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Abstract

Classical and quantum properties of the Bunimovich stadium in the diffusive regime are reviewed. In particular, the
quantum properties are directly investigated using an approximate quantum map. Different localized regimes are found,
namely, perturbative, quasi-integrable (due to classical cantori), dynamical and ergodic. ©1999 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Long time ago, some physicists in the Siberian win-
ter were playing dice with chaos and quantum me-
chanics. This game resulted in a paper which has been
quoted N+1 times in literature [1] and which is known
as a milestone in Quantum Chaos.

Far from being an isolated branch of physics, Quan-
tum Chaos has revealed its importance in the last
twenty years in many important physical applications
of different fields: Solid State, Nuclear, Atomic and
Mesoscopic physics, just to give a few examples.

The common paradigma in Quantum Chaos is the
so-called kicked rotator model (KRM) whose dynam-
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ics is described by the Chirikov standard map (CSM).
It represents the safe retreat of many researchers work-
ing in Quantum Chaos. Indeed, even if still now papers
dealing with some hidden property of the CSM appear
[2] (after the monumental work of Boris Chirikov [3]
published in 1979), or regarding new mathematical
advances in the knowledge of the Floquet spectrum of
the KRM [4], we may say that its general behavior is
quite well understood, at least from the physical point
of view.

In this paper we show how a different physical prob-
lem can be explained using old results borrowed from
KRM.

The model under current investigation is the Buni-
movich stadium [5]. The properties of this model
are well known in literature, both from physical and
mathematical point of view. Here we are interested in
this particular billiard, characterized by a straight line
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2a much smaller than the semicircle radius R: € =
a/R « 1. Preliminary studies [6] have shown that the
classical motion in the angular momentum is diffusive
and it can be conveniently described by a 2D area
preserving map. In the same paper [6] the study of the
nearest neighbor level spacing distribution (NNLSD)
exhibits a different behavior depending on the energy
range where the statistics is taken. In particular, at
fixed ¢ « 1 the NNLSD shows a smooth crossover
from a Poisson to a Wigner-Dyson distribution as
the energy is increased. The borders below and above
which one can expect a particular distribution were
theoretically predicted and confirmed by numerical
data [6]. The region characterized by intermediate
statistics [7] can be associated, on the basis of a well-
defined picture [7,8], with the presence of dynamical
localization. In a sense, the qualified adjective “dy-
namical” was, at that stage quite inappropriate. Indeed
only an indirect proof of dynamical localization were
given, based on level statistics. The first example of
localized eigenstates, in the angular momentum basis,
was given in [9,10] for a rough deformation of a cir-
cular billiard. In this case, due to the finite number of
harmonics describing the smooth modification of the
boundary, direct exponential localization was found
and the equality between quantum localization length
and classical diffusion rate established.

In this paper we enforce this viewpoint by studying
directly the quantum dynamics instead of eigenfunc-
tions and eigenvalues. This can be efficiently realized,
from the numerical point of view, only quantizing the
classical map. The obtained numerical data [11] indi-
cate that quantum equilibrium distributions, different
from the classical ones, are algebraically localized in
the angular momentum space. Further numerical in-
vestigations [12] of the stadium eigenfunctions con-
firmed their algebraic localization in the angular mo-
mentum space. Nevertheless it is possible to distin-
guish among different quantum regimes.

Besides the perturbative regime, characterized by
trivial periodic dynamical behavior, other different
kinds of localization can be identified. The first
one, called quasi-integrable, has been associated to
classical cantori [16]. Another one is marked by dy-
namical localization, despite the algebraic localized

distribution (with this word we mean a situation in
which classical diffusion rate and quantum localiza-
tion length have the same numerical value). Recent
analytical studies [13] support this analysis.

The paper is organized as the following: in Section
2 we consider the classical dynamics inside the Buni-
movich stadium as given by a suitable perturbed twist
map. Classical properties of the discontinuous map are
then investigated in Section 3, while Section 4 is de-
voted to its quantum properties. Finally in Section 5
the estimates about different borders are summarized.

2. Mapping the Bunimovich stadium

The ensemble dynamics of classical point particles
having energy E, unit mass and initial angular mo-
mentum /o, colliding elastically inside the Bunimovich
stadium is described, when € « 1, by the following
map (R = 1) [6]:

I=1-—2¢ sinf@sgn(cos6),/2E — 1(2),

6 =6 +m —2asin({/+/2E), mod-2x. ¢))

In (1) @ is the angle measured from the center of the
stadium, / is the angular momentum measured from
the same center and the overlined variables (8, [) in-
dicate the values taken after the collision with border.
This map has been obtained by neglecting collisions
with the straight lines, terms O(e?) and in the local ap-
proximation (small variations in the angular momen-
tum). Indeed, it is easy to understand that while in
the first equation of (1) / can grow infinitely, the sec-
ond equation loses its validity when |/| approaches its
maximum value /2E. The existence of such a bound
is a trivial consequence of the energy conservation.

If we now put [o = 0 and approximate asin(x) with
its argument (since we must exclude the values |x| ~
1), we get

I=1+ksind sgn(cos ),
6=0+TI, mod-2x, 2)
where we put k = 2¢v2E, T = 2/4/2E,1 — —I

and 7 has been neglected since sin 8 sgn( cos @) is 7-
periodic. Map (1) has been obtained [6] for ¢ « 1,
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therefore (2) holds when k7T = 4¢ < 1. The case
kT > 1, which represents a possible regime for (2)
has no physical meaning here and it will not be taken
into account.

Map (2) on the cylinder [0, 27) x (—o0, c0) has
been recently investigated [11] for kT < 1. Results
can then be extrapolated to our case assuming |/| <
V2E. In the next sections we present a detailed study
of classical and quantum properties of map (2).

3. Discontinuous twist maps

Let us write (2) by introducing the variables J =
IT, K = kT in the following way:

J=J + K sinf sgn(cos6),
9=6+J, mod-2m, 3)

such that we have single parameter K. Map (3) be-
longs to a particular class of discontinuous twist maps.
We use the word “discontinuous” to mark the differ-
ence with the CSM, for which J — J = K sin6 is a
continuous function in the interval [0, 27).

The most studied case in the set of discontinu-
ous functions is the saw-tooth map (STM) where the
change in the angular momentum is given by J—J=
K (60 —x)/m. For this map the classical transport prop-
erties have been studied, quite long ago [14]. The rel-
evant difference of the STM, if compared with the
CSM, is characterized by the absence of a KAM struc-
ture. Indeed, since the hypotheses of the KAM theo-
rem are not satisfied, we do not expect KAM tori to
exist for any K value, independent from its smallness.
Namely, different from the CSM, where for K < 1
the motion is typically regular on invariant tori, here
one finds absence of KAM tori for any K; neverthe-
less, invariant structures still exist. Indeed cantori can
be defined in the same way as in the STM [17]. An
example of the motion in the neighborhood of cantori
is shown in Fig. 1. As one can see the motion is far
from being chaotic even if, upon increasing the time,
a single orbit can explore, in a dense way, the whole
phase space. Moreover, the resulting motion is conve-
niently described by a diffusive equation for the dis-
tribution function as can be inferred by looking at the

-
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Fig. 1. Poincaré surface of section for map (3) and K = 0.001.
One particle has been iterated 2 x 10* times.

behavior in time of the average squared momentum
(see Fig. 2(a)).

The linear growth in time, after a transient time (see
Fig. 2) and the corresponding Gaussian distribution in
angular momentum, at a given time (see for instance
{6]), are usually taken as a common reference for the
existence of a diffusive motion [3].

For such discontinuous maps, the resulting coeffi-
cient diffusion (extracted numerically from a linear fit
of Fig. 2(a)), can be shown to depend on the parameter
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Fig. 2. Growth of the average momentum spreading in time for
the discontinuous map (3) at K = 0.001. (b) A magnification of
the small area indicated among dashed lines in the left corner
of (a). The initial ensemble consists of 2000 particles having the
same momentum Jj = 0.1 and random phase 6.
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Fig. 3. Diffusion rate for the discontinuous map (2) for different
k and T versus k2T '/2. Qpen circles are for T = 1, full circles
for k = 0.01; both for kT < 1. Full line is the best fit line
D = 0392172,

K in the following way [6,11,14]:
D = limy_, 0o (AT (1)) /1 x K72, “)

where ¢ is the iteration time.

In terms of the original variables one gets D =
(AI*(1))/t o k/>J/T (see Fig. 3). The regime char-
acterized by a diffusion coefficient scaling as K3/2 has
been called slow diffusion [11]. This marks the differ-
ence from the standard quasi-linear regime (K > 1)
where typically one has D ~ K? (superimposed to
oscillations [15]).

The dependence on the power 5/2 has been ex-
plained [14] in terms of a transport model based on a
Markovian partition of the phase space for the STM
and it clearly indicates that the random phase approx-
imation [3] cannot be applied in this case.

Phases are indeed correlated within a time 7 (see
Fig. 2(b)) during which the resulting motion can-
not be chaotic nor diffusive. A correct evaluation of
this timescale could be a key in understanding the
“strange” exponent 5/2, even if numerically it is quite
difficult to obtain sharp results.

4. Quantum map dynamics

Now we turn to the quantum analysis. Adopting
the nowadays standard procedure [1] we analyze the
quantum evolution of map (2) by means of the one-
period evolution operator given explicitly by (4 = 1)

Uy = e~ iTH> /2 —ik] cos (5)

where 7 = —i3/80. Apart from the modulus in the
potential V(@) = | cos 8| the evolution operator Ur is
exactly the same as the kicked rotator one. Anyway
the presence of the modulus leads to many important
physical differences. Indeed, written in the momentum
basis n, the matrix elements U, ,, = (n|Ur|m) decay
as a power law |U;, | ~ 1/|n — m|*> away from the
principal diagonal (and not faster than exponentially
as for the KRM). This case has been investigated for
banded random matrices [20], where it was shown that
eigenfunctions are also algebraically localized with the
same exponent.

The presence of power law localized eigenstates
has major consequences. First of all it is not, a priori,
obvious if the mechanism connected with the expo-
nential dynamical localization holds even in this case.
Moreover, while in case of exponential localization a
unique measure of localization is defined (up to a con-
stant), for algebraical localization different definitions
of localizations can, in principle, give rise to different
parametric dependences.

Here we consider, as a measure of the degree of
localization, the variance &, of the stationary distribu-
tion P(n) = |y, (t — 00)|%:

1/2

L& =D n*Pm| ©6)

which we expect will have a well-defined classical
limit.

4.1. The kicked rotator model for kT < 1

Before we turn to numerical results, it is useful to
consider, as a common reference, the KRM. This is
far from being pedagogical, since the case we are in-
terested in here (kT < 1) has not been an object
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of intense investigation in the past. Moreover, in this
region, characterized by classical regular motion, it
is quite difficult to get homogeneous results. For in-
stance, one should expect that the localization length
of the stationary distribution strongly depend on the
initial conditions. Starting within a regular region (sta-
ble island around periodic orbits) would result in a
spreading width surely not larger than the size of the
island (excluding the exponentially small tunneling
among different classical tori). This was indeed what
Shepelyansky [18] found: the spreading of the quan-
tum stationary distribution can be roughly identified
with the width ~ /k/T of the main classical reso-
nance, whose size is /k/T, when kT < 1. Another
result was obtained again by Shepelyansky [19] by in-
vestigating directly the quasi-energy eigenfunctions:
he found direct proportionality between their localiza-
tion lengths and the parameter k:/ >~ k/4. The dif-
ferent regimes in this undercritical case were also re-
ported by Izrailev [7]. According to his Fig. 3 (see also
text) the case K = kT < 1 is marked by two different
quantum borders. One is the condition for the appli-
cability of common perturbative theory (k 2~ 1) while
the other one is the condition for the semiclassical ap-
proach to describe quasi-periodic or chaotic motion
(Shuryak border k >~ T). When k < T the size of the
nonlinear resonance is less than the distance between
neighboring unperturbed levels and the quasi-periodic
classical behavior is suppressed by quantum effects.

Our data on the behavior of &, confirm and extend
this general picture. They can be summarized as fol-
lows:

1. &, depends, for K = kT < 1, only on the scaling
parameter k/T.

2. As a function of k/T two different regimes can
be numerically detected, one linear, when k < T
(below the Shuryak border) and another, for k >
T, where &, o« k/T.

These results are presented in Fig. 4.

As one can see the scaling law is accurate up to
eight orders of magnitude. The intersection point be-
tween the two lines (k >~ T called Shuryak border),
is the only transition point (for ;) we are able to de-
tect numerically. As initial state we chose ¥, = 8, 9.

Since typically the variance &,(t) = /(An?(1)) is
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Fig. 4. Localization length as a function of the scaling parameter
k/T for the kicked rotator and kT < 1. Full symbols are obtained
by fixing k and varying T: circles (k = 0.01), squares (k = 1),
asterisks (k = 10). Open symbols are obtained by fixing T and
varying k: circles (T = 0.01), squares (T = 0.1). Dashed line is
1.5k/T (linear regime), while dotted line is 0.94/%/T.

an oscillatory function of the iteration time ¢ (quasi-
periodic motion) the average (in time) value has been
taken. Fluctuations are typically quite large, often on
the same order as of the average value. On the basis of
previous results we identify two different regimes, for
the KRM in the classically regular case kT < 1: the
perturbative one &, =~ k/T and the quasi-integrable

one &, >~ k/T.

4.2. The discontinuous quantum model in the slow
diffusive case

In this section we analyze the quantum behavior
of the discontinuous map (2). The classical map is
a good approximation to the real billiard dynamics
only for € = kT /4 <« 1. This means that we should
consider, as a physical regime, only the slow diffusive
one. The condition of applicability |{|/~/2E < 1 will
be considered in detail in Section 5.

Iteration of the quantum map (5) in this regime typ-
ically gives rise to the second moment (An?(1)) which
is an oscillatory function of the time 7. In particular,
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Fig. 5. Wave packet spreading as a function of the iteration time
r. Here £, (1) = [3_, n* [, (1)|*1Y/2: () for k = 0.01 and T = 0.1
(perturbative region), dashed line is the average &, = 0.033; (b)
for k =1 and T = 0.01 (quasi-integrable region), dashed line is
the average &, = 6.33; (c) for k = 100 and T = 0.001 (dynamical
localization region), dashed line is the average &, = 650.

it is possible to characterize values of the parameters
k and T which leads to periodic or irregular oscilla-
tions. In Fig. 5 we show, for different k and T, the be-
havior of &, in time. As dashed lines we indicate the
average values over few oscillation periods. We will
come back to this picture later on when we discuss the
different quantum regimes.

By varying & and T and taking &, as in Fig. 5, we
obtain three different scaling regions: the first one for
k < T in which &, ~ k/T, a second one for 1/+/T >
k > T characterized by &, ~ /k/T and the third one,
for 1/+/T <k < 1/T, in which &, =~ D (see Fig. 6).

It is easy to identify the first two regions in close
analogy with those found for the KRM (see Section
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Fig. 6. Localization length &, as a function of &/ T. Three different
sets of cases are shown, each one keeping T fixed and varying
k: full circles (T = 0.001), open circles (T = 0.01) and asterisks
(T = 0.05). Dashed line is k/3T while dotted is /k/7 /2. Full
lines are &, = D(T) for the three different sets, from the left to
the right 7 = 0.05, 0.01, 0.001.

6

4.1). While the existence of a perturbative region with
the same characteristics of the KRM is not surprising,
much care must be taken in interpreting the quasi-
integrable region. Indeed, while for the KRM we may
properly speak about width of classical resonance, in
this case we have no classical resonances at all. Never-
theless a close inspection of Fig. 1 indicates the pres-
ence of islands of “quasi-integrability” which means
that trajectories spend a lot of time before leaving from
them. This region is indeed dominated by classical
cantori, which act, from the quantum point of view as
total barriers to the motion. These effects, namely the
quantum propagation through classical cantori have
been investigated in Refs. [21-23]. In particular, a re-
lation between width of the holes of cantori and &
should exist, in order to obtain a meaningful semiclas-
sical limit. For instance Mackay and Meiss [23] pro-
posed that cantori could act as proper tori if the flux
exchanged among different turnstiles is less than 7.
Let us now analyze in more details the existence of
a third scaling region for the localization length. The
classical analog of these quantum regions of local-
izations is a diffusive regime (after a transient time).



F. Borgonovi et al./Physica D 131 (1999) 317-326 323

Nevertheless the localization found is not “dynami-
cal” in the sense that it cannot be derived for instance
by taking the approach used by Chirikov et al. [24]
for the KRM. Moreover, since this kind of localization
is shared by the KRM, whose classical counterpart is
regular motion, it cannot be followed by classical dif-
fusive excitation. A look at Figs. 5(a) and (b) confirms
this view.

On the other side, if the typical relation of the dy-
namical localization /, ~ D holds true, the diffusion
rate, in order to produce an initial quantum classical-
like diffusive spreading, has to be larger than the size
of the classical “quasi-resonance”. This in turn allows
us to estimate the second transition point as follows:

D = Dok>*VT = ¢ kT, )

which gives k., = /c¢/DoT (where ¢ and Dy are
numerical constants of order 1. One can then guess
that, if any, the dynamical localization regime can exist
for k > ke = /c/DoT.

Our numerical computations indicate that the dy-
namical localization regime indeed exists, as can be
inferred from Fig. 6. The sharp rise of the full lines
shown in Fig. 6 (one for each T since the diffusion
rate depends on T) indicates, without any doubt, the
validity of the previous picture and the existence of
the critical points, k >~ 7 and k = 1/ VT.

The existence of these thresholds for the Buni-
movich stadium, and the regime of quasi-integrability
as well, has been confirmed analytically by Prange et
al. [13]. Indeed they were able to find an analytical
expression for the eigenfunctions up to evVE ~ 1,
which in terms of map variables reads k ~ 1/JT.
Above the threshold e+/E ~ 1 the semiclassical per-
turbative approach fails. According to our point of
view this represents the k value necessary to start
the classical-like diffusion process in the presence of
slow diffusion.

Let us add few comments about the shape of the
stationary distribution. In all cases we have found a
good agreement with a power law distribution P (n) =
|n — no|™*. In Fig. 7 we show the correspondent sta-
tionary distributions for the cases of Fig. 5. The lines,
indicating the power law behavior, are drawn to guide
the eye. This means that results obtained from banded
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Fig. 7. Stationary distribution averaged over few oscillation periods
as a function of the momentum n: (a) for k = 0.01 and 7 = 0.1
(perturbative region); (b) for k = 1 and T = 0.01 (quasi-integrable
region); (¢) for k = 100 and T = 0.001 (dynamical localization
region). Lines represent the power 1/ n* and are shown to guide
the eye.

random matrices [20] can be extrapolated even when
both randomness and dynamical chaos are absent (per-
turbative and quasi-integrable regions).

The presence of power law localized states for the
discontinuous map, also recently confirmed in [12] for
the stadium eigenfunctions, should be somehow put
in relation with the exponential localization found in
[9,10] for the eigenfunctions of a rough billiard. This
peculiarity should be in turn related with the particu-
lar boundary shape perturbation. Indeed, while in the
rough billiard considered in [9,10], a finite number M
of harmonics is necessary in order to produce the de-
formation from the circle, the stadium boundary per-
turbation is not analytical. The classical rough map is
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Fig. 8. Inverse participation ratio ipr as a function of k/7T. Three
different sets of cases are shown, each one keeping T fixed and
varying k: full circles (T = 0.001), open circles (T = 0.01)
and asterisks (T = 0.05). Dotted line is 0.64/k/7. Full lines are
ipr = D(T)/4 for the three different sets, from the left to the
right T = 0.05, 0.01, 0.001.

shown [9,10] to be chaotic when € > e, ~ M52 It
is then clear that when M — 0o KAM regular struc-
tures disappear and the situation depicted by the dis-
countinuous map appears.

To end this section let us remark that a similar
behavior happens if another definition of localiza-
tion length is taken. In Fig. 8 we show the inverse
participation ratio of the quantum distribution ipr =
1 /anl/f,,]4 as a function of the scaling parameter
k/T. The absence of a perturbative region is due to
the fact that, by definition, ipr > 1. Moreover, let
us note that a numerical constant has to be added in
order to follow numerical data. Namely, the dynami-
cal localization regime is marked by ipr ~ D/4. The
simple proportionality between [, and ipr, even if
not surprising (the same happens for the KRM), has
to be considered accidental for power law localized
distributions.

5. Borders for the stadium

The results found in the previous sections can be
extended to the Bunimovich stadium. This will lead to

10° - 13 L L
10 10°

Fig. 9. Perturbative border for the Bunimovich stadium. N, is
the quantum number corresponding to the eigen energy E. Solid
circles represent numerical data, and straight line is the best-fit
Np = 0.57/¢' 0%,

important estimates which enable us to discriminate
between different physical situations. In particular the
critical points found previously give rise to relations
between the energy and the small parameter €.

The first regime (perturbative), is characterized by
k < T or 2E¢ < 1. From the billiard point of view
this means that levels having an energy less than E ~
1/€ can be obtained perturbatively from those of the
unperturbed spectrum (¢ = 0, e.g. the circle). The nu-
merical study of the energy spectrum gives a confir-
mation for this border. We label the energy levels as
En(€). If € is sufficiently small we can assume the
shift AE = En(e) — En(0) to be quite small. On the
other hand the energy spectrum is characterized by
an average level spacing § Ey which is given approx-
imately by the Thomas—Fermi formula [25]:

SEy ~ En/Np ~ 81%/mR?, 8)

where m = 1 is the particle mass, R = 1 the circle
radius and My, is the number of levels up to energy E.
In order to be in a perturbative regime there should be
no levels overlapping, namely AEy(¢) < §Ey. This
gives a relation between the energy E (or the level
number Ny) and the small parameter €, which can be
detected numerically. We show our numerical results
in Fig. 9. The best fit gives rise to 0.57/¢!*, which
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is in a good agreement with the theoretical predic-
tion. Numerically, Ny, is obtained by comparing the
eigenenergy list of the circular billiard and that of the
perturbed Bunimovich stadium of €.

Moreover, a kind of semiclassical approach is pos-
sible [13Jup to k = l/ﬁ, or E ~ 1/64 (we omit a
numerical constant in front of this expression: its value
can be obtained only numerically). This means that
the analytical approach to eigenvalues and eigenvec-
tors is possible up to this energy value. Nevertheless,
as soon as the map dynamics correctly approximates
the real dynamics, the localization length should have
a different energy dependence. Even in this case a di-
rect numerical approach is needed in order to give a
definite answer.

Let us now come to the much more interesting case
marked by the dynamical localization. We have found
that this is possible only for E > 1/€*. According to
the dynamical localization theory the quantum spread-
ing will occur up to a time fg =~ D called break time.
Following [6] we may speak of a proper localized
quantum regime only if 1p < fery, Where fero is the
classical time in order to reach a stationary ergodic
distribution, estimated as AlZ ~ D1y or tg ~ ¢~>/2,
Would g be larger than fe, classical and quantum
distributions will both reach an ergodic stationary dis-
tribution. Putting tg = ferg o1 E ~ € we get the last
critical point above which we expect quantum as well
classical ergodicity.

The approach to ergodicity cannot be studied using
this map. Indeed it represents a good approximation
to real dynamics only for t <« fr,. This means that
our results cannot be compared with those found by
Frahm and Shepelyansky [26] about the approach to
ergodicity via a Breit—-Wigner regime. This is a situ-
ation characterized by eigenfunctions delocalized on
the energy shell but with many strong isolated peaks
of probability. The presence of isolated peaks of prob-
ability in our case (see Fig. 7) is instead due to the
classical phase space structure.

While the ergodicity regime has been previously
investigated [6] using the NNLSD, the existence of
two different localized regimes (¢ ~! < E < ¢™* and
€% < E < €79) has been only guessed on the ba-
sis of the similarity with the approximate map. In this

case, the study of NNLSD should be probably accom-
plished by a direct study of eigenfunctions. This we
argue, since it is not at all obvious how different kind
of localizations can affect the level statistics. A pre-
liminary study in this direction can be found in [12].

Let us note that, in order to correctly approxi-
mate real dynamics with the map, one has to require
[1|/~/2E < 1,0rIT < 2. One should then require that
in both, quasi-integrable and dynamical localization
regime, £&; T < 2. This in turn means either

TVAIT = ViT <2 ©

(which is always justified since kT = 4¢ and € < 1)
or

k5/2T3/2 <2,
which reduces to
k(kT)/* > eE'?e? = V2657 <3

or E < 1/€ which is the condition in order to have
classical ergodicity. This is the reason why we neglect
this condition in Section 4.

Most of the results were obtained by approximat-
ing the real quantum dynamics by means of a quan-
tum map which is the quantum analog of a classical
map approximating the classical dynamics. This kind
of procedure is not new (see for instance [27]). One
may wonder if this is, at the end, close to the original
model. The answer can come, of course, only from a
direct numerical or experimental analysis of the quan-
tum dynamics of wave packets inside the billiard. Nev-
ertheless it is significative that different approaches on
the same model [13] give results in good agreement
with ours.

After the completion of this work we became aware
of other related works on the subject [12]. In partic-
ular their numerical data, while confirming the exis-
tence of these regimes, indicate other different bor-
ders. From the map point of view, the transition at
k = T(E ~ 1/e) is very sharp, but we cannot ex-
clude numerically the presence of a further border at
k ~ T'73 (E ~ ¢73). Indeed a close inspection at Fig.
6 indicates a very smooth transition towards the line
&, = D. Further numerical calculations are required
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in order to show if the quantum map also shows this
border.
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