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Modeling and Simulations of a Single-Spin
Measurement Using MRFM

Gennady P. Berman, Fausto Borgonovi, Vyacheslav N. Gorshkov, and Vladimir I. Tsifrinovich

Abstract—We review the quantum theory of a single-spin mag-
netic resonance force microscopy (MRFM). We concentrate on the
novel technique called oscillating cantilever-driven adiabatic re-
versals (OSCARs), which has been used for a single-spin detection.
First we describe the quantum dynamics of the cantilever-spin
system using simple estimates in the spirit of the mean field
approximation. Then we present the results of our computer
simulations of the Schrodinger equation for the wave function
of the cantilever-spin system and of the master equation for the
density matrix of the system. We demonstrate that the cantilever
behaves like a quasi-classical measurement device which detects
the spin projection along the effective magnetic field. We show
that the OSCAR technique provides continuous monitoring of the
single spin, which could be used to detect the mysterious quantum
collapses of the wave function of the cantilever-spin system.

Index Terms—Adiabatic reversals, magnetic noise, magnetic
resonance force microscopy (MRFM), master equation, micro-
mechanical cantilever, quantum decoherence, quantum entangle-
ment, quantum jumps, thermal diffusion, wave function collapse.

I. INTRODUCTION

HE THEORY of single-spin magnetic resonance force mi-
croscopy (MRFM) originated from John Sidles who pro-
posed a way to measure the magnetic force produced by a single
spin combining magnetic resonance, atomic force microscopy,
and micromechanical resonance of the ultrasensitive cantilever
[1]. The practical implementation of this proposal would allow
an atomic-scale magnetic imaging below the surface of a non-
transparent material. Optical as well as scanning tunneling mi-
croscopy detection of a single spin is restricted to the surface
atoms (see, for example, [2] and [3]). In his pioneering work,
Sidles discussed the detection of a single nuclear spin. In reality,
even detection of a single electronic spin is a major challenge for
the experimentalists: it requires measurement of a force of the
order of a few attonewtons. The implementation of a single-spin
MRFM remained elusive until Rugar and his team invented the
oscillating cantilever-driven adiabatic reversals (OSCAR) tech-
nique and then demonstrated two-spin sensitivity [4].
In this paper, we present the theory of the single-spin OSCAR
MREFM. In Section II, we describe the OSCAR dynamics in the

Manuscript received June 18, 2004. This work was supported by the National
Security Agency and the Defense Advanced Research Projects Agency.

G. P. Berman and V. N. Gorshkov are with the Los Alamos National
Laboratory, Los Alamos, NM 87544 USA (e-mail: gpb@lanl.gov; gorshkov@
cnls.Janl.gov).

F. Borgonovi is with the University Cattolica, Brescia, Italy (e-mail:
borgonov @dmf.bs.unicatt.it).

V. L. Tsifrinovich is with the Polytechnic University, Brooklyn, NY 11201
USA (e-mail: vtsifrin@duke.poly.edu).

Digital Object Identifier 10.1109/TNANO.2004.840143

Cantilever (~100 nm thick)

/ Bext
particle
N X B, @
- @ (microwave)
1[ m

Cantilever tip (CT)
with the
ferromagnetic

ﬁ - atomic spin

Fig.1. OSCAR MRFM setup for the perpendicular geometry. A ferromagnetic
particle with the magnetic moment 17 is attached to CT and oscillates near the
surface of a sample. B. is the external permanent magnetic field; B, is the
RF rotating field of frequency w. An atomic spin with the magnetic moment /i
is placed not far from the sample surface.

spirit of the mean field approximation and estimate its charac-
teristic parameters. We discuss the frequency shift of the can-
tilever vibrations, the thermal noise of the cantilever, the mag-
netic noise experienced by the spin, the opportunity of formation
of the Schrodinger cat state, the decoherence, the quantum col-
lapses of the wave function, and the quantum jumps of the can-
tilever spin system. We also discuss the exciting possibility of
measuring the characteristic time of the wave function collapse.
In Section III, we present the results of our computer simula-
tions of the spin-cantilever dynamics based on the Schrodinger
equation for the wave function and the master equation for the
density matrix of the spin-cantilever system. Recently, other the-
oretical aspects related to the single-spin MRFM have been ex-
tensively discussed (see, for example, [5]-[13]).

II. SPIN-CANTILEVER DYNAMICS IN OSCAR:
DESCRIPTION AND ESTIMATIONS

A. Basic Principles of the OSCAR Technique

The main idea of the OSCAR MRFM technique invented by
Rugar and his team will now be summarized. An ultrasensitive
micromechanical cantilever (about 100 nm thick) with a ferro-
magnetic particle (about 1 ;m in size) attached to the cantilever
tip (CT) oscillates near the surface of a sample with a fixed am-
plitude. Fig. 1 shows the OSCAR MRFM setup for the “perpen-
dicular geometry.” In its equilibrium position, the cantilever is
perpendicular to the sample surface.

When the CT with the ferromagnetic particle moves from the
rightendpoint of its trajectory to the left endpoint, the dipole field
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Fig.2. Expected output of a single-spin OSCAR MRFM. éw. is the frequency
shift of the CT vibrations.

produced by the ferromagnetic particle on the spin decreases. Let
us consider the effective magnetic field B.s in the system of co-
ordinates rotating with the RF field. The direction of the effec-
tive magnetic field reverses in the z—z plane from the +z to the
—z direction. (We assume that the resonant condition w = vB,
where w is the RF frequency, and Bis the magnetic field on the
spin, is satisfied for the equilibrium position of the CT, and the
rotating RF field points in the positive x direction). If the condi-
tion of the adiabatic motion |dB.¢/dt| < B2 is satisfied, the
“average spin” (§ ) follows the direction of the effective field.

We assume that the electronic spin is initially in its ground
state, i.e., it points in the negative z direction (the electronic spin
points in the direction opposite to its magnetic moment). If the
RF field is turned on when the CT is at its right end position,
the effective field points initially in the positive z direction. In
the process of adiabatic motion, the spin remains anti-parallel to
the effective field. The z component of the spin magnetic mo-
ment i = —7(5 ) oscillates with the CT frequency. It produces a
back resonant magnetic force on CT: F,, = Gu,, where G =
|0B. /0| is the gradient of the magnetic field at the spin (for
the remainder of this paper, when we mention CT, we mean the
CT including the ferromagnetic particle; certainly, the magnetic
force is acting on the ferromagnetic particle). Since . is propor-
tional to the CT displacement from the equilibrium, the magnetic
forceis also proportional to this CT displacement. Thus, the mag-
netic force influences the effective spring constant of CT and con-
sequently the CT frequency (which is the fundamental frequency
of the cantilever). The CT frequency shift can be measured with
high accuracy—this is the main advantage of the OSCAR tech-
nique. The direction of the magnetic force acting on CT is oppo-
site to the direction of the spring force. Thus, for the electron spin
pointing opposite to the effective field, the CT frequency will
decrease. If the electron spin points in the direction of the effec-
tive field, the CT frequency will increase.

Under the conditions of adiabatic motion, the spin compo-
nent along the effective field is an approximate integral of mo-
tion. Thus, we may consider the CT as a quasi-classical device
which measures this spin component. However, there is a very
important point: the CT continuously monitors the state of the
spin. Thus, we may expect the outcome of the OSCAR MRFM
shown in Fig. 2: the CT frequency shift takes one of the two
values |dw.| or —|éw,|, depending on the direction of the spin
relative to the effective field. Quantum jumps of the spin cause
jumps in the CT frequency shift.

To increase the measurement sensitivity, Rugar and his team
implemented a modified technique which is called the “inter-
rupted OSCAR” technique. They interrupted the RF field peri-

odically (with a period T; of about 10 ms). When the CT was at
its end point, the applied RF field was interrupted for a time in-
terval equal to half of the CT vibration period. At the end of the
“dead interval,” the effective field reverses while the spin retains
its initial direction. This effect is equivalent to the application of
the effective m-pulse in the rotating frame. As a result, the CT
frequency shift becomes a periodic function of time with twice
the interruption period 27;. Now the OSCAR signal is detected
at the frequency 1/(27;).

B. Estimation of the Frequency

For our estimations, we will use the values of parameters from
[4]. (Although the experiment in [4] was conducted with many
spins, its setup with two-spin sensitivity is probably appropriate
for single-spin detection), given as follows:

¢ The effective CT spring constant k. = 600 pN/m.

* The CT frequency and period f. = w./27 = 6.6 kHz,
T. = 150 pus.

+ The CT quality factor Q = 5 x 10%.

¢ The CT amplitude A = 10 nm.

e The rotating RF field amplitude and frequency
B; = 300 uT, w = 3 GHz, (w/~v = 100 mT).

» The Rabi frequency and period

fr = wgr/2r = vB;/2r = 84 MHz, Tg = 120ns.

* The magnetic field gradient at a spin location
G = |0B./0z| = 430 kT/m.
* The maximum magnetic force on CT
(Fy)max = Gup = 4 aN.

* Temperature 7' = 200 mK.
* The correlation time for the CT frequency shift 7,,, = 3 s.
We now estimate the CT frequency shift in the spirit of the
mean field approximation. Let the spin be antiparallel to the
effective magnetic field éef. Then

(8:)/8 = —(Bet):/Bet (D
where Be¢ = {B1,0, G(z)}. The net force on CT is given by
F, = —k.(z) — vhG(S.). )

Combining these formulas and averaging over fast oscillations
({(x)? — A%/2), we obtain expressions for the relative shift of
the effective spring constant and the frequency shift

ok = —hG? [[2 (G247 + BY))'?,
§f./f. = Oke/(2ke) 3)

which correspond to the numerical values 6 f./f. = —4.7 x
10~7 and 6 f. = 3 mHz. For our values of parameters, GA >
B, and the expression for 0k, can be simplified to

§ke = —V/2Gup/A. “)

This expression has a clear physical meaning: the magnetic
force on CT cannot be greater than G p. This is why the shift
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Fig. 3. Partial reversals of the effective field.
of the CT spring constant and the frequency shift increases with
decrease of the amplitude A.

Now we discuss the possibility of reducing the CT amplitude
and increasing the CT frequency shift. The condition for the full
adiabatic reversals can be represented as follows:

1 < GA/B1 < fr/ fe )

The left inequality is the condition for full spin reversals (be-
tween +z and —z directions). The right inequality is the condi-
tion for adiabatic spin motion. For our parameters, GA/B; =
14, and fgr/f. = 1270. To increase the CT frequency shift, we
may sacrifice the full spin reversals retaining the adiabatic mo-
tion. Fig. 3 shows the partial reversals of the effective field.

The use of partial adiabatic reversals is convenient for com-
puter simulations because it allows us to save computational
time. Below we show that this idea is not appropriate for the
experiment as the thermal frequency noise also increases with
decreasing CT amplitude.

III. INTERACTION BETWEEN THE CT-SPIN SYSTEM
AND ITS ENVIRONMENT

While the spin is parallel or antiparallel to the effective field,
the main manifestation of the CT—environment interaction in
OSCAR is the thermal frequency noise. Now we will estimate
its value. The rms coordinate of CT and the corresponding rms
force are given by

Lrms = (kBT/kc)1/2
FrmS = 2kC1:rmS/Q' (6)

To estimate the characteristic thermal spring constant fluctu-
ation kX', we assume that the “thermal force” increases from
0 to Fims when the CT coordinate = changes from 0 to A.
Thus, 61{ = Fims/A, and, correspondingly, the characteristic
thermal frequency fluctuation becomes

SIE/f = Trms/AQ. (7)

The corresponding numerical values are z,,s = 68 pm,
Fims = 1.6 aN, and 6f7/f. = 1.4 x 107 ". The estimated
characteristic CT thermal frequency fluctuation is smaller than
the OSCAR shift §f.. On the other hand, one can see that
thermal frequency fluctuation like the OSCAR frequency shift
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increases with the decreasing CT amplitude. Thus, the partial
adiabatic reversals will not increase the signal-to-noise ratio
(SNR).

Next, we consider the effect of the spin—environment inter-
action. This interaction can be described in terms of magnetic
noise acting on the spin. Roughly speaking, this noise causes
a deviation of the spin from the effective field. This deviation
generates two CT trajectories corresponding to the two possible
directions of the spin relative to the effective field. These
two trajectories manifest the formation of the Schrodinger
cat state. Now the CT-environment interaction comes into
the play. CT—environment entanglement quickly destroys the
Schrodinger cat state leaving only one of the two possible
trajectories. Physically, this appears as a quantum collapse.
Usually, the collapse pushes the spin back to the “pre-collapse”
direction relative to the effective field. Sometimes the spin
changes its direction. When a change occurs, we can observe
the quantum jump by measuring the sharp change of the CT
frequency shift.

Currently, the time of collapse is not predictable. We believe
that understanding the timing of quantum collapses is one of the
most interesting problems remaining in quantum theory. Let us
assume that the collapse occurs when the separation between the
two CT trajectories is of the order of the quantum uncertainty
of the CT position X, (by “CT position,” we mean the position
of the center-of-mass of the ferromagnetic particle)

X, = (hwe/ke)Y2. 8)

In this case, the characteristic collapse time %, is of the order
of the CT period T, = 180 us. (If we assume that the collapse
occurs when the separation between the two trajectories is about
ZTmrs, Which seems very unlikely, then ¢, ~ 10*T..) The CT
decoherence time ¢, can be estimated as

ta = wh?Q/ (kekpTAz?) )

where Az is the separation between the two trajectories. (See,
for example, [5]). Taking Ax to be equal to the quantum un-
certainty X,, we obtain t; = 2 ps. Thus, we have a typical
quasi-classical systems situation: the decoherence time is much
smaller than the time of separation of two trajectories, which
is the time of formation of the Schrodinger cat state. (This is
why the Schrodinger cat state is so elusive for quasi-classical
systems.) It indicates that the collapse time depends on the CT
frequency shift rather than on the decoherence time.

Next, we will estimate the characteristic time interval be-
tween two quantum jumps, ¢j,mp. We assume that the most im-
portant source of the magnetic noise for the spin is associated
with the cantilever modes whose frequencies are close to the
Rabi frequency of the spin. (See, for example, [7], [8], and [12]).
The reason is the following. When the spin changes its direc-
tion between +z and —z, its frequency in the rotating frame
changes between its maximum value wp,x and its minimum
value, which is the Rabi frequency, wgr. Because all cantilever
modes have the same thermal energy kT /2, the thermal am-
plitude of the mode is inversely proportional to its frequency.
Thus, the greatest amplitude of the CT thermal vibrations is as-
sociated with the modes near the Rabi frequency. As an estimate,
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we consider those modes in the interval between the Rabi and
twice the Rabi frequency. The CT thermal amplitude of the Rabi
frequency is

AL = (f./fr)(2ksT [k, )"? = 75 fm. (10)

We estimate the correlation time to be the Rabi period Tr
and find the following characteristic angular deviation during
the correlation time:

Afy = YTRGAL = 6.8 x 107% rad. (11)
The time of passing the frequency interval (fgr,2fg) is
Aty = 34fp/(VGAS.) = 5.8 ps. (12)

Assuming a diffusion process, we can estimate the square of
the angular deviation during a single reversal: (A§?) = DAty
where D = A% /T, is the diffusion coefficient. The angular
deviation between the two collapses is

(A821) = (A87) tear/ (T./2)

where t.. is the characteristic time between the two collapses.
The probability of a quantum jump is approximately

(13)

Piump = (A60)/ 4.

Using the estimate Pjump (tjump/tcol) = 1, we obtain

(14)

tjump = tcol/F)jump = A/I:l?’YG (A£)2i| =14s. (15)

The experimental value of the frequency shift correlation time
in [4] was found to be 3s, but it was obtained for a group of spins,
not for a single spin.

Note that the collapse time cancels out in the final expres-
sion for the jump time. One of the most mysterious phenomena
of the quantum physics—the wave function collapse—remains
elusive. Let us now discuss the possibility of measuring the col-
lapse time in the OSCAR dynamics. Between two collapses, the
second CT trajectory appears inside the quantum uncertainty of
the first trajectory. Because the two trajectories have the oppo-
site sign of the frequency shift, the overall CT frequency shift
is expected to decrease (in absolute value). More rigorously, the
shift 6¢; of the time interval between two consecutive passings
of the equilibrium CT position is expected to decrease in abso-
lute value as follows:

|6t;| < 6t = méw. Jwe. (16)

This change, in principle, could be measured experimentally.
However, our estimate shows that the expected change is very
small. Defining the probability of two trajectories before the
collapse as P; and P,, we obtain the estimates

§t; = 6t (P — Py)
|6t; — 6tc|/6t. = (A2

Y/2=2x10"" (17)

col

for t.o1 = T.. The effect is negligible because the probability of
the second trajectory occurring inside the quantum uncertainty
of the first trajectory is very small. To resolve this obstacle, we

propose using a modification of the interrupted OSCAR. As-
sume one interrupts the microwave for a time interval equal to
one quarter of the period of the CT vibrations. This interruption
acts like an effective w/2-pulse in the rotating frame: it gener-
ates an angle of w/2 between the effective field and the spin.
Now before the collapse, the probabilities of both trajectories
inside the common quantum uncertainty are the same, and the
frequency shift (more rigorously the shift of 6%;) is equal to zero.
This large change in the frequency shift could probably be de-
tected experimentally.

IV. SIMULATIONS OF THE OSCAR MRFM
A. Schridinger Dynamics

We start from the Schrodinger description of the CT-spin
system. The Hamiltonian of the system in the rotating reference
frame is

H= (p2+2?)/2+eS, +2nzS. + A(t)S.

€= .fR/fC7 WZVGXq/(ch) (18)

The first term describes the CT motion, the second term is
the interaction between the spin and the RF field, the third term
is the CT—spin interaction, and the last term describes the ef-
fects of magnetic noise on the spin due to the spin—environment
interaction. As we have mentioned before, the most important
source of the magnetic noise is normally associated with the
cantilever modes near the Rabi frequency. This magnetic noise
causes a deviation of the spin from the effective field primarily
when the spin passes through the transversal plane. That is why
we consider only the z component of the magnetic noise field.
We do not include the CT—environment interaction because the
main effect of this interaction—the decoherence—cannot be de-
scribed in the scope of the Schrodinger equation.

In our simulations, we use the following units:

* frequency: f. = 6.6 kHz;

* length: X, = 85 fm;

* momentum: i/ X, = 1.2 x 10~ *! Ns;
o time: 1/w. = 24 ps;

* temperature: hw,./kp = 320 nK.

The experimental values of our parameters in these units are
the following: the amplitude A = 1.2 x 10°, the temperature
T = 6.25 x 10°,e = 1270,and n = 0.078. Unfortunately,
these values of parameters are beyond the scope of our computer
capabilities. Thus, we simulate the CT—spin dynamics taking
A = 13,e = 10, = 0.3. The conditions for the full adiabatic
reversals in terms of our parameters

£ A < &2 (19)
are clearly violated because 2nA = 7.8. In this case, we have
partial adiabatic reversals with a relatively large CT frequency
shift

67| = 0%/ (202 A% + 3)Y/? =8 x 1073, (20)

The wave function of the system is a spinor us(z,t), where
the spin variable s takes the two values s = +1/2. (We use
the S, representation). The initial wave function was taken in
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Fig. 5. Schrodinger cat state of the CT-spin system.

the form of the product of the CT part u.(x) and the spin part,
which describes the direction of the average spin. The CT part
of the wave function describes the quasi-classical coherent state

ue(®) = Y Anun(@),  An = [0"/(n))"?]exp(~]al?/2)
(( (0)) + < ( M/V2
4, (p2(0)) = 0

(0]

(x(0)

21

where w,, (z) are the eigenfunctions of the harmonic oscillator
Hamiltonian.

First, we consider the CT—spin dynamics with no magnetic
noise. If the initial average spin points opposite to the effec-
tive field {e, 0, 2n(x(¢)) }, then the wave function remains to be
the product of the CT and spin parts. The probability density
P = 3", |us(z,t)|? represents a single peak oscillating with
the frequency (1 — |éw.|). The value of |[§w.| = 7.9 x 1073 is
very close to the estimated value. The same is true for the initial
average spin pointing in the direction of the effective field. The
only difference is the frequency of oscillations, which is now
equal to (1 4 |éw,|). If the initial average spin makes an angle
m — 6 with the effective field (see Fig. 4), the wave function de-
scribes an entangled CT—spin state.

The probability density peak gradually splits into two peaks
(see Fig. 5). Thus, the wave function describes the Schrodinger
cat state of the CT—spin system.

The first peak oscillates with the frequency (1 — |éw,|), and
the second peak oscillates with the frequency (1 + |6w,|). Note
that both components of the spinor us(z,t) contribute to every
peak. If we consider only the part of the wave function de-
scribing one of the peaks, then it can be decomposed into the
product of the CT part and the spin part with the average spin
pointing in (or opposite to) the direction of the effective field
corresponding to this peak. (Note that the effective fields cor-
responding to the two peaks are not antiparallel to each other.)
The area under the first peak is sin®(#/2), and the area under the
second is cos?(#/2). All of these facts prove that the CT-spin
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Fig. 6. Shift of the time interval between the consecutive passes through the
CT equilibrium positions for Ay = 0 (1), Ay = 0.3 (2), and Ay = 0.5 (3).
The estimated value of the shift is 6, = wdw. = 0.0248.

dynamics exhibits the Stern—Gerlach effect: the two spin di-
rections relative to the effective field generate two separate CT
trajectories.

Next we include the effect of the magnetic noise. We assume
the noise field A(¢) to be a random telegraph signal with am-
plitude Ay. The time interval between two “kicks” of the noisy
field is taken randomly from the interval (T — Tr/4,Tr +
Tr/4). The initial average spin points opposite to the effective
field. Fig. 6 demonstrates the shift of the time interval between
two consecutive passes through the CT equilibrium position be-
fore the split of the two CT trajectories. One can see a decrease
in the time interval shift for Ag = 0.3 and Ay = 0.5. (For the
experimental value, Ay = GA% = 0.13, and this effect is neg-
ligible.)

Gradually, the probability peak splits into two peaks, but in
this case the two trajectories are generated by the noisy field
rather than the initial conditions.

B. Master Equation

In order to describe the CT decoherence and the thermal dif-
fusion, we consider an ensemble of the CT-spin systems in-
teracting with the environment. We use the Caldeira-Leggett
master equation for the density matrix as follows:

53] .
a—p(a:, 2, s,8t) = Lp(z,2',s,5t)
-

- Li[p(ff 2, s, —s'./t) —p(z,x

% 1

2Q
T
— —(z—2")* = 2in(z's" — xs
0 )? ( )
plz,a' s, 8", 1) <1§%17%1 5%%) (22)
272 27 2

We cannot demonstrate the CT decoherence if the decoher-
ence time is smaller than the time of formation of two CT tra-
jectories (the Schrodinger cat state). Thus, to simulate the deco-
herence, we use the very low temperature 7" = 20 (instead of
the experimental value 7' = 6.25 x 10°). To save the computer
time, we use A = 8 and (Q = 1000. The values of ¢ and 7 are
the same as those we have used for the Schrodinger dynamics,
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Fig. 7. Typical shapes for the modulus of the reduced CT density matrix
(a) before and (b) after the disappearance of the nondiagonal peaks.

and Ag = 0. The initial density matrix is taken as a product of
the CT and spin parts

p(w,a',5,5',0) = R(z,2')A(s, s")
R(z,a') = ue(a)ug(a"),
(p(0)) = 0.

If the initial direction of the average spin is antiparallel or par-
allel to the effective field, the density matrix remains a product
of the CT part and the spin part. The modulus of the CT part de-
scribes a single peak, which oscillates along the diagonal z = z’
with the frequency (1 — |éw,|) or (1 + |dw,|). This peak spreads
along the diagonal demonstrating the thermal diffusion of the en-
semble. The situation changes if the initial average spin makes an
angle 6 with the effective field, § # 0, z. In this case, the CT and
the spin become entangled and the initial peak of the modulus of
the reduced CT density matrix [p| = |, p(z,2’, s, s, t)]| splits
into four peaks. As an example, Fig. 7 demonstrates two typical
shapes of the reduced CT density matrix if § = /2.

After the split of the initial peak, one can observe nondiagonal
peaks, which describe the coherence between the two CT trajec-
tories (the Schrodinger cat state). These peaks quickly disappear,
demonstrating the CT decoherence. Subsequently, the remaining
diagonal peaks describe the statistical mixture of the two CT tra-
jectories corresponding to the two spin directions relative to the
effective field. These peaks spread along the diagonal z = x/,
demonstrating the thermal diffusion in the ensemble. If we con-
sider only the part of the density matrix describing one of the di-
agonal peaks, then it can be decomposed into the product of the
CT and spin parts with the average spin pointing in (or opposite
to) the direction of the effective field corresponding to this peak.
Thus, the master equation allows us to simulate the CT-spin de-
coherence if the decoherence time is greater than the time of the

(z(0)) = 4
(23)

Schrodinger cat formation. Also, using the master equation, we
can demonstrate the process of the thermal diffusion.

V. CONCLUSION

In this paper, we have presented a theory of the single-spin
OSCAR MRFM. We presented estimates for the three main ex-
perimental parameters of the OSCAR technique: the CT fre-
quency shift, the frequency noise, and the characteristic time
between the spin quantum jumps. We proposed an experiment
for measuring the most elusive parameter: the average time in-
terval between the collapses of the CT-spin wave function. We
also reported the results of computer simulations using both the
Schrodinger equation and the master equation. Our simulations
demonstrate that CT can be considered as a quasi-classical de-
vice, which measures the spin direction relative to the effective
magnetic field.

At the 2004 IEEE NTC Quantum Device Technology Work-
shop, Rugar reported the first experimental detection of a single
atomic spin using OSCAR MRFM. This historical event marks
the beginning of experimental single-spin imaging in con-
densed matter. The next step will be the continuous single-spin
measurement. We hope that, besides tremendous imaging and
quantum information processing applications, the OSCAR
MRFM will allow one to measure one of the most mysterious
events in quantum physics—the collapse of the wave function.
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