prices. An important achievement in the
theory of option pricing is the Black-Scholes (BS) theory
which gives analytic solutions for the European call and
put options [3].

In particular, for the European call option, a solution
of the BS equation is given by Eq. (1), if one assumes for
the distribution function, P (ST ), a log-normal distribu-
tion,

P (x) =
1√

2πσ2(T − t)
exp

[
− (x+ σ2(T − t)/2)2

2σ2(T − t)

]
,

(2)
where x = ln(ST /S(t))−r(T−t) is the logarithmic return
deprived of the risk-free component, S(t) is the stock
price at time t and σ is the stock price volatility. For
seek of simplicity, in the following we consider t = 0 and
we define S0 ≡ S(t = 0). Substituting Eq. (2) in (1)
an explicit expression for the price of the European call

option which satisfies the BS equation [3] is obtained,

CBS = S0N(d1)−Ke−rTN(d2), (3)

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 = d1 − σ
√
T ,

N(x) = 1√
2π

∫ x
−∞ dz e−z

2/2.

(4)

The distribution function (2) follows from a stochastic
model for stock prices,

dS = rSdt+ σSdz, (5)

where dz is a Wiener increment [4]. It can be shown it
is never optimal to exercise an American call option on a
non-dividend-paying stock early [1], [5]; therefore Eq. (3)
can also be used to estimate the fair value for this kind
of options.

There are some problems with the expressions for C
given by Eqs. (1)-(3). Indeed, one can derive any option
price from Eq. (1), using different assumptions about the
distribution function, P (ST ). To derive from Eq. (1) a
result for C which will even approximately coincide with
the real market price, CM , one must specify a distri-
bution function for future stock prices, P (ST ). On the
other hand, the expression given by (3) is (a) too specific,
and (b) derived using rather strong restrictions. Namely,
the stochastic process Eq. (5) does not account for cor-
relations of returns, x and, moreover, the volatility, σ,
and the interest rate, r, are not well-defined parame-
ters (given the actual data). As a result, the expression,
CBS , often does not coincide (even approximately) with
the corresponding market option price, CM . Useful ap-
proaches have been developed which partially solve the
problems mentioned above.

ar
X

iv
:1

00
3.

33
16

v2
  [

q-
fi

n.
PR

] 
 2

4 
M

ar
 2

01
0



2

We shall mention here one analysis which is related to
that presented below. This analysis deals with building
“implied trees” [6]. There are many variations of this
approach, but the main idea is based on the solution of
the inverse problem: a search for a stock price model that
corresponds to the real market prices of options, CM . A
more restricted problem is to search for a stock price
model that effectively deals with the volatility smile.

In this case, one starts with the BS formula (3), (even
for American options) but instead of choosing a fixed
volatility, σ = constant, one uses the dependence, σ =
σ(K) (volatility smile). To some extent, this dependence
corresponds to the “real behavior” of the volatility, σ, if
one wants to use Eq. (3) as the “zeroth approximation”
for option pricing. Details for building trees (including
implied trees) for stock prices can be found in [7–10].

There are still some problems with these trees. For
example, the corresponding “implied” stock prices, ST ,
can have “bad” (negative) probabilities which must be
eliminated. A solution to this kind of problem, despite
the simplicity of the calibration procedure, was proposed
in Refs [11, 12].

In this paper, we discuss the inverse problem for Eq. (1)
using the following approach. First, using Eq. (1), we
build the distribution function for future stocks prices
and returns from the empirical data for the market op-
tion prices, C(K). Second, we build the returns distri-
bution functions using for C(K) a BS expression, CBS ,
with a volatility, σ = σ(K), in the form of the volatility
smile. In particular, we show that the condition of the
absence for relative minima in the probability distribu-
tion function (PDF) of returns, (or elimination of “bad”
probabilities) leads to the condition of “adiabaticity” for
the volatility smile. This condition can be introduced
in the fitting procedure of the volatility smile to get a
probability returns distribution more similar to the ac-
tual one. In this way one can avoid to generate arbitrage
opportunities (negative probabilities) in the option pric-
ing methodology (exotic derivatives) and can get a more
reliable estimation of the implied volatility. The latter
has a key role in the scenario generation and in value
at risk (VaR) estimation and has application in the risk
management activities.

II. THE INVERSE PROBLEM FOR THE
STOCK PRICE DISTRIBUTION FUNCTION

In this Section, we derive an explicit expression for the
distribution function for the future stock prices, P (ST )
and for returns P (x). In Eq. (1) the distribution func-
tion, P (ST ), can be rather arbitrary but it is natural to
assume that P (ST ) does not depend on the strike price,
K. According to Eq. (1), the option price, C, is expressed
explicitly through the strike price, K. Differentiating C
in Eq. (1) twice with respect to K, we have [13],

P (ST ) = erT
∂2C(K)

∂K2

∣∣∣∣
K=ST

. (6)

In Eq. (6), we indicate only the dependence C(K) in
the option prices. In particular, applying Eq. (6) to
CBS given in Eq. (3) we derive a distribution function,
PBS(ST ), which we present in the form,

PBS(ST ) ≡ erT ∂
2CBS(K)

∂K2

∣∣∣∣
K=ST

=
1√

2πσ2TST
×

× exp

(
− (ln(ST /S0)− (rT − σ2/2T ))2

2σ2T

)
.

(7)
Analogously, the distribution of returns for the Black-
Scholes model is Gaussian, as expected:

PBS(x) =
1√

2πσ2T
exp

[
− (x+ x0)2

2σ2T

]
, (8)

where x0 = σ2/2T .
We can try to consider the inverse problem substituting

the dependence, σ = σ(K), in Eq. (3) and evaluating the
distribution of future stocks price and returns, applying
(6). After differentiation we get:

P (ST ) =
F (ST ;S0, r, T, σ)√

2πσ2TST
×

× exp

[
− (ln(ST /S0)− (rT − x0))2

2σ2T

]
,

(9)

where we defined:

F (ST ;S0, r, T, σ) =

[
1 + ST

σ̇

σ
(rT − ln(ST /S0))

]2

− (σ̇σTST )2

4
+ σ̇σTST + S2

Tσσ̈T,

σ̇ =
∂σ

∂K

∣∣∣∣
K=ST

,

σ̈ =
∂2σ

∂K2

∣∣∣∣
K=ST

.

(10)
Obviously, we can get the expression for the distribution
of returns by a simple change of variable

x ≡ ln

(
K

S0

)∣∣∣∣
K=ST

− rT, (11)

so that,

Pσ(x) =
1√

2πσ2T
exp

[
− (x+ x0)2

2σ2T

]
F (x;T, σ), (12)
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FIG. 1: a) Volatility smile given by Eq. (17), with the fol-
lowing parameters: g = 0.1, T = 0.5, n = 0.04, χ = 2.7. b)
Log-distribution given by Eq. (12) for the volatility smile a).

where, in a similar way, we have defined:

F (x;T, σ) = (1− σ′

σ
x)2 − (σ′σT )2

4
+ σσ′′T,

σ′ =
∂σ

∂x
,

σ′′ =
∂2σ

∂x2
.

(13)

From (13) it is clear that if σ is constant (9) and (12) are
the distributions for the standard Black-Scholes model;
we will call them “zeroth-approximation” distributions.
If σ 6= const, the term F (x; r, T, σ) could “perturb” the
relative zero approximation (Gaussian) giving rise to dis-
tributions that cannot fit real data. As we will show here,
it is possible to get distributions with relative minima
(not observed in real returns distributions) and, in the
worst case, negative probability.

The rest of the paper is organized as follows. In Section
III, we analyze FX market data and we propose a suit-
able function to fit the volatility smile. We also determine
the typical range of the parameters we use to perform the
fit. We will use these ranges to check our adiabatic con-
dition. In Section IV, we show qualitatively the reason
why we have the presence of the relative minima in the
returns distribution and why an adiabatic approach can
be suitable to describe the problem and used to avoid
these “bad” probabilities. In Section V, we show our
numerical and theoretical results about the adiabaticity
parameter. We also show that there is a critical value of
the adiabatic parameter which can be used to determine
whether the returns PDF will have relative minima. We
discuss the relation of this critical value to the other pa-
rameters of the fit. Finally, in Section VI we present our
conclusions.

III. THE VOLATILITY SMILE: REAL MARKET
DATA

Typically, traders on option markets and practition-
ers consider the BS model as a zeroth order approxima-
tion that takes into account the main features of options
prices. To get a pricing closer to the actual data, they
consider the volatility as a parameter that can be ad-
justed considering the inverse problem given by Eq. (3)
and the real price of call and put options. In this way
a more reliable value of the volatility (implied volatil-
ity) can be obtained and it can be used to price more
complex options for which analytical solutions are not
available. The value of the implied volatility depends on
the value of the strike, K, in a well-known characteristic
curve called the smile volatility (typically for foreign cur-
rency options) whose shape is approximately parabolic
and symmetric, or skew volatility (typically for equity
options) when asymmetric effects dominate [14–17].

An intuitive explanation of this shape can be found
if an actual returns distribution is considered. In fact,
it is well known that the tails of the returns PDF
are not Gaussian but exhibit a power law decay (fat-
tails) [18, 19]. On the contrary, BS model assumes that
the PDF of returns is Gaussian thus underestimating the
actual probability of rare events. To compensate for this
model deficiency, one has to consider the greater implied
volatility for strike out of the money then for strike at
the money.

In this paper we focus our attention on the volatil-
ity smile of foreign currency options and we neglect the
skew effect [20]. To perform our analysis we consider
the volatility smile as a function of the ∆ of the option
(defined by Eq. (14)), the time to maturity, T , and the
currency considered. We consider specific days, for which
volatility is not affected by the skew effect, and we use
Bloomberg as data provider. In the BS model, the ∆ of
a call options is defined as:

∆ =
∂C

∂ST
=

1√
2π

∫ d1

−∞
dz e−z

2/2. (14)

Inverting this relation is possible to get an expression for
x:

x = σ2/2T − σ
√
TΦ−1(∆), (15)

where Φ−1(x) is the inverse of the error function:

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt (16)

In Fig. 2 we show an example of volatility smile in terms
of our variables and a suitable fit given by the function:

σ(x) = g

[
1 + (χ− 1)

(x+ g2T/2)2

(x+ g2T/2)2 + n

]
(17)

where g, χ, n are fitting parameters. In this case, g rep-
resents the minimum of the volatility smile,

√
n is the
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FIG. 2: Typical volatility smile and the relative fit obtained
with (17). The parameters of the fit are: g = 0.1758(5),
χ = 1.20(9), n = 0.00030(9). We get the real data using
Bloomberg provider and they refer to the AUDUSD currency
with time to maturity T = 1/365 years.

half width at the half height, while g(χ − 1) represents
the height of the smile. In particular χ is the ratio be-
tween the limiting value of σ and g as x approches∞. In
this way the variation of σ is bounded between g and gχ.
In the light of the intuitive explanation of the volatility
smile proposed above and since from (8) it follows that
the average value,

〈x〉 = −σ
2T

2
, (18)

one expects that the minimum of the implied volatility
occur at x = −g2T/2 as required by our fitting function.

Repeating many times the interpolation procedure
considering different values for T and currencies, we can
determine typical parameters that can fit a wide range
of volatility smiles; in the following we will use this in-
formation to check our results.

Let us notice that the following relation between n, g
and T holds:

n ∝ Tg2, (19)

as shown in Fig. 3. This gives a scaling rule that can be
used to determine the range of n, fixing T and g.

IV. FIRST APPROXIMATION OF THE
VOLATILITY SMILE: THE SQUARED WELL

In this Section we show qualitatively the reason why
there is a relative minimum in the returns distribution
and why an adiabatic approach can describe the prob-
lem of avoiding these “bad” probabilities. To keep the
problem simple, we consider, as a first step, a volatility
smile modeled by a squared well defined as follows:

σ(x) =

{
σ1 for |x| < x1
σ2 otherwise

, (20)
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FIG. 3: Relation between the parameters n, g, T . We fit
72 volatility symmetrical smiles (Bloomberg) considering dif-
ferent currency (EURUSD, AUDUSD, EURCHF, EURGBP,
EURJPY, GBPJPY, GBPUSD, USDCAD, USDCHF, USD-
JPY) and time to maturity (1 day, 1-3 weeks, 1, 2, 3, 4, 6,
9 months, 1, 1.5, 2, 3, 4, 5 years) with the function (17).
We dowload the data on 21/10/2009 and on 01/02/2010.
We also show the best linear fit ln(g2T ) = ln(n) + c, where
c = −1.95(12).
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FIG. 4: a,b) Discontinuous squared well as a fit of the volatil-
ity smile. c,d) The corresponding PDF with (c) or without
(d) spurious minima.

where σ2 > σ1 and x1 are positive constants. See
Fig. 4a,b. The distribution functions corresponding to
two values of σi, i = 1, 2 are shown in Fig. 4c,d. Indi-
cating as ±xc1 the abscissa of the intersections between
the two distributions, it is clear that a sufficient condi-
tion for avoiding spurious minima is x1 < xc1. A rough
estimation of xc1, ignoring the term, x0, usually small, is

xc1 = σ1
√
T

√
2χ2 lnχ

χ2 − 1
, (21)

where χ = σ2/σ1. Therefore, a sufficient condition to
avoid minima in the PDF is to use, as a fitting function a
square well depending on the parameters x1, σ1, σ2, such
that x1 < xc1. Therefore, a standard fitting procedure of
the volatility smile with a square well, constrained by the
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FIG. 5: a) Critical ratio χc = σ2/σ1 as a function of n for
fixed T = 0.5, and different g as indicated in the legend. The
arrow indicates the direction of growing g. In the region to
the right of the lines the PDF do not have minima, while
in the left hand region it has. b) The same as a) but for
fixed g = 0.1 and different T values. The arrow indicates the
direction of growing T .

condition x1 < xc1 solves the problem of avoiding spurious
minima, even if is very rough.

If we consider a volatility smile with a continuous vari-
ation from σ1 to σ2, we can get, instead of a discontinu-
ity, the onset of a relative minimum. The latter can be
avoided if the variation between σ1 and σ2 is slow enough
so that the connection between the two PDF’s takes place
keeping constant the sign of the first derivative of the dis-
tribution during the whole transition. So there will be a
critical “speed” of the transition that will generate zero
derivative points which will not correspond to the maxi-
mum of the distribution. In this case the variable related
to the time is x1, while χ = σ2/σ1 can be identified as a
“distance”. To be more precise, one should consider that
for x < xc1, Pσ1(x) ≥ Pσ2(x), so that the effective “time”
should be: x1 − xc1.
We will define an adiabatic transition as one whose pas-
sage from σ1 to σ2 is sufficiently slow, so that relative
minima in the distribution are not generated. In this
same spirit, we define the critical adiabatic parameter
χc(n, g, T ) as the minimum value of χ that generates a
minimum in the distribution, Eq. (12). This effect has
been shown in Fig. (5), modeling the volatility smile us-
ing (17), so that σ1 = g, σ2 = gχ. We fix the parameters
g, T and we vary n and χ, seeking relative minima in the
PDF. The lines in Fig. 5, obtained respectively at fixed
T (a) and fixed g (b), divide the plane of parameters into
two regions: to the left of the lines the PDF has spurious

minima, while this does not happen in the region to the
right of it. It is then clear that for a given set of fixed
parameters (g, T ), there is a relation between χ and n
that allow one to obtain a PDF without minima (min-
ima are not observed in real data). The main goal of this
paper is to determine a simple relation that determines
whether or not the parameters of a volatility smile fit are
consistent with real returns distribution and if they could
give a reliable option pricing.

V. NUMERICAL AND THEORETICAL
RESULTS

In this Section we show our numerical and theoretical
results about the relation between the set of parameters
n, g, T and the critical adiabatic parameter χc. Using a
numerical simulation, we kept fixed n, g, T and we con-
tinuously increased the parameter χ until we found a
zero-derivative point for some x 6= −g2T/2. In this way
we could determine numerically the critical χc. We re-
peated this approach for a wide range of the parameters
values, as shown in Table I, where we used the parameter

min max

g 0.03 0.5

ρ 2.5 10

T (years) 1/365 4

TABLE I: Range of the parameters of the numerical simula-
tions

ρ = n/g2T instead of n, due to the scaling relation (19).
In order to obtain the relation χc = fT (n, g), we use the
following fit function:

fT (n, g) = α

(
n

g2T

)β
− γ
√
Tg

(
n

g2T

)δ
. (22)

This has been obtained assuming that the value of the
critical parameter χc depends on the rescaled “time” of
the transition (in our model given by ρ). We also consider

a further term γ
√
Tgρδ to take into account the time

correction, xc, as explained in Sec. (IV). In this case we
make explicit the dependence of the time correction on
T and g as suggested by σ2 in Eq. (21). In Eq. (22),
α, β, γ, δ are the fitting parameters whose values are given
in Table II.

In Fig. 6 we show the result of our fit for a few selected
values of g and T .

The whole procedure can thus be summarized as fol-
lows :

• The real volatility smile, usually given for a fixed
T can be fit by a function dependent on three pa-
rameters g, n, χ, as indicated in Eq. (17) and the
optimal values gopt, nopt, χopt are returned.
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α 1.4373± 0.0002

β 0.2787± 0.0006

γ −0.1738± 0.0002

δ 0.4683± 0.0006

mean squared errors 1× 10−5

TABLE II: Fitting parameters and relative errors.
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FIG. 6: Critical adiabatic parameter as a function of n for few
selected pairs of values of (g, T ) as indicated in the legend.
The points are numerical data, straight lines are the result of
fitting procedure.

• The optimal values gopt, nopt are inserted in
Eq. (22), with α, β, γ, δ given in Table II and a crit-
ical χc = fT (nopt, gopt) obtained.

• If χopt < χc then we know that relative minima
in the PDF do not exist. Otherwise we should per-
form a fitting procedure to the volatility smile using
Eq. (17), constrained by χ ≤ χc.

An example of the previous procedure has been shown
in Fig. 7 where the PDF with unwanted minima and the
“corrected ” one is shown together with the correspond-
ing fitting curve to the volatility smile. As one can see
the price to pay in order to get a smooth PDF is very
small: the two fitting curves for the real volatility smile
are similar, but the PDF has, in the latter case a more
realistic behavior.

VI. CONCLUSIONS

We started from the pricing equation of the Black-
Scholes model for an European call and we considered

a suitable generalization to include the volatility smile
effect. Then we considered the inverse problem and we
analyzed the relative returns distribution, Eq. (12), vary-
ing the typical parameters of the volatility smile. We
showed that, for some values of the parameters, it is pos-
sible to get relative minima in the returns distribution
(bad distribution) that are never observed in real distri-
butions. We demonstrated that bad distributions can be
eliminated by requiring adiabatic constraints (intuitively
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FIG. 7: a) Volatility smile as a function the returns x. Dots
indicate real data, red curve is the non adiabatic fit, while the
blu one represents the adiabatic (constrained) fit. b) PDF of
returns for the two curves indicated in a).

justified with the example of the squared well) on the
volatility smile and we gave a numerical formula to de-
termine the value of the adiabatic critical parameter, χc.
In this way we provide an easy-to-use tool to determine if
a volatility smile fit is consistent with the model hypoth-
esis (P (x) > 0) and if it can generate a suitable returns
distribution. A reliable estimate of the implied volatility
has application in the risk management activities and in
the pricing of exotic derivatives, where, in general, the
implied volatility is an input of more complex models.
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