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In the Black-Scholes context we consider the probability distribution function (PDF) of financial
returns implied by volatility smile and we study the relation between the decay of its tails and the
fitting parameters of the smile. We show that, considering a scaling law derived from data, it is
possible to get a new fitting procedure of the volatility smile that considers also the exponential
decay of the real PDF of returns observed in the financial markets. Our study finds application
in the Risk Management activities where the tails characterization of financial returns PDF has a

central role for the risk estimation.
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I. INTRODUCTION

Financial derivatives are the modern financial instru-

ments that are used in many activities and for different
purposes: mitigating risk exposure, speculation and arbi-
trage, trading strategies, providing leverage, etc. Know-
ing the fair value of such kind of contracts is not, gen-
erally, an easy task and it is of crucial importance, for
example, for the correct evaluation of a portfolio of fi-
nancial instruments and the related risks.
One of the simplest “products” on the derivative financial
market is the European call (put) option [I},[2]. Consider-
ing the risk neutral approach, the price of the European
call option, C = C(St, K, T,r), is defined by
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where St is the stock price at time ¢t = T', K is the strike
price of the option, T is the expiration time (time to ma-
turity) of the option, r is the interest rate and P(St) > 0
is the distribution function of the stock prices in a “risk-
neutral world” ([~ P(S7)dSr = 1).

Eq. is too general because it does not make any hy-
pothesis on the underlying stock price distribution func-
tion, P(St). To calculate explicitly the option price,
C, using Eq. , one can assume that the distribu-
tion function, P(Sr), is log-normal, so that, for the
logarithmic return deprived of the risk-free component,
x = In(Sp/S(t)) — r(T —t), the distribution is normal:
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where S(t) is the stock price at time ¢ and o is the stock
price volatility. For seek of simplicity, in the following we
consider ¢t = 0 and we define Sy = S(t = 0).

Using the Egs. (1)), (2) it is possible to get an explicit
expression for the price of the European call option:

P(z) =
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In(Sy/K) + (r +02/2)T

d = ,
' oVT
d2 = dl — O'\/T, (4)
N(z) = \/% [f. dz e~ /2,

The Eq. gives an analytical solutions for the Euro-
pean call option pricing and it is the main results of the
Black-Scholes (BS) theory about option pricing [3].

The distribution function follows from a stochastic
model for stock prices,

dS = rSdt + oSdz, (5)

where dz is a Wiener increment [4]. It can be shown it
is never optimal to exercise an American call option on a
non-dividend-paying stock early [Il B]; therefore Eq.
can also be used to estimate the fair value for this kind
of options.

Since 1973, when the BS model was published Quantita-
tive Finance became a prominent aspect in many banks
and financial institutions activities and a lot of new,
more realistic models were developed for the option pric-
ing [0 [7]. These new models are currently implemented
and used by traders and risk managers of many finan-
cial institutions and it could seem that the BS model is
by now outdated and irrelevant for financial applications.
On the contrary, because of its simplicity and the small
number of parameters, BS model is still a benchmark,
used by practitioners in many situations where getting a
reliable calibration of parameters of more complex mod-
els could be unattainable in practice. Simplicity and a
sort of reluctance to changes explain, in our opinion, the
reason why, after about 37 years from its publication, BS
model is still used by practitioners and justify the impor-
tance of our study to get a correct calibration procedure
for the volatility smile (VS) effect also from a theoret-
ical point of view. In a recent paper [§] it is shown a



new calibration procedure that can be obtained using
an adiabatic approach to avoid arbitrage opportunities.
The term “adiabatic” comes from comes from statistical
physics and is related to the slowness of the variation of
a parameter )\ that specifies the properties of a system or
an external field. In fact from a physical point of view, it
can be shown that if in a system one introduces a small
perturbation (A\) compared to the characteristics period
of the motion T, namely:

dX

T o <A (6)
the rate of the change of the energy of the system will
be also small [9]. In the same spirit we assume that our
parameter \ is represented by the implied volatility o
and we study how to characterize PDF of returns with a
small perturbation of the parameter o to get a suitable
description of actual data, coherent from a theoretical
point of view. In particular, in the following, it is shown
the importance of this calibration procedure from the
risk management point of view and its relevance in the
risk estimation.
The rest of the paper is organized as follows.

In Section[[T} we analyze the volatility smiles from For-
eign Exchange (FX) market data and we propose a suit-
able function to fit it. We also find a relation between the
fitting parameters that holds for every symmetric smile
that help us to identify the real independent variables of
our system. Using this relation we determine a suitable
range of parameters for our simulation.

In Section [Tl we outline the relation between VS and
PDF of returns and we stress the importance of getting
a suitable fit for the VS for the risk estimation

In Section [[V] we study the relation between the pa-
rameters of our volatility smile function and the decay of
the PDF of financial returns and we find an equation to
describe this kind of behavior.

In Section [V] we show how to get a more reliable fit
of the volatility smile, considering the exponential decay
of the returns PDF. To do this we exploit the relation
between the standard deviation of an exponential distri-
bution and its decay. Finally, in Section [VI we present
our conclusions.

II. VOLATILITY SMILE: ANALYSIS OF
ACTUAL MARKET DATA

Typically, traders on option markets and practition-
ers consider the BS model as a zeroth order approxima-
tion that takes into account the main features of options
prices. To get a pricing closer to the actual data, they
consider the volatility as a parameter that can be ad-
justed considering the inverse problem given by Eq.
and the real price of call and put options. In this way
a more reliable value of the volatility (implied volatil-
ity) can be obtained and it can be used to price more
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FIG. 1. Typical VS and the relative fit obtained with Eq. @
The parameters of the fit are: g = 0.1758(5), x = 1.20(9),
n = 0.00030(9). We get the real data using Bloomberg
provider and they refer to the AUDUSD currency with time
to maturity 7' = 1/365 years.

complex options for which analytical solutions are not
available. The value of the implied volatility depends on
the value of the strike, K, in a well-known characteristic
curve called the smile volatility (typically for foreign cur-
rency options) whose shape is approximately parabolic
and symmetric, or skew wolatility (typically for equity
options) when asymmetric effects dominate [T0HI3].

An intuitive explanation of this shape can be found if
an actual returns distribution is considered. In fact, it
is well known that the tails of the returns PDF are not
Gaussian but exhibit a power law decay (fat-tails) [14] [15]
or exponential decay [6]. On the contrary, BS model
assumes that the PDF of returns is Gaussian thus un-
derestimating the actual probability of rare events. To
compensate for this model deficiency, one has to consider
the greater implied volatility for strike out of the money
than for strike at the money.

In this paper we focus our attention on the VS of for-
eign currency options and we neglect the skew effect [16].
To perform our analysis we consider the volatility smile
as a function of the A of the option (defined by Eq. ),
the time to maturity, T, and the currency considered.
We consider specific days, for which volatility is not af-
fected by the skew effect, and we use Bloomberg as data
provider. In the BS model, the A of a call options is
defined as:

_oC

A= 95y erf(di), (7)

Inverting this relation is possible to get an expression for
x:

r=0%/2T — oVT erf~1(A), (8)

where erf~1(x) is the inverse of the error function. In
Fig.[[]we show an example of VS in terms of our variables
and a suitable fit given by the function:
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where g, x,n are fitting parameters. In this case, g repre-
sents the minimum of the volatility smile, \/n is the half
width at the half height, while g(x — 1) represents the
height of the smile. In particular x is the ratio between
the limiting value of o as x approaches co and g . In
this way the variation of ¢ is bounded between g and gy.
In the light of the intuitive explanation of the volatility
smile proposed above and since from it follows that
the average value,

(0= %1, (10)

one expects that the minimum of the implied volatility
occurs at ¥ = —g?T'/2 as required by our fitting function.

We repeat the fitting procedure considering the volatil-
ity smile for different days, currencies and time to matu-
rity T' (Table , then we analyze the relations between
the fitting parameters.

Currency Maturities (days) Date
AUDUSD, EURCHF  1,7,14,21,30  21/10/2009
EURGBP, EURJPY 60, 90,120, 180,270 01/02/2010
EURUSD, GBPUSD 360, 540, 720, 1080 01/04/2010
USDCAD, USDCHF

TABLE I. Dataset for VS

As already observed in [§], the following relation be-
tween n, T, g holds:

Vi =cgVT (11)

where ¢ = 2.65(28) is a fitting parameter. Our intu-
itive explanation of this equation is really simple and it
is related to the fact that the PDF of returns is not Gaus-
sian but exhibits fat /exponential tails. Indeed, while the
term +/n gives the order of magnitude of the volatility
amplitude, gv/T represents the minimum of the implied
volatility (which can be considered as the unperturbed
standard deviation of the PDF of returns). Therefore
Eq. suggests that when x is about 2 — 3 times the
standard deviation of the returns distribution (namely
in the tails) the implied volatility should be increased to
fatten up the PDF of returns.

In Section [[V] we use this relation to fix the typical range
of parameters of the VS in order to perform suitable sim-
ulations for the description of actual data.

III. IMPORTANCE OF VS IN RISK
ESTIMATION

In Eq. the distribution function, P(St), can be
rather arbitrary but it is natural to assume that P(St)
does not depend on the strike price, K. According
to Eq. , the option price, C, is expressed explicitly

through the strike price, K. Differentiating C' in Eq.
twice with respect to K, we have [17],

920 (K)
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In Eq. , we indicate only the dependence C(K) in
the option prices. Eq. makes explicit the relation
between a pricing model, given by C(K), and the im-
plicit distribution of prices (and, by a simple change of
variables, of financial returns), assuming a risk neutral
approach. For example, if one consider the BS model
for call options pricing (Eq. ), using Eq. one
gets, as expected, a Gaussian distribution for financial
returns. More generally, if one considers the dependence,
o = o(K), in Eq. , it is possible to get the analyti-
cal expression of the implied distribution of financial re-
turns [§]:

1 (.T+1'0)2
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where we have defined:
z=In(L& —rT,
&),

F(z;T,0) = (1—;1‘)2—7

From it is clear that if o is constant, Eq. gives
the Gaussian distribution for the standard Black-Scholes
model.

It is also helpful to define the implied complementary
cumulative distribution function (CCDF) of financial re-
turns as:

Bw) =1 | " Py (15)
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Eq. shows that there is a strong relation between V.S
and the PDF of financial returns. From another point of
view, Eq. should be seen as a warning that shows
how similar fits of a VS could imply strong differences
in the implied returns of the PDF with obvious con-
sequences, for example, on the risk estimation. If one
considers, for example, the two curves (red and blue) in
Fig. , it is clear that even if the two lines are close
to the actual data, the differences in the decay of the
two distributions can be relevant with important conse-
quences for the risk estimation procedure.
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FIG. 2. Comparison of two suitable approximations for the
VS (red and blue) (a) and their CCDFs (b). As evident,
even if the two curves can be close to the actual data, the
differences in the Value at Risk estimation can be relevant.
For comparison we also show the case of a completely flat
smile (black) and its Gaussian distribution.

One could consider, for example, the estimation of the
risk using the standard VAR (value-at-risk) measure [5],
defined as

—Avar
Pyur = / P(x)dz, (16)
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where Ay 4gr represents our estimation of the maximum
potential loss with a fixed confidence level given by Py ar
and P(x) is a generic function that represents reuturns
PDF. In this paper, we consider P(z) = P,(z) and
Pyar = 1% as a standard value for the confidence level;
this means we can expect a loss less than or equal to
Ay agr in the 99% of the cases.

For the distributions in Fig. , we get AT¢4, = 5.23%
and A4S = 5.06%, so the difference in the VAR esti-
mation using the two different fits is about 3.27%. To
have an idea of the order of magnitude of the error, one
should consider that for the flat smile (BS) in the figure,
we get ABS L = 4.8% and the difference with the other
VAR estimation is about 5% — 8%.

From this example it is clear there is some arbitrariness
in the fitting parameters of the VS function that can gen-
erate significant differences in the description of the im-
plied returns distribution, with important consequences,
for example, from the risk estimation point of view. So
that the importance of getting a reliable fitting proce-
dure consistent with the theoretical aspects, as already
stressed in [18].

In this framework, we focus our attention on the gener-
alized BS model by considering VS effect and we try to
characterize the decay of the tails of the implied distri-
bution of returns as a function of the fitting parameters
of the VS, to get a suitable procedure for the smile fit-

ting coherent with the historical observed decay of the
actual returns PDFs. As already shown, a suitable char-
acterization of the implied distributions decay can have
a fundamental importance, for example, for the risk es-
timation.

IV. RELATION BETWEEN VS AND THE TAILS
OF PDF OF FINANCIAL RETURNS

In this Section, we want to establish a simple relation
between the parameters of the fitting function Eq. @[)
and the decay of the tails of the implied distribution of
returns, Eq. . To better understand what we mean
for “decay of the tails”, we need to analyze the structure
of the Eqs.@ . First of all, it is important to notice
that o(x) is a bounded function

g <o) <gx.

The whole process can be seen as a continuous transition
from the a minimum value g to a limit value gy reached
for large enough returns, . From the PDF point of view,
we can think of the VS as a continuous transition between
two Gaussian distributions with different standard devi-
ations, g and gy. So, due to our choice of the VS fitting
function, we already know that for large = values the
tails of the implied distribution behaves as a Gaussian
distribution. Nonetheless, there is a region of x, namely
the region of the transition, not described by a Gaussian,
since in this case o is not constant. In Section [Tl we have
already discussed the order of magnitude of = for this re-
gion:  ~ \/n = 2.6gV/T which corresponds to the tail of
the distribution. So, even if we know that for really large
x the implied distribution is a Gaussian, the region that
can be related to the tails of actual returns distributions
is the region of transition and this is the region we are
going to study in details.

Looking at a typical implied distribution of returns on
a semilog plot it seems reasonable to approximate the
region of the transition by a straight line, as shown in
Fig. .

This approximation is equivalent to assume that the
tails distributions of financial returns have an exponen-
tial decay, exp (—p|z|), where u is the factor that char-
acterize the tail. This fact finds confirmation in our real
data analysis and it is coherent with results shown in [19].
The main goal of this Section is to establish a relation
between the parameter of decay, u, and the fitting pa-
rameters of the smile, g, x,n. The procedure we consider
is straightforward and it is described in the following.
First of all, we fixed the range of the parameters repeat-
ing many times the fitting procedure and considering the
dataset described in Section [l In Table [, we show the
range of the parameters that we used to perform our sim-
ulations (we used the parameter p = n/(g?T) instead of
n due to the scaling relation Eq. )
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FIG. 3. a) We show the transition region of the VS R and b)
the exponential decay approximation for the CCDF of returns
in the same region.

min max
g 0.03 0.5
p 2.5 10
T (days) 1 1080
X 1.01 3

TABLE II. Range of the parameters of the numerical simula-
tions.

Using this range of parameters, we consider the im-

plied CCDF of returns, derived from Eq. , and we fit
the region of transition considering an exponential decay,
exp (—p|z|), where p is the fitting parameter. In this way
we get for every set of the parameters in the Table [[T] the
corresponding decay parameter, u. We define the region
of transition as R = {z|v/n/2 < z < /n}; in this way,
if A = gx + g represents the height of the VS, we are
considering the region from the 20% to the 50% of the
total height.
Our goal is to find a relation between p and the three
parameters of the VS. First of all, let us fix xy = 1, so
that the VS is completely flat. In this case we know that
the distribution is Gaussian, F(x,T,0) = 1 and the pa-
rameter ;o should be thought of an approximation of an
exponential decay. In this case, u can be easily estimated
as:

o~ Ay (P - I(P(y/2)

Ax Vn/2 ’
where P is the CCDF of P defined in Eq. . Perform-
ing some calculations we get:

(17)
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FIG. 4. We show the relation between the decay parameter
1, given by numerical simulation and the estimation given by
Eq. (21). As reference, we also show the (dotted) line p = fiy.

where, the function f(p), is defined by,

1 1 —erf(3./%)
flp) = %h‘l [1_91{(\/5)] ) (19)

and has the following asymptotic expansion:

- Vp if pr— +oo
f(p)_{1/2ﬁ if p— 0. (20)

Let us now discuss the case x # 1: in the light of the
adiabatic interpretation presented in [8], we expect that
on increasing x, the PDF will present, soon or later a
minimum. This means that the PDF should be flatter
than before, so that p should decrease. This is coherent
with our physical interpretation of the VS as a small per-
turbation of a theoretical system represented by a gaus-
sian distribution. Increasing the order of magnitude of
the perturbation, here represented by the parameter ¥,
we get a PDF of returns increasingly different from the
gaussian until the adiabatic limit of the perturbation is
violated. After that point the system cannot be described
by a perturbative approach.

For simplicity, let us assume the simple inverse propor-
tionality:

x xgVT

Relation has been checked in Fig. where we plot
the real parameter p obtained by our simulation vs the
parameter p, given by : the agreement is within a
2% of mean squared error.

f(p)- (21)
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V. A NEW RECIPE TO FIT THE VOLATILITY
SMILE

In this Section we show how to include the informa-
tion given by the formula on the decay of the CCDF
of the financial returns to get a suitable fit of the VS
coherent from theoretical point of view. Firstly, to do
this we need to analyze what is the ordinary interpre-
tation of the implied volatility of the BS model and its
relation with historical volatility. Implied volatility is
usually interpreted as the future volatility of the market
and represents the traders and practitioners vision. From
this point of view historical volatility can be interpreted
as a peculiar realization of this vision at some particular
time period. So, in general, there will be a mismatch
between historical volatility and implied volatility and
this fact is reflected on historical and implied PDF of
returns. Therefore, to use properly the information on
the decay of the historical distribution, we need at first
the scaling relation between the volatility and the decay
of the distribution. This relation can be estimated from
historical series of currencies (AUDUSD, EURCHF, EU-
RGBP, EURJPY, EURUSD, GBPUSD, USDCAD, US-
DCHEF, time period 2001-2010) using the following pro-
cedure. We consider different time lag (T = 1, 10,100
days) and build different historical series of returns. We
divide each series into subgroups of at least 300 elements
and we evaluated the standard deviation of each group.
To evaluate the decay we consider the CCDF of returns
using the procedure described in [5] and we fit the tail
decay using a straight line in a semi log plot. We repeat
this procedure for any subgroup and for any currency
to make explicit the relation between py and ogy. In
Fig. we show our results superimposed with a suit-

able fitting function

_Ga

- (22)

OH
where C7 = 1.6£0.5 is a fitting parameter. Let us observe
that this is in quite good agreement with an exponential
PDF for returns, since in that case one would have oy =

Eq. makes explicit the relation between pz and
o (their product should be a constant & 1.6) and gives
us the opportunity to exploit the information on the his-
torical decay of the PDF of financial returns to get a
suitable fit of the VS. The procedure can be summarized
as follow:

e Using the historical price series we determine the
decay and the standard deviation of the financial
returns, respectively: um,op.

e Identifying the product pgoy with g\/TuX and us-
ing our estimation, Eq. , we can obtain one of
three fitting parameters, e.g. x, describing the VS,
as a function of the other two (g,n) :

X = —— f(n/g*T). (23)

Following this approach, we reduce the number of free
parameters for the smile fitting, fixing implicitly the right
decay of the PDF of returns. As already stressed in Sec-
tion [[II} the need of getting a suitable fit for the VS
coherent also with the theoretical aspects of the model,
is really important in many Risk Management activities
and could lead to significant differences in risk estima-
tion.

For example in Fig. @, we compare the PDF of re-
turns obtained by a standard fitting procedure of VS
(unconditional fit) with the one obtained following the
procedure described before (conditional fit). As evident,
even if the two fitting procedures give similar curve for
the VS, the effect on the VAR estimation are of the order
of 10%.

VI. CONCLUSIONS

We started from the pricing equation of the Black-
Scholes model for an European call and we considered
the effect of the VS correction on the implied PDF. Our
approach comes from statistical physics and it is related
to the adiabatic interpretation in [§]. We showed that
similar fits of a VS could imply strong differences on the
implied returns PDF with obvious consequences on the
risk estimation. To obtain a stronger fitting procedure
for the VS that can be compatible with the theoretical
aspects of the model we first derived a relation between
the exponential decay of the CCDF of returns and the
parameters of the fitting function of the smile. Then, we
exploit this relation to get a new fitting procedure that
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FIG. 6. We compare unconditional fit of the VS (a) and the
implied PDF (b) for a particular dataset (EURJPY, T' = 30
days, downloaded on 21/10/2009 15:37) with the conditional
one.

can be compatible with the historical data. An inter-
esting case is shown in Fig. where we compare the
PDF of returns obtained by a standard fitting procedure
of VS (unconditional fit) with the one obtained following
the procedure described before (conditional fit). In this
case the time to maturity is large, 7' = 2520, so we cannot
get o and pf directly from the dataset but we extrap-
olate their values considering the relation p oc 1/v/T and
o < V/T. As evident, the unconditional fit generates an
implied PDF with a relative minima never observed in
actual data [8], on the contrary the conditional fit gen-
erates a PDF more “regular” that seems suitable for the
description of actual PDF of returns. The price to pay
in order to get a smooth PDF is related to the error for
the smile fitting: the horizontal amplitude of the condi-
tional fit is higher than the one required to get a suitable
fit. This can be explained assuming that market makers
overreact to extreme events when the time to maturity is
large, estimating the volatility in a way that is not com-
patible with historical data. Besides, conditional fit is

compatible with the skewness reduction claimed in [I§]
to get a smile fitting more suitable to the historical data.
In conclusion we provide a new tool for the VS fitting
that can be used to get a more coherent estimation of the
parameters of fitting function, compatible with historical
series and theoretical aspects of the model. A reliable
estimate of the implied volatility has application in the
risk management activities and in the pricing of exotic
derivatives, where, in general, the implied volatility is an
input of more complex models.
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