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Abstract. – We investigated the effect of noise on propagation of two interacting particles
pairs in a quasi–one-dimensional random potential. It is shown that pair diffusion is strongly
enhanced by short-range interaction comparing with the noninteracting case.

Recent investigations showed that two interacting particles (TIP) in a random potential can
propagate coherently on a distance lc which is much bigger than the one-particle localization
length l1 without interaction [1]-[6]. According to [1], [2] the TIP localization length is given by

lc ∼ l21M(U/V )2/32 , (1)

where M is the number of transverse channels in a quasi–one-dimensional wire, U is the
strength of on-site interaction assumed to be comparable to or less than the bandwidth and
V is the hopping matrix element between nearby sites. Here it is also assumed that the wave
vector kF corresponding to TIP energy is kF ∼ 1/a = 1, a being the lattice constant. While
the exact verification of (1) is still under investigation, the existence of the enhancement of
two-particle localization length have been clearly demonstrated in numerical simulations [3]-[6].
These simulations have been done for different models. Main results are for the 1-d Anderson
model with TIP [3], [5] and for the model of two interacting kicked rotators [4]. This last
model is very convenient for the investigation of wave packets spreading in time due to the
existing effective numerical methods. For this reason, in our numerical studies, we used the
last model.

The problem we want to address in this letter is the influence of noise on TIP localization.
For one particle the effect of noise has been analyzed during the last few years and the physics
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of this phenomenon is well understood [7]-[10]. Generally, the main effect of noise is the
destruction of interference after a coherence time tc, after which the particle makes a jump
on a distance l1 that leads to a diffusion rate D1 ∼ l21/tc along the chain. For high-frequency
noise with amplitude ε this time is tc ∝ 1/ε2 [7]. In the case of low-frequency (ω) noise
tc ∝ 1/(εω)2/3 [10]. Here we only analyzed the case of high-frequency noise on the TIP
problem.

We studied the model of two interacting kicked rotators in the presence of noise. The
evolution operator is given by

Ŝ = exp
[
− i[H0(n̂1) +H0(n̂2) + Uδn1,n2 ]

]
× exp

[
− i[V (θ1, t) + V (θ2, t)]

]
, (2)

where n̂1,2 = −i∂/∂θ1,2, H0(n̂) = T n̂2/2, V (θ, t) = [k + εf(t)] cos θ, and f(t) is a random
function of t homogeneously distributed in the interval [−1, 1].

For U = 0 and ε = 0 we have two decoupled kicked rotators and in the chaos domain kT > 1
the localization length is l1 ≈ k2/2 [11]. In the presence of noise ε > 0 the decoherence time
is tc ∼ 1/ε2. If this time is less than the localization time t∗1 ≈ l1, localization effects are not
important and diffusion goes with the usual classical rate D ≈ k2/2. On the other hand, when
t∗1 < tc the diffusion rate is D1 ∼ ε2l21 [7].

In the presence of interaction (U 6= 0), but without noise (ε = 0), a TIP pair of size l1
propagates on a distance lc À l1 and is localized after a time t∗2 ∼ lcl1 [12]. Over a time
interval t∗1 < t < t∗2 the pair diffuses with a diffusion rate Dp ∼ U2D. The noise leads to
a destruction of localization after a decoherence time tc ∼ 1/ε2 as in the one-particle case.
Indeed, without interaction this time is independent of localization length (l1) and lattice
dimension. Due to that we assume, in agreement with our numerical results, that tc is also
independent of interaction. After the time tc the pair makes a jump of size lc and therefore
the noise-induced pair diffusion rate can be estimated as D+ ∼ l2c/tc that gives for tc > t∗2

D+ ∼ ε2l2c ∼ D1(lc/l1)2 . (3)

This means that for lc/l1 À 1 the noise-induced TIP diffusion rate is strongly enhanced
with respect to the noninteracting one (D1). In the case of relatively strong noise, tc < t∗2 and
D+ becomes comparable with the pair diffusion rate Dp on a time scale t∗1 < t < t∗2.

The estimate (3) gives the diffusion rate of the center of mass of the TIP pair. However,
noise also leads to a separation of two particles. This separation goes in a diffusive way with
a diffusion rate D1 which is independent of the interaction U . Due to this, at asymptotically
large times the pair propagation will be subdiffusive. At this time the spreading of the center
of mass ∆n2

+ can be estimated in the following way: ∆n2
+ ∼ νD+t, where ν is the probability

of collision between two particles, ν ∼ l1/∆n−. Here ∆n− is the effective pair size at the time
t which in turn can be estimated as ∆n2

− ∼ D1t. Therefore, we have ∆n2
+ ∼ (lc/l1)2l1

√
D1t.

Comparing this result with the diffusive growth given by (3) ∆n2
+ ∼ D+t, we determine the

time scale t+ ∼ 1/ε2 during which the pair propagates diffusively with the rate D+. This time
is parametrically comparable with tc and according to our estimates can be only numerically
larger than tc. Nevertheless, even with the separation of particles due to diffusion produced by
noise the effect of interaction is quite important. Indeed, the time tint after which interaction
becomes nonsignificant is quite large. Namely, it can be found from the condition that the
noninteracting diffusive spreading ∆n2

+ ∼ D1tint for t > tint is comparable with the interacting
case where ∆n2

+ ∼ (lc/l1)2l1
√
D1tint that gives a very large time scale tint ∼ (lc/l1)4/ε2 À tc.

The numerical check of all these different time scales is quite difficult due to the strong
growth of the required basis. Therefore, we numerically studied only the regime of short
times, when ∆n− ∼ l1 and the diffusive spreading in n+ is still given by ∆n2

+ ∼ D+t.
Examples of these diffusive behaviours are presented in fig. 1 and fig. 2, where the growth
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Fig. 1. – Dependence of σ+ on time for different U values: U = 0, 1, 2 correspond to lower, middle
and upper full curves, ε = 0.02, k = 4, kT = 5. The dotted line is for ε = 0, U = 2, k = 4, kT = 5.
Initially particles are at n1 = n2 = 0. The basis is −250 < n1,2 < 250.

of σ+ = (|n1|+ |n2|)2/4 and σ− = (|n1| − |n2|)2 is shown as a function of time. These results
clearly show that the diffusion rate D+ = σ+/t is strongly enhanced with the interaction
switched on (approximately 20 times from U = 0 to U = 2). At the same time the diffusion
rate in n− (D1 = σ−/t) remains practically the same (see fig. 2). For the sake of comparison
we also present in fig. 1 and 2 TIP localization in the absence of noise, when σ± are oscillating
in time near their asymptotic values.

Fig. 2. – The same as fig. 1 but for σ−.
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Fig. 3. – Dependence of the TIP pair diffusion rate on σ0
+. Full circles are for k = 4, ε = 0.01,

0 ≤ U ≤ 2, open circles for k = 4, ε = 0.02, 0 ≤ U ≤ 2, full squares for k = 5.7, ε = 0.01, U = 0, 1,
open squares for k = 4.8, ε = 0.02, U = 1, 2, up-triangles for k = 4.8, ε = 0.01, U = 1, 2, down-
triangles for k = 3.3, ε = 0.01, U = 1, 2, diamonds for k = 3.3, ε = 0.03, U = 1, 2, asterisks for
k = 4, ε = 0.05, U = 0, 1. In all cases the chaos parameter has been fixed, kT = 5. The dashed line
shows the average dependence D+ = 13ε2σ0

+.

To check the relation (3), we determined the diffusion rate D+ and checked its dependence
on parameters. According to (3) D+ ∼ ε2σ0

+, where σ0
+ ∼ l2c is the asymptotic value of σ+ in

the absence of noise. The dependence of D+/ε
2 on σ0

+ is shown in fig. 3 for different ε, U and
k values. The average behaviour is given by the approximate relation D+ = 13ε2σ0

+ and it is
in agreement with the theoretical prediction (3).

In real systems, noise can appear as the result of electron interaction with phonons at finite
temperature. Our results indicate that the noise produced by phonons can lead to a strong
enhancement of diffusion (conductance) of electrons in a random potential. Of course in the
analysis of a physical model the case of finite particles (or quasi-particles) density should be
considered. In this case the probability to find two particles within a distance l1 from each
other is of the order of W ∼ l1ρ, where ρ is the linear (per unit length) density of particles.
This leads to a decrease of the effective diffusion rate which in this case can be estimated
as Deff ∼ WD+ ∼ D1l

2
cρ/l1. Even for small density Deff can be larger than D1 and we

expect that the effect of interaction-enhanced diffusion is physically relevant. However, future
investigations on the finite-particles-density case should be done.
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