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Abstract

The thermal properties of a quantum dynamical model of two interacting spins, with chaotic and regular components,
are investigated using a finite two-particles symmetrized basis. Chaotic eigenstates give rise to an equilibrium occupation
number distribution in close agreement with the Bose~Einstein distribution despite the small number of particles (n = 2).
However, the corresponding temperature differs from that derived from the standard canonical ensemble. On the other side,
an acceptable agreement with the latter is restored by artificially randomizing the model. Different definitions of temperature

are then discussed and compared. © 1998 Elsevier Science B.V.
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The concept of quantum ergodicity, and its con-
nections with the foundations of statistical mechanics,
have a long history which, in the last years, has re-
ceived a new impulse from the investigation of quan-
tum systems which are chaotic in the classical limit.
The important issue here is twofold. First, one would
like to know if such quantum systems display some
sort of chaotic behaviour; second, if this behaviour
will provide foundations for quantum statistical me-
chanics. In other words, the problem is whether an
N-body isolated system, which, on the classical side,
displays sufficiently strong chaotic properties, will, on
the quantum side, give rise to conventional statistical

properties, such as, e.g., the Bose-Einstein (BE) or
Fermi-Dirac (FD) distributions [1,2]. The first prob-
lem has been widely investigated for single-particle
systems; not so for many-body systems, essentially
because such systems are not easily accessible to nu-
merical investigations. Instead, little is known about
the second problem.

Whereas early studies on the foundations of quan-
tum statistical mechanics did not attach special im-
portance to the structure of eigenstates, quantum er-
godicity is nowadays associated with eigenstates be-
ing homogeneously spread, in an appropriate statisti-
cal sense, over the whole energetically allowed range.
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Much of our current understanding of the structure of
eigenstates for classically chaotic systems is based on
the study of single-particle systems, and on the analy-
sis of eigenfunctions of random matrices, which have
been often used as models for quantum chaos. In par-
ticular, suitably constructed Wigner banded random
matrices (WBRM) [3] are conjectured to preserve
many of the spectral properties of “chaotic” Hamil-
tonian matrices [4]. For WBRM, several results are
known [5-8], concerning spectrum statistics, struc-
ture of eigenstates and of the local spectral density
of states (also called strength function), and condi-
tions for quantum ergodicity have been given [8].
These results provide paradigms of quantum ergodic
behaviour, which should be tested on realistic Hamil-
tonians.

If quantum ergodicity can be established along such
lines for quantum many-body systems, then the prob-
lem arises, whether it gives rise to some sort of sta-
tistical equilibrium. One would like to know whether
the quantum averages of the occupation numbers of
single-particle energy levels, taken over many-body
ergodic eigenstates (or, more properly, over mixtures
of eigenstates with energies lying in a narrow selected
range), yield some statistically stable distribution law;
if this is the case, how large must the number of par-
ticles be, in order that this distribution reproduces the
conventional Fermi-Dirac or Bose—Einstein statistics?

This theoretical approach has been advocated in
Refs. [9-11] for a system with two-body random in-
teraction. In this Letter we numerically investigate the
just sketched theoretical issues on a dynamical con-
servative system of two interacting particles, which,
under appropriate conditions, is classically chaotic in
some energy region. Such models have been proposed
and investigated within the framework of quantum
chaos [ 12-14]; here we analyze it from the standpoint
of statistical mechanics, and show that thermalization
occurs in the classically chaotic energy region, in a
sense that will be discussed below.

We first review some fundamental facts about its
classical and quantum behavior [12,14]. The model
describes two coupled rotators, with angular momen-
tum L, M and Hamiltonian

H=H0+V=(L1+Mz)+LxMx‘ (D)

It may be used to describe the interaction of quasi-

spins in nuclear physics. Constants of motion are H =
E, L? and M2. It is worth to mention that in this form
the dynamical variables L, M are not canonical.

The analysis of the surfaces of section reveals a
large number of regular trajectories covering invari-
ant tori when L%, M? are both very small or very
large [12]. To simplify the problem we set L = M. In
such a case the most interesting situation occurs when
1 < L < 10 where, depending on the energy value
E, regular and chaotic regions coexist. Typically when
|E| is close to the maximum allowed energy Emax =
L? + 1 [12] trajectories are regular while for E >~ 0
the islands of stability become very small and chaotic
motion dominates.

Quantization follows standard rules, and angular
momenta are quantized according to the relations L* =
M? = F2(1+ 1) where [ is an integer number. There-
fore, for given ! the Hamiltonian is a finite matrix, and
the semiclassical limit is recovered in the limit / — oo
and £ — 0 keeping L? constant.

The matrix elements in the basis |/;, m,) have the
form

<l; ’ nl; |H0|125mz> = amz,mé 61; N Al +mg),
<llz,le]V|lZ,mz> = '}iﬁzamz,mgilal:,lgj:l

[+ (=L + D U+m) U—m+ D172, (2)

with [,, m, integers, —I < [, m; < L.

The z-component of the total angular momentum
J, = L, + M, (which is the unperturbed Hamiltonian
Hp) obeys the selection rules AJ, = 0,25, so the
subspace spanned by the states with odd J, can be
separated from that with J, even (there are no matrix
elements for the transition between them). In what
follows, we fix J, = Hy even (multiple of £).

A key point in our approach is to represent the
Hamiltonian in the symmetrized two-particle basis of
non-interacting particles. This corresponds to the well-
known “shell model” representation used in atomic
and nuclear physics. Here, we restrict our considera-
tions only to symmetric states with respect to the ex-
change of the two particles. In the symmetrized basis
each set of states with fixed even Hj has a degeneracy
I+ 1 —|Hg|/2A, and the dimension of the Hamiltonian
matrix is N = (I + 1)2. Finally, we reorder the ma-
trix according to increasing unperturbed energy, and
thus obtain a band matrix, with high sparsity within
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the band (each line has at most 5 elements).

Direct diagonalization of such a matrix gives the
eigenfunctions ¢,(E,,) of the total Hamiltonian H
represenied in the ordered symmetrized two-particle
basis [n). Here ,(Ey,) is the nth component of the
eigenfunction having E,, as eigenvalue. A detailed
analysis of the structure of eigenstates [14] reveals
that eigenstates which belong to the classical chaotic
region are ergodic, in the sense that they fill a range
of unperturbed energies, in a way which corresponds
to the classical microcanonical distribution. Here, dif-
ferently from Ref. [14], we concentrate on the dis-
tribution of the occupation numbers of single-particle
states. The distribution n; of occupation numbers of
single particle levels s can be directly obtained from
eigenfunctions. Given an eigenfunction ¢,(E,,) one
can write

ns(En) = Y _ |n(En)[*(n|fis|m), (3)

where 7 is the occupation number operator. The term
(n|fi;|n) equals 0, 1, 2 depending on how many parti-
cles are located on the specific single-particle level s.
In Fig. 1 some examples for the occupation numbers
distribution (histograms on the left column) are given,
together with the corresponding eigenstates (right col-
umn). One can see a strong difference between the
distributions obtained from “regular” eigenstates, be-
longing to the stable region (by,b;), and those ob-
tained from ergodic ones, belonging to the chaotic re-
gion (b3, by). In the stable region close eigenstates in
energy E,, yield completely different distributions n
(see Fig. 1 (ay,az)), which means that there is no
equilibrium in the statistical sense {11].

In contrast, in the classically chaotic region the form
of the distribution #; is statistically stable with respect
to the choice of a specific chaotic eigenstate. This is
illustrated in Fig. 1 a3, a4 where it is seen that eigen-
states with close energies have fitting curves very close
to each other.

In the standard thermodynamical treatment, temper-
ature can be defined in a number of different ways,
which are known to be equivalent in the thermody-
namical limit. It is interesting to compute the temper-
ature for our system, following these different defini-
tions, although our system is far from this limit. First
of all we use the canonical expression:
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Fig. 1. Eigenfunctions (right column) and the corresponding oc-
cupation number distributions (left column) for the case L = 3.5,
1 =19. (ay) and () are for the ground state, (az) and (b;)
are for the 10th state (classically quasi-integrable), (a3) and
(b3) are for the 49th state (with a chaotic phase space and
em = Ep/Emax = —0.464) and the full line is the best fit to the
BE distribution with Bg, = 0.305; (a4) and (b4) are for the 54th
state (classically chaotic) with e, = —0.449, Bg = 0.310.

—BcEn
_ Zm E'"e P

<E>/3c 2 2~ BeEn (4)

where E,, are the exact eigenenergies of the interact-
ing system. The above relation between energy and
temperature allows for standard thermodynamical de-
scription of our system. The solution 8. (E) of Eq. (4)
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Fig. 2. Dependence of the different definitions of inverse temper-

ature 8 on the rescaled energy & = £/ Emax; full curve: 8;; dotted
curve: Br; full circles: By; crosses: Bpg. Open circles are 8y, for
the random model.

is shown in Fig. 2 as a full curve.

For a system of N non-interacting particles with to-
tal energy E, the canonical distribution is well-known
to result, when N is large, in the BE distribution for
the occupation numbers: nBE = (efAlsth—u) _ 1)1
(s=—1,...,1) where u is the chemical potential and
B is the inverse temperature. This expression is de-
rived for an ideal gas ( many non-interacting particles)
in contact with a thermostat; in contrast, our system is
isolated, with two interacting particles only. Neverthe-
less, recent analytical and numerical studies for ran-
dom two-body interaction [9-11], suggest that con-
ventional quantum statistics can appear even in iso-
lated systems with relatively few particles, provided a
proper renormalization of energy is taken.

As a simple comparison, we may consider the BE
distribution as a one-parameter fitting expression tak-
ing into account the constraint set by the finite number
of particles (3 n®E = 2). The distribution to be fit-
ted has been obtained by averaging over a number of
chaotic eigenstates with close values inside small en-
ergy windows. The obtained Bg, with reasonable y?
values are shown in Fig. 2.

A different way of comparing numerical data with
the BE distribution is to solve the following equations
in the unknowns 83, u,

! !
anE=2, Zﬁsn?F‘:é', (5)

s=—1 s=—{

with & = Y Aisn,, computed from numerical values of
n; (note that £ is different from the exact eigenenergy
because our model is strongly non-perturbative [ 14]).
Doing so, we have found inverse temperatures Bpg
quite close to the previously obtained Bg, (compare
crosses with full circles in Fig. 2). The agreement be-
tween the numerical values of B4 and Bgg supports,
on one hand, the significance of the fitting procedure
with a BE distribution and, on the other hand, the va-
lidity of the BE distribution for isolated systems with
few interacting particles via a proper renormalization
of the energy £, see Refs. [10,11].

We have then compared B¢, ( E) with 8.(E), where
E is the exact eigenenergy, and have found them to
be significantly different. This is of course hardly sur-
prising: even in the presence of ergodicity, with so
few particles, one cannot expect coincidence of micro-
canonical and canonical averages, which still strongly
depend on the particular choice of the interaction. In
classical terms, the distribution of single-particle en-
ergy still depends on the particular shape of the energy
surface, which is in turn determined by the particular
interaction chosen.

A remarkably different result was obtained on
“randomizing” our model, by replacing non-zero
off-diagonal matrix elements in the Hamiltonian by
random variables with the same mean and variance as
in the exact dynamical model (1). Whereas S is left
practically unchanged by this replacement, Bg ~ Bgg
considerably changes, and it comes quite close to ..
In our understanding, the reason of this striking re-
sult is that the random model (which has no smooth
classical limit) uses a much more “generic” form of
the perturbation than the dynamical one; in addition,
the dependence on the specific interaction is further
weakened by the (matrix) ensemble averaging. As a
result, our data indicate that the conventional canon-
ical distribution of occupation numbers may appear
even in an isolated system with a quite small number
of particles with random interactions, where the dy-
namical correlations, which prevent a similar result
in the classical model, are negligible.

Other different definitions of temperature have
been widely discussed in application to complex nu-
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clei [ 15] in the context of the onset of thermalization.
It was in particular shown that these definitions of
temperature give the same result in realistic shell mod-
els of nuclei. This fact was connected with the onset
of “true” thermalization. However, as was shown in
Ref. [11], when the number of interacting particles
is small, one can get different values of temperature
depending on the particular definition, even in the
equilibrium region, where a statistical description is
legitimate. In this connection we have also compared
the temperatures found from the BE distribution with
the standard thermodynamical inverse temperature
defined by Br = dIn p/dE, where p is the density of
states of the total Hamiltonian. Both for the dynami-
cal and the random model, a Gaussian fit provides an
excellent approximation to actual data for the density
of states [ 16]. We have used this very fit in comput-
ing Br, obtaining practically the same result in both
cases. The function Br(E) is different from B.(E),
but it comes closer and closer to it near the center
of the spectrum (where both temperatures are infi-
nite). For the dynamical model, By (E) turns out to
be completely different from both 8. and Bs, ~ Bse
(see the dotted line in Fig. 2). We attribute this to the
small number of particles. For the random model, By
is not far from Bg (E) at high temperatures (where
Br and B. tend to coincide), but deviates from it at
smaller temperatures. We do not push our comparison
of Ba(E) and B, to smaller temperatures than shown
in Fig. 2, because near the edges of the spectrum,
where the density of states is small, the eigenstates are
not fully chaotic any more (note that in the dynam-
ical model the motion becomes increasingly regular
there).

In conclusion, we have studied the thermal prop-
erties of the dynamical model of two-interacting Bo-
son particles in a finite-dimensional Hilbert space. We
have shown that, in the shell model representation, the
structure of exact eigenstates can be directly related
to the onset of equilibrium for the occupation num-
bers n, of single-particle states. Specifically, for the
eigenstates corresponding to classical chaotic motion,
an equilibrium distribution for n; occurs which allows
for a statistical description of the model. In contrast,
“regular” eigenstates results in extremely non-generic
fluctuations of ng for small changes of the energy,
thus invalidating any statistical approach. For chaotic
eigenstates, the distribution of occupation numbers can

be approximately described by the Bose-Einstein dis-
tribution, although the system is isolated and consists
of two particles only. In this case a strong enough in-
teraction plays the role of a heat bath, thus leading to
thermalization. In spite of this, the minimal number
of particles prevents the canonical distribution from
describing our dynamical system even if a surprising
agreement with the canonical distribution is recovered
in the corresponding random model.
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