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We consider an open quantum system of N not directly interacting spins (qubits) in contact with
both local and collective thermal environments. The qubit-environment interactions are energy
conserving. We trace out the variables of the thermal environments and N − 2 qubits to obtain
the time-dependent reduced density matrix for two arbitrary qubits. We numerically simulate the
reduced dynamics and the creation of entanglement (concurrence) as a function of the parameters
of the thermal environments and the number of qubits, N. Our results demonstrate that the two-
qubit entanglement generally decreases as N increases. We show analytically that, in the limit
N → ∞, no entanglement can be created. This indicates that collective thermal environments
cannot create two-qubit entanglement when many qubits are located within a region of the size
of the environment coherence length. We discuss possible relevance of our consideration to recent
quantum information devices and biosystems.

1. Introduction

In open many-body systems, such as solid-state and biological ones, quantum behavior
reveals itself in many ways. Often the quantitative parameter used to measure “quantum-
ness” (possibly even of macroscopic order) is entanglement. The presence of entanglement
implies that the wave function (or the reduced density matrix) cannot be represented as
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a product of the corresponding objects for the individual qubits. It is important to note
that to produce and to measure entanglement in such systems, one does not necessarily
need to know much detail about the system, possibly not even its Hamiltonian [1]. The
questions then are how useful is entanglement as a measure of quatumness, what can it add
to our knowledge of system properties and behavior, and how can it be utilized? Indeed,
just knowing that the system is entangled (knowledge of complicated quantum behavior)
is not sufficient to imply that its quantum properties are useful for specific applications.
Fortunately, however, in some situations entanglement provides very useful properties,
including additional exponential resources for quantum computation [2] and a possible
enhancement of photosynthesis in bio-systems [3] (See also references therein.)

Entanglement could be produced by direct interaction between the qubits. This
interaction should be of a “conditional” nature, mixing an initial product state (disentangled)
in such a way that the final state becomes correlated in a quantum way. Many aspects of
entanglement creation are widely discussed in the literature (See, e.g., [4–11] and references
therein.)

More recently, interest appeared in the possibility to create entanglement in the
absence of direct interactions between qubits (or when the latter are very small).
Entanglement can then still be created merely by the indirect interaction of noninteracting
qubits through a collective thermal bath. In [4] this situation was considered for a model
of two noninteracting spins 1/2 (qubits) interacting only with a collective thermal bosonic
environment. It was demonstrated numerically in [4] that for some initially unentangled
two-qubit states and under some conditions on the thermal bath, measurable entanglement
between the two qubits is created for intermediate times. The model of [4] is energy
conserving, ignoring relaxation processes for the qubits and including only the effects of
decoherence. In [11] these results were extended to amore general model having (i) both local
and collective thermal environments (at the same temperature) and (ii) energy-conserving
and energy exchange interactions between qubits and their environments. The conditions for
entanglement creation were discussed and analyzed numerically in [11]. It was concluded
that, in spite of the competition between the local thermal environments (which destroy
entanglement) and the collective thermal environment (tending to create entanglement), the
creation of measurable entanglement can be realized for some finite times. In both papers,
[4, 11], only two qubits are analyzed hence no direct connection to many-body systems was
made. As was recently shown in [12], the presence of a large number of indirectly interacting
qubits interacting only with their common collective thermal environment could significantly
modify the effective single-qubit characteristics including their relaxation and decoherence
rates.

In the present paper, we consider a model of N not directly interacting spins 1/2
(qubits) placed in a constant effective magnetic field (oriented in the z-direction). The qubits
interact with both local and collective thermal environments (all at the same temperature).
The collective interaction introduces an indirect qubit interaction. In the total density matrix
of all qubits and environments, we trace over the variables of the environments and N − 2
qubits. This gives us the time-dependent reduced density matrix for two arbitrary qubits.
In the z-representation it is represented by a time-dependent 4 × 4 matrix. It is important to
notice that the matrix elements, [ρt]n,m, n,m = 1, . . . , 4, depend not only on the parameters of
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the thermal environments but also on the total number of qubits, N. We study numerically
the concurrence C(t) of the reduced two qubit density matrix and its dependence on the
parameters of the system and onN. To realize and study this situation in an experiment, one
must have access to the two selected qubits (such as their particular frequencies), in order
to manipulate them and prepare the initial state. Our main result is that the amplitude of
concurrence, Cmax(t), generally decreases as N increases. This means that one should not
expect that the collective thermal environment can create by itself measurable entanglement
even of two qubits, in the presence of many other qubits within the range of the collective
environment coherence length.

1.1. Outline of Main Results

The initial state of the entire system is disentangled, a product state in which each of the N
spins is in a state ρj , j = 1, . . . ,N; all local reservoir states are thermal and so is that of the
collective reservoir, at a fixed common temperature (A generalization to a nonequilibrium
situation where each local and the collective reservoir have different individual temperatures
is immediate.).

1.1.1. Analytic Results

(i) Explicit Dynamics

As the spins interact with the reservoirs via energy-conserving couplings only, the reduced
two-spin dynamics can be calculated explicitly; see Proposition 2.1. Consequences of the
energy conservation are that populations, that is, the diagonal density matrix elements, are
time independent and that the off-diagonal elements evolve independently. As an example,
we discuss here the dynamics of the (1, 2) matrix element:

[
ρt
]
12 =

[
ρ0
]
12e

iω2t eiκ
2
c S(t) e−κ

2
�
Γ�(t)−κ

2
cΓc(t) PN(t). (1.1)

The other matrix elements have similar behavior. Each factor on the r.h.s. has an
interpretation.

(i) [ρ0]12 is the initial condition of the matrix element in question. None of the other
initial matrix elements are involved (energy-conserving coupling).

(ii) eiω2t is the uncoupled dynamics (no interaction with environments);

(iii) eiκ
2
c S(t) is a dephasing factor with a time-dependent phase S(t) ≤ 0 becoming linear

for large t (for the considered infrared behavior |k|1/2 of the coupling constants in
three dimensions, see (2.10)); it represents a “Lamb shift” contribution to the real
part of the effective energy; this term is generated by the collective reservoir, but it
is independent of the presence of theN − 2 traced-out spins (the term would be the
same if only two spins were coupled to the reservoirs).

(iv) e−κ
2
�
Γ�(t)−κ

2
cΓc(t) is a decaying factor with time-dependent decay rates, Γ(t) ≥ 0,

becoming linear for large t (see (2.11)). Both the local and collective reservoirs
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contribute; however, the term is independent of the N − 2 traced-out spins (again,
it would be the same if only two spins were coupled to the reservoirs);

(v) PN(t) is a product of N − 2 oscillating terms encoding the effect of all the traced-
out spins (see (2.9)). It is important to notice that PN(t) only depends on the diagonal
density matrix elements of the initial states of the N − 2 traced-out spins. (This is so
since the dynamics is energy-conserving, and tracing out any of the spins involves
only the diagonal of the initial (time zero) density matrix. (See also Remark 2.2(1)
after Proposition 2.1.)). Consequently, the two-qubit state does not depend on the
initial off-diagonal density matrix elements of the N − 2 traced-out “background”
spins. Typically, we expect those spins to be initially in (close to) equilibrium,
corresponding to vanishing off-diagonals.

Some general properties of PN(t) can be explained easily for the case in which all
N − 2 spins are initially in the high-temperature equilibrium state (1/

√
2)(|+〉 + |−〉). Then

PN(t) = [cos(κ2
cS(t))]

N−2 and its magnitude oscillate between zero and one. Due to the large
power (N − 2), the peaks of the function |PN(t)|, centered at the discrete times tp satisfying
S(tp) ∈ (π/κ

2
c)Z, are of very narrow width O(1/(κ2

c

√
N)) for large N. Consequently, in the

limit N → ∞, with κc held fixed, |PN(t)| is zero for all t except for t = tp, where |PN(tp)| = 1.
But the density matrix becomes very simple if PN(t) = 0, because many entries vanish (c.f.
Proposition 2.1) and the corresponding concurrence is zero. It follows that, in the large N
limit, concurrence is zero for all times (except possibly for some isolated instances, tp).

(ii)N-Dependent Scaling of the Interaction κc

The above analysis suggests that one cannot generate two-spin entanglement for N large at
fixed interaction strength κc. However, the width of the peaked function PN(t) which is of
order O(1/(κ2

c

√
N)) becomes appreciable if κc � N1/4. Hence we consider an N-dependent

scaling of the coupling, replacing κc by κc/N
η, for some η > 0. According to the above

discussion, the borderline case is η = 1/4.
Starting from the explicit expressions (Proposition 2.1) and using the scaling κc/N

η,
we calculate the limit N → ∞ of ρt, for t ∈ R fixed. The analytic expressions we obtain for
0 < η < 1/4 and η > 1/4 show that the limiting dynamics does not create entanglement,
for any time t. While we are able to obtain explicit expressions for concurrence in the regime
of N → ∞, we are not so for N finite. (The reduced density matrix is given explicitly for
all N and all t, but calculating from it explicitly the concurrence is more difficult.) However,
since no entanglement is generated in the limiting case,N → ∞, but we know entanglement
is created for N = 2 (see, e.g., [4, 11]), we expect that entanglement creation decays with
increasing N. We study this decay numerically.

1.1.2. Numerical Results

We introduce νc, the highest frequency at which spin-reservoir interactions occur and call it
the cut-off frequency. In the simulations, we take νc of the order of the thermal frequency
νT = kBT/h. In the infra-red regime, our coupling is proportional to

√
|k| (see after (2.11)).

(i) For N = 2, concurrence creation is maximal if both spins start out in their
high-temperature state (1/

√
2)(|+〉 + |−〉); see Figure 1. Consequently, in the subsequent
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Figure 1: Maximal concurrence as a function of p and v, for fixed Γ(t) = 0 ans S(t) = π/2. Here, N = 2
spins is considered.

simulations, we take initial states of the two not traced-out qubits very close to this state,
and we take the diagonals of the initial states of the N − 2 traced-out quibts to be constant
1/2 (remember that the off-diagonals of these qubits do not influence the dynamics at all).
In Figure 4 wemodify the initial state of the two not traced-out qubits and check that maximal
concurrence is indeed obtained when both qubits are in the above state, even for large N.

(ii) For general N, entanglement evolves according to a rescaled time t 	→ κ
2
cνct, see

Figure 2. This figure shows that a reduction of κc diminishes the created concurrence in a
moderate way. For instance, decreasing κc by a factor 10 only decreases concurrence by less
than 1/3.

(iii) In Figure 3 we show that the maximum of created concurrence decays with
increasing N. For intermediate values of N (with the current parameters N∼10–150) the
decrease is exponential; for smaller and larger values ofN, it is superexponential.

(iv) In the same Figure 3(c), we study the dependence of the maximal time, τc, (before
recurrence) at which the concurrence is not zero. We have found that this time decays
exponentially in the number of spins, N, for sufficiently large N.

(v) Results on the rescaled model κc 	→ κc/N
η are shown in Figure 5. We find a

decrease of maximal concurrence with increasing N for all η ≥ 0. The critical value, η = 1/4
(see analytic results above), divides the concurrence decay into two regimes. In the range,
η > 1/4, the maximal concurrence decreases exponentially in N, for intermediate values of
N (between 10 and 180), with a universal decay rate (i.e., not depending on η). For η < 1/4 the
decay is superexponential and varies with η. We conclude that no scaling κc 	→ κc/N

η can
compensate the decay of created concurrence for large N.
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Figure 2: (a) Concurrence as a function of the rescaled time, for different κc and fixed ε = νc/νT = 1,
being respectively the cut-off and thermal frequency (νT = kBT/h with T = 300K) and the form factor
fc(k) =

√
|k|. Other data are p = 0.5, v = 0.48, N = 4. (b) Plot of the concurrence at the peak (obtained

from (a)) as a function of the coupling strength, κc, for differentN values as indicated in the legend. Other
values are the same as in (a).

2. Model and Reduced Density Matrix

The full Hamiltonian of the N noninteracting spins 1/2 coupled by energy conserving
interactions to local and collective bosonic heat reservoirs is given by

H = − ħ
N∑

n=1

ωnS
z
n +

N∑

n=1

HRn +HR (2.1)

+
N∑

n=1

κnS
z
n ⊗ φc

(
fc
)
+

N∑

n=1

νnS
z
n ⊗ φn

(
fn
)
. (2.2)

Below we use dimensionless variables and parameters. To do so, we introduce a
characteristic frequency, ω0, typically of the order of spin transition frequency. The total
Hamiltonian, energies of spin states, and temperature are measured in units ħω0. The
frequencies of spins, ωn > 0, bosonic excitations, ω(k) = c|�k| (where c is the speed of
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Figure 3: (a) Concurrence as a function of the rescaled time, for fixed ε = νc/νT = 1, being respectively the
cut-off and thermal frequency (νT = kBT/h with T = 300K) and the form factor, fc(k) =

√
|k|. Other data

are p = 0.5, v = 0.48, κc = 0.05. (b) Plot of the concurrence at the peak (obtained from (a)) as a function
of the number of spins N. (c) Plot of the collapse time, τc, as a function of the number of spins, N. The
dashed line is the best fit exp(−αN) with α = 0.0838 ± 0.0002.

light), the wave vectors of bosonic excitations are normalized by ω0/c, and all constants of
interactions are measured in units of ω0. The dimensionless time is defined as ω0t.

In (2.1) and (2.2), ωn > 0 is the frequency of spin n,

Sz =
1
2

[
1 0
0 −1

]
, (2.3)

and Sz
n denotes the Sz of spin n.HR is the Hamiltonian of the bosonic collective reservoir,

HR =
∫

R
3
|k|a∗(k)a(k)d3k, (2.4)
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Figure 4: Maximal concurrence as a function of the independent parameters, p1 = v1 and p2 = v2. As one
can see the maximal concurrence is realized at the external corner, that is p1 = p2 = 1/2. Here is ε = 1,
N = 40 and p = 1/2 for all other spins.

and HRn is that same Hamiltonian for the nth individual reservoir. For a square-integrable
form factor h(k), k ∈ R

3, φ(h) is given by

φ(h) =
1√
2

∫

R
3

{
h(k)a∗(k) + h(k)∗a(k)

}
d3k. (2.5)

The real numbers, κn and νn, are coupling constants, measuring the strengths of the energy-
conserving collective coupling and the energy-conserving local coupling, respectively.

Since the spins interact with the reservoirs only through energy-conserving channels,
this model is exactly solvable. For simplicity of exposition, we take

κn = κc ∀n (collective),

νn = ν� ∀n (local).
(2.6)

We also take, for simplicity, all local form factors equal (f�) and all collective ones also (fc).
Fix any pair of spins, and (re-)label their frequencies by ω1 and ω2; see (2.1). We write

the reduced density matrix, ρt, of the two fixed spins as a 4 × 4 matrix [ρt]ij in the ordered
energy basis

Φ1 = ϕ1 ⊗ ϕ1, Φ2 = ϕ1 ⊗ ϕ−1, Φ3 = ϕ−1 ⊗ ϕ1, Φ4 = ϕ−1 ⊗ ϕ−1, (2.7)

(Another equivalent notation is: Φ1 = | + +〉,Φ2 = | + −〉,Φ3 = | − +〉,Φ4 = | − −〉.) where
Szϕ±1 = ±(1/2)ϕ±1. For instance, [ρt]2,4 = 〈Φ2, ρtΦ4〉.
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dashed line indicates a fitting exponential for the cases η > 1/4. The solid curve indicates the case, η = 1/4.

The initial state of the spins is a product state of the form ρS1,0 ⊗ · · · ⊗ ρSN,0, where

ρSj ,0 =

[
pj vj

v∗
j 1 − pj

]

, (2.8)

with 0 ≤ pj ≤ 1 and |vj |2 ≤ pj(1 − pj). The upper bound on the off-diagonal guarantees that
the eigenvalues of ρSj ,0 are nonnegative.

We introduce the quantities:

PN(t) =
N∏

j=3

[
pjeiκ

2
c S(t) +

(
1 − pj

)
e−iκ

2
c S(t)

]
, (2.9)

S(t) = −1
2

∫

R
3

∣∣fc(k)
∣∣2 |k|t − sin(|k|t)

|k|2
d3k, (2.10)

Γ�,c(t) =
∫

R
3

∣∣f�,c(k)
∣∣2 coth

(
β|k|
2

)
sin2(|k|t/2)

|k|2
d3k. (2.11)

The integrals in (2.10) and (2.11) are made to converge introducing a suitable cut-off
wavenumber, |kc|, or cut-off frequency, νc = |kc|/2π . (Here we use dimensionless units.)
For instance, for numerical simulations, we choose as form factor the function fc(k) =√
|k|χ|k|≤|kc |, where χ|k|≤|kc | = 1 if |k| ≤ |kc| and χ|k|≤|kc | = 0 otherwise.

We also define P̃N(t) to be the same as PN(t), but with κ
2
c replaced by 2κ2

c . With this
notation, we have the following result.
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Proposition 2.1 (explicit dynamics of the reduced density matrix). The evolution of the density
matrix is given by

[
ρt
]
12 =

[
ρ0
]
12e

iω2teiκ
2
c S(t)e−κ

2
�
Γ�(t)−κ

2
cΓc(t) PN(t),

[
ρt
]
13 =

[
ρ0
]
13 eiω1t eiκ

2
c S(t) e−κ

2
cΓc(t) PN(t),

[
ρt
]
14 =

[
ρ0
]
14e

i(ω1+ω2)te−2κ
2
�
Γ�(t)−4κ2

cΓc(t) P̃N(t),

[
ρt
]
23 =

[
ρ0
]
23e

i(ω1−ω2)te−2κ
2
�
Γ�(t),

[
ρt
]
24 =

[
ρ0
]
24e

iω1te−iκ
2
cS(t)e−κ

2
�
Γ�(t)−κ

2
cΓc(t) PN(t),

[
ρt
]
34 =

[
ρ0
]
34e

iω2te−iκ
2
c S(t)e−κ

2
�
Γ�(t)−κ

2
cΓc(t) PN(t),

(2.12)

and the populations are constant, [ρt]jj = [ρ0]jj , for j = 1, . . . , 4 and t ∈ R.

The proof of this proposition is a rather simple calculation. One can proceed as in [13–
15] (proof of Proposition 7.4 in [13]).

Remark 2.2. (1) The effect of spins 3, . . . ,N is contained entirely in the factors PN(t) and
P̃N(t). They only depend on the initial populations pj , j = 3, . . . ,N (see (2.9)), but not on
the off-diagonals, vj . This is explained by the fact that when tracing over a single spin, j ≥ 3,
we perform the operation Trspin j UρSj ,0V , where U, V are operators commuting with Sz

2
(energy-conserving interactions only!). Clearly the latter trace only involves the diagonal of
ρSj ,0.

(2) The oscillatory phases, eiωt, in (2.12) represent the free, uncoupled dynamics of the
spins. Consider the modified two-spin density matrix:

ρ′t = eit(−ω1S
z
1−ω2S

z
2)ρte−it(−ω1S

z
1−ω2S

z
2), (2.13)

(“interaction picture” dynamics of ρt). Because ρ′t and ρt are related by conjugation of a
unitary operator of the product form, eit(−ω1S

z
1) ⊗ eit(−ω2S

z
2), the concurrences of ρt and ρ′t are the

same. In other words, when examining concurrence of ρt, we may use formulas (2.12) with
ω1 = ω2 = 0.

2.1. Concurrence

Recall that the concurrence of the reduced density matrix, ρt, is unchanged when we pass to
the interaction picture ρ′t (see the remark explaining (2.13)). In the basis (2.7), the evolution
of ρ′t (2.13) is given by (2.12) with ω1 = ω2 = 0 and where the initial condition is (ρ′0 = ρ0):

[
ρ0
]
=

⎡

⎢⎢
⎣

p1p2 p1v2 v1p2 v1v2

p1v
∗
2 p1

(
1 − p2

)
v1v

∗
2 v1

(
1 − p2

)

v∗
1p2 v∗

1v2
(
1 − p1

)
p2

(
1 − p1

)
v2

v∗
1v

∗
2 v∗

1

(
1 − p2

) (
1 − p1

)
v∗
2

(
1 − p1

)(
1 − p2

)

⎤

⎥⎥
⎦. (2.14)
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2.1.1. Variation of N Dependence

For homogeneous initial conditions, pj = p for j = 3, . . . ,N, we have

PN(t) =
[
peiκ

2
c S(t) +

(
1 − p

)
e−iκ

2
c S(t)

]N−2
. (2.15)

Unless p = 0, 1, |PN(t)| oscillates in t between its minimum value |2p − 1|N−2 (when
cos(2κ2

cS(t)) = −1) and its maximum value 1 (when cos(2κ2
cS(t)) = 1) (We have

|peiκ2
c S(t) + (1 − p)e−iκ

2
c S(t)|2 = p2+2p(1−p) cos(2κ2

cS(t))+(1 − p)2.) Thewidth of the oscillations
becomes very narrow with increasing N. In the limit of large N, PN(t) is zero for all times,
except for the discrete set of t ∈ R satisfying cos(2κ2

cS(t)) = 1, in which case |PN(t)| = 1.
This implies that, for large N, all off-diagonal density matrix elements of ρt vanish

with the exception of [ρt]23 = ei(ω1−ω2)te−2κ
2
�
Γ�(t) (and [ρt]32, of course) for almost all values of

t. This suppression of off-diagonals comes from the large number of particles and is mediated
through the collective energy-conserving interaction. (For κc = 0 we have PN(t) = 1.)

In order to try to have a nontrivial dynamics for large N, one may scale the collective
conserving coupling constant as

κc −→ κc

Nη
, some η > 0. (2.16)

Then (2.15) becomes

PN(t) =
[
peiκ

2
c S(t)/N

2η
+
(
1 − p

)
e−iκ

2
c S(t)/N

2η
]N−2

. (2.17)

An expansion in large N yields

PN(t) = e−iκ
2
c S(t)[1−2p]N1−2η

e−2κ
4
c S

2(t)N1−4η[p(1−p)+O(N−2η)]. (2.18)

Thus as N → ∞,

PN(t) −→

⎧
⎪⎨

⎪⎩

e−iκ
2
c S(t)[1−2p]N1/2

e−2κ
4
c S

2(t)p(1−p)N1−4η, 0 < η ≤ 1
4
(
p /= 0, 1

)
,

e−iκ
2
c S(t)[1−2p]N1−2η

,
1
4
< η.

(2.19)

Remark 2.3. (1) By replacing, in these limits, κ
2
c by 2κ2

c , we obtain the corresponding limits
for P̃N(t).

(2) For 0 < η < 1/4, PN(t) vanishes as N → ∞.
(3) The rapid oscillating phases disappear if p = 1/2 (any η > 0) or η = 1/2 (any p).
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2.1.2. Asymptotic Concurrence (N → ∞)

(i) 0 < η < 1/4

The reduced two-spin density matrix (in the interaction picture) at time t is

[
ρ′t
]
=

⎡

⎢⎢⎢
⎣

p1p2 0 0 0
0 p1

(
1 − p2

)
v1v

∗
2e

−2κ2
�
Γ�(t) 0

0 v∗
1v2e−2κ

2
�
Γ�(t)

(
1 − p1

)
p2 0

0 0 0
(
1 − p1

)(
1 − p2

)

⎤

⎥⎥⎥
⎦
, (2.20)

from which we obtain the concurrence

C
(
ρt
)
= max

{
0,−2

[√
p1
(
1 − p1

)
p2
(
1 − p2

) − |v1||v2|e−2κ2
�
Γ�(t)

]}
= 0. (2.21)

Remember that |vj |2 ≤ pj(1 − pj). This shows that the N → ∞ asymptotic dynamics cannot
create entanglement at any time.

(ii) η > 1/4

Call the r.h.s. of (2.19) P∞(t) (a quantity still depending on N unless η = 1/2). By replacing
κ

2
c by 2κ2

c in (2.19), we obtain the limit of P̃N(t), which we call P̃∞(t). For η > 1/4 we have the
relation P̃∞(t) = [P∞(t)]

2. The reduced two-spin density matrix (in the interaction picture) at
time t is, for N → ∞,

[
ρ′t
]
=

⎡

⎢⎢⎢
⎣

p1p2 p1v2D�P∞(t) v1p2D�P∞(t) v1v2D
2
�
P∞(t)2

p1v
∗
2D�P∞(t)∗ p1

(
1 − p2

)
v1v

∗
2D

2
� v1

(
1 − p2

)
D�P∞(t)

v∗
1p2D�P∞(t)∗ v∗

1v2D
2
�

(
1 − p1

)
p2

(
1 − p1

)
v2D�P∞(t)

v∗
1v

∗
2D

2
�

[
P∞(t)2

]∗
v∗
1

(
1 − p2

)
D�P∞(t)∗

(
1 − p1

)
v∗
2D�P∞(t)∗

(
1 − p1

)(
1 − p2

)

⎤

⎥⎥⎥
⎦
,

(2.22)

where

D� = D�(t) = e−κ
2
�
Γ�(t), P∞(t) = e−iκ

2
c S(t)[1−2p]N1−2η

. (2.23)

The density matrix (2.22) is of the product form:

[
p1 v1D�(t)P∞(t)

v∗
1D�(t)P∞(t)∗ 1 − p1

]
⊗
[

p2 v2D�(t)P∞(t)
v∗
2D�(t)P∞(t)∗ 1 − p2

]
. (2.24)

This shows that the N → ∞ asymptotic dynamics is factorizable and cannot create
entanglement at any time.
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3. Numerical Results

(i) Let us first consider the case of two spins only, N = 2. In (2.12) we put for simplicity
Γ� = Γc = Γ and regard Γ and S as two independent parameters. Taking both spins initially in
the same state given by p, v, see (2.8), we examine the maximal concurrence, as a function of
S and Γ, for arbitrary fixed values of p and v.

We find that, for fixed p, v, the maximal concurrence is given at S = π/2, Γ = 0.
Having such values fixed and plotting the concurrence as a function of p, v, the maximal
concurrence is realized when p = v = 1/2; see Figure 1, where a plot of the concurrence as a
function of p, v is shown. Maximal generation of concurrence is thus obtained starting from
pure-state initial conditions (1/

√
2)(|+〉 + |−〉) for each spin.

(ii) Let us now consider the case of N spins. For concreteness we choose p = 1/2 for
all spins, (the traced-out ones and the two not traced-out ones). For the two not traced-out
spins we take off-diagonals v = 0.48. (Then p is close to v which favors larger entanglement
creation.) Recall that the dynamics is independent of the off-diagonals of theN−2 traced-out
spins (i.e., we do not have to specify the v of the N − 2 traced-out spins).

As mentioned after (2.11), we choose the form factor, fc(k) =
√
|k| χ|k|≤2πνc , with the

cut-off frequency equal to the thermal frequency, νc = νT = kBT/h, at room temperature,
T = 300 K.

In Figure 2 we investigate the effects of an increase in the coupling parameter, κc. The
first effect is a time shift for the concurrence evolution, described by a scaling, t → κ

2
cνct; see

Figure 2(a), where νc is the cut-off frequency. The second effect is a reduction of the maximal
concurrence in a smooth way; see Figure 2(b). As one can see, the effective decrease in
amplitude for not too strong coupling strength, κc, is relatively small. For instance, changing
κc for N = 2 by one order of magnitude from 0.04 to 0.4 changes the amplitude by only 27%.
The percentage change is almost the same for larger N values; see Figure 2(b).

In Figure 3 we show that the creation of concurrence decreases with the number of
spins. In (a) we plot the concurrence as a function of (rescaled) time for various values of
N = 2, . . . , 32. As one can see, the same time rescaling is also valid for N > 2. Moreover,
the maximum concurrence created, Cmax, reported in (b), decreases exponentially in N in
the range 10 < N < 150 and faster than exponentially outside this range. For larger N, the
concurrence decays superexponentially inN. ForN exceeding 200, the concurrence becomes
too small to be significant (of the order 10−4).

It is also interesting to note that the graph of concurrence shows collapses and revivals
and that the revival times for N > 2 are always less than the revival time for N = 2. It
is also interesting to consider how the collapse time, τc, defined as the first time at which
concurrence drops abruptly to zero, depends on the number of spins,N. This study has been
reported in Figure 3(c) and shows that the rescaled collapse time decays exponentially with
the number of spins: τc = κ

2
cνctc � exp(−αN), where α = 0.0838 ± 0.0002. (See dashed line in

Figure 3(c).)
(iii)One can also vary the initial conditions for the spins by choosing independent p1,2

and v1,2, while all other spins have the same value pj = 1/2, j = 3, . . . ,N (their off-diagonals
vj do not influence the dynamics at all).

In order to simplify the problem, we also set p1 = v1 and p2 = v2 and consider the
maximal concurrence as a function of two independent parameters, p1 and p2, only.

An example of the 3D plot obtained is reported in Figure 4: the maximal concurrence
is realized for p1 = p2 = v1 = v2 = 1/2, independently ofN (in the pictureN = 40, but similar
plots are obtained for other values of N).
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(iv) The numerical analysis of the rescaled model with κc replaced by κc/N
η shows

that the concurrence is always a decreasing function of N and that the maximum of the
created concurrence is a universal function of the number of spins N, independent of η for
η > 1/4.

Results are shown in Figure 5, where the dashed line is the best exponential fit
exp(−aN), with a = 0.0177 ± 0.0003, the best fitting value, for the cases η > 1/4. The same
figure shows that when η ≤ 1/4, the decay is superexponential and no universality occurs.

This suggests that no power law scaling with N of the coupling strength can
compensate the rapid decay of concurrence with the number of spins.

Qualitatively similar results, not reported here, can be obtained by changing the ratio
between the thermal and cut-off frequency in the range (0.5, 4).

4. Conclusion

We have analyzed the two-qubit (two effective spin) entanglement in an N-qubit open
system, where individual qubits interact through a collective thermal environment. We have
demonstrated that concurrence (a measure of two-qubit entanglement) quickly decays with
increasing number of surrounding qubits. It follows from our consideration that, for creation
of entanglement by implementing our approach, one has to use a small number of qubits
collectively interacting with the thermal environment, preferably only two qubits. In this
paper, we consider a quantum noise generated by a thermal bosonic environment, interacting
in a purely dephasing way with qubits, but no Markovian approximation has been made. In
contrast, it has been shown [16–18] that anN-qubit register can be driven to entangled target
states (within awide class of states), under an appropriately engineeredMarkovian dissipative
dynamics in Lindblad form and that the convergence rate to the target state is independent
ofN. This entirely different noise has thus a completely different effect on entanglement.

The results of this paper are important for a better understanding and a characteriza-
tion of the collective thermal environment and its ability to create and destroy entanglement
in many-particle open quantum systems. Any quantum information processor could be used
for the study of entanglement induced by a thermal environment, as, for example, two (or
more) ions in an ion trap quantum computer [2] or two (or more) superconducting qubits
[19] or an NMR quantum information processor [2] operating at room temperature. In the
latter case, the experiment is performed with an ensemble of many identical molecules, each
having a similar number of weakly interacting nuclear spins. One can study in this system,
for example, how the collective vibrational modes of a molecule (thermal environment)
influence the two-spin “effective entanglement” in the ensemble of molecules, depending
on the number of spins in a molecule. Important and relevant systems are represented
by photosynthetic complexes in which quantum effects for exciton dynamics and primary
charge separation have been recently discovered [20–23]. Here, the effective spins are exciton
or electron sites (pigments), and the thermal environment represents the vibrational protein
modes.
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