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We propose a scheme which implements a controllable change of the state of the target
spin qubit in such a way that both the control and the target spin qubits remain in
their ground states. The interaction between the two spins is mediated by an auxiliary
spin, which can transfer to its excited state. Our scheme suggests a possible relationship
between the gate and adiabatic quantum computation.
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Quantum annealing and adiabatic quantum computation have attracted much
attention recently. (See, for example, Refs. 1–3.) Unlike the traditional (gate) quan-
tum computer, the adiabatic quantum computer is based on a slow change of the
Hamiltonian describing the quantum system. The basic idea behind adiabatic quan-
tum computation is the following: in order to find a complicated ground state of an
Ising system in a longitudinal external magnetic field, one starts from the simple
ground state of the non-interacting spins in an external transverse magnetic field.
Then, one adiabatically changes the initial Hamiltonian to the Ising one, so that,
finally, the system exhibits the complicated ground state of the Ising Hamiltonian.
In the process of evolution, the adiabatic quantum computer remains in its ground
state. This approach promises to solve important combinatorial and graph theory
NP-hard problems. One example is the MAX CLIQUE problem. In graph theory,
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a clique is a subset of vertices, such that every pair of vertices is connected by an
edge. In some cases, the MAX CLIQUE problem is equivalent to finding the ground
state of the Ising system.2 Adiabatic quantum computation has been implemented
recently by D-wave Systems Inc. using superconducting flux qubits, whose evolution
can be described by the effective Ising Hamiltonian with the controllable interaction
constants.4

A “traditional” quantum computer is based on quantum logic gates, which
change the state of a quantum system. (See, for example, Ref. 5.) Before and after
the action of the gates, the quantum system is described by the same Hamilto-
nian. At first sight, an adiabatic quantum computer is completely different from
a gate quantum computer. Indeed, while a gate quantum computer utilizes quan-
tum superposition, entanglement and interference in order to “sample” all possible
“numbers”, an adiabatic quantum computer utilizes quantum tunneling in order to
approach the true ground state.

In this paper, we investigate a possible bridge between the adiabatic and the
gate approaches to quantum computation. Namely, we set the simplest problem:
how can one change the state of a target spin qubit conditional on the state of a
control spin qubit if both the control and the target qubits remain in their ground
states? One way to achieve this objective is to use an auxiliary spin, which mediates
the interaction between the control and target spin qubits. As an example, the
first control qubit (an electron spin �S1) experiences a large local magnetic field
�B1 and always points opposite to this field (as the electron gyromagnetic ratio
is negative). An auxiliary spin �S3 experiences a local magnetic field �B3 and a rf
rotating field �Brf . It also interacts with both the control spin �S1 and the target
spin �S2 (e. g. a ferromagnetic exchange interaction with constants J13 and J23). The
effective exchange field J13

�S3 (in frequency units) acting on the spin �S1 must be
much smaller than �B1 (in the same units). The effective exchange fields J13

�S1 and
J23

�S2 must be much smaller than �B3. In this case, one can use the resonant rf field
�Brf on the auxiliary spin in order to manipulate its direction, conditional on the
direction of the control spin. The target spin �S2 experiences only the exchange field
J23

�S3 produced by the auxiliary spin and should evolve adiabatically, changing its
direction together with the direction of the auxiliary spin. Thus, the target spin
will change its direction conditional on the direction of the control spin remaining
in the ground state. The only spin which does not remain in the ground state is
the auxiliary one.

The greatest challenge in this proposed scheme is associated with the adiabatic
motion of the target spin. Indeed, the exchange field produced by the target spin on
the auxiliary spin must be small compared to the exchange field produced by the
control spin. However, in this case, the exchange field J23

�S3 produced by the aux-
iliary spin on the target one (which determines the Larmor frequency of precession
of the target spin) is small compared to the field �B3 acting on the auxiliary spin.
The magnetic field �B3 determines the frequency of the Larmor precession of the
auxiliary spin and, correspondingly, the frequency of oscillations of the exchange
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field on the target spin. Thus, the adiabatic condition is violated for the target spin:
the frequency of the oscillation of the exchange field on the target spin (which is
determined by the field �B3) will be greater than the Larmor frequency of the target
spin (which is equal to J23

�S3).
In order to avoid this problem, we propose using an auxiliary spin S � 1/2.

In this case, one can increase the Larmor frequency of the target spin without
significantly changing other parameters except for the field �B1, which must remain
much greater than the exchange field J13

�S3 on the control spin. Below, we describe
our computer simulation with our proposed model. A schematic of the spin system
is shown in Fig. 1.

The Hamiltonian of the system is

H = �B1
�S1 + �B3

�S3 − J13
�S1

�S3 − J23
�S2

�S3 +
1
2
Brf{eiωtS+

3 + e−iωtS−
3 }. (1)

Here we set γ = 1 (γ is the magnitude of the electron gyromagnetic ratio) and
� = 1. The rf field rotates in the clockwise direction.

The parameters chosen for the computer simulations are:

J23 = 2, J13 = 20, B3 = 25, B1 = 2500, Brf = 3,

S1 = S2 = 1/2, S3 = 51/2, ω = 15.
(2)

At first sight, the external magnetic field on the nearby spins looks very dif-
ferent, so that the whole idea does not seem to be practical. Indeed, our idea
relies on the rapid advance in creating the high magnetic field gradients. As an
example, micro-patterned wires of 1 µm diameter with equal and parallel current
of 1 A can produce the magnetic field gradient of about 1 MT/m, if the distance
between the wires is about 1 µm.6 (See also Ref. 7). Let us assume that the aux-
iliary spin S3 is placed very close to the midline between the wires, where the
magnetic field B3 = 10 µT. Let the control spin S1 be located about 1 nm away
from the spin S3 (and from the midline). Finally, let us place the spin S2 on the
midline at a distance (along the midline) of about 1 nm from the spin S3. In
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Fig. 1. Three-spin system.
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this case, the external magnetic field on the control spin B1 = 1 mT, and on the
target spin B2 = 0. These values correspond to the parameters of our numerical
simulation.

The duration τ of the action of the rf field corresponds to the π pulse:

Brf τ = π. (3)

The initial conditions describe an auxiliary spin S3 and the target spin S2 point-
ing “up” in the positive z-direction, while the control spin S1 may point “up” (as
shown in Fig. 1) or “down” (not shown in Fig. 1).

For our chosen parameters, the local magnetic field on the control spin B1 =
2500 is much greater than the exchange field J13 S3 = 510. So, one can expect
that the direction of the control spin is determined by the local field. Next, for the
auxiliary spin, the local magnetic field B3 = 25 is more than twice the exchange
field J13 S1 = 10 produced by the control spin and much greater than the exchange
field J23 S2 = 1 produced by the target spin. The rf field Brf = 3 is greater
than the exchange field produced by the target spin but smaller than the exchange
field produced by the control spin. Thus, one can expect that the action of the rf
pulse on the auxiliary spin depends on the direction of the control spin and does
not depend on the direction of the target spin. If we ignore the influence of the
target spin, the resonant frequency of the Larmor precession of the auxiliary spin
is “35” for the control spin pointing “up” and “15” for the control spin pointing
“down”. With ω = 15, the auxiliary spin changes its direction only if the control spin
points “down”. Finally, the exchange field on the target spin J23 S3 = 51 is much
greater than the expected frequency of its oscillations: the transverse component
of the exchange field is expected to oscillate with the frequency ω = 15, and the
z-component with frequency Brf = 3. (The magnetic field has the same unit as the
frequency, as we set γ = 1.) Thus, our scheme is expected to implement a controlled
change of the target spin state.

The Schrödinger equation for the wave function |ψ(t)〉 of three spins in the Sz

representation

|s1, s2, n〉,
with

s1 = ±1/2, s2 = ±1/2, n = 1, . . . , 52,

can be written as a system of 104 coupled linear equations for the coefficients

Cn(t) = 〈s1, s2, n|ψ(t)〉,

i
dCn

dt
= B3

(
53
2

− n

)
Cn +

1
2
Brf

√
n(52 − n)eiωtCn+1

+
√

(n − 1)(53 − n)e−iωt Cn−1.

(4)
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Here we have used the well–known expressions for the matrix elements of the
spin. In particular, for the auxiliary spin S3 we have:

〈s1, s2, n|Sz
3 |s1, s2, n〉 =

53
2

− n,

〈s1, s2, n|S+
3 |s1, s2, n + 1〉 =

√
n(52 − n),

〈s1, s2, n|S−
3 |s1, s2, n − 1〉 =

√
n(52 − n).

(5)

In Fig. 2, we show the results of our computer simulations, which confirm the
expected dynamics of the spin system. Namely, if the control spin S1 is initially
“up”, the target spin S2 does not change its state. (See Fig. 2(a).) If the control
spin S1 is initially “down”, the target spin S2 changes its state from “up” to “down”.
(See Fig. 2(b).) During this operation, both spins remain in their ground states.

In conclusion, we propose a scheme, which in effect relates adiabatic quantum
computation with traditional gate quantum computation. Our scheme implements
the change of state of the target spin controlled by the state of the control spin in
such a way that both spins remain in their ground states. This result is achieved
using an auxiliary spin, which mediates the interaction between the control and
target spins.

Note that our operation can be considered as a two-bit digital logic gate G

which changes the state of the target bit if and only if it is different from the state
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Fig. 2. Average spin evolution: (a) — for the control spin pointing “up”, and (b) — for the
control spin pointing “down”.
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of the control bit. We may implement this gate using a linear polarized rf field,
which is a superposition of two circularly polarized rf fields. Indeed, if we assign the
value “0” to spin “up” and the value “1” to spin “down”, and request that all spins
are initially in their ground states, we will get the transformation: G(00) = (00),
G(10) = (11), G(11) = (11), and G(01) = (00). In future, we plan to study the
opportunities to implement quantum logic gates holding the qubits in their ground
states.
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