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Survival of quantum effects for observables after decoherence
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When a quantum nonlinear system is linearly coupled to an infinite bath of harmonic oscillators, quantum
coherence of the system is lost on a decoherence time ggaMevertheless, quantum effects for observables
may still survive environment-induced decoherence and be observed for times much larger than the decoher-
ence time scale. In particular, we show that the Ehrenfest time, which characterizes a departure of quantum
dynamics for observables from the corresponding classical dynamics, can be observed for a quasiclassical
nonlinear oscillator for times> 7. We discuss this observation in relation to recent experiments on quantum
nonlinear systems in the quasiclassical region of parameters.
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In the last few decades there has been extensive theoreti- We study the following problem: What are the parameter
cal, and more recently experimental, research on theonditions for observation of quantum effects on expectation
quantum-classical transition. It has been noted that everyalues(observablesin the QNO dynamics. We describe the
physical system is, in fact, an open quantum system interacttynamics for the QNO for observables, taking into account
ing with its environment. Consequently, the evolution of thefive characteristic time scales which naturally appear in this
reduced density matrix of the systgwbtained after tracing system. Three of them characterize the time scales of the
over the environmental variablesvolves in such a way that QNO evolving under the Hamiltonian dynamic) 7
quantum coherent effects are quickly suppressed. This pre=2m/ w, the period of nonlinear classical oscillation(;)
cess of environment-induced decoherence has been consigk, the so-called Ehrenfest time, which indicates the charac-
ered to be an essential ingredient of the quantum-classic&tristic time scale at which quantum dynamics for observ-
transition[1]. On the other hand, despite the huge number ofibles starts to depart from the corresponding classical dy-
papers on this subject, only few of them deal with quanturmamics;(iii) 7, @ quantum recurrence time, which describes

nonlinear systemee.g.,[2—6]). the time scale for quantum recurrences of observables under
We consider in this paper the dynamics of a quantunthe Hamiltonian evolution. There are also two characteristic
nonlinear oscillatokQNO), time scales related to the interaction of the QNO with the
thermal bathi(iv) mp, a decoherence time, which character-

H=%wATa+ uh?(a'a)?, (1) izes the decay of the nondiagonal matrix elements of the

reduced density matrix in the eigenbasis of the noninteract-
interacting with a bath of linear oscillators which are initially ing Hamiltonian, andv) 7,, a time scale of relaxation of
in thermal equilibrium. Heré(a") is the annihilation(cre-  quantum observables due to the interaction with the thermal
ation) bosonic operatore is the linear frequency, and is  bath. We demonstrate that even if the decoherence time is
the parameter of nonlinearity. The QNO is initially preparedmuch smaller than the Ehrenfest timg,< 7z, one can still
in a coherent state in the quasiclassical region of parametersbserve quantum effects for observables. Actually, the im-
In the classical limita— a, a'—a", #—0, |a| =, #|af? portant condition for observation of quantum effects related
=J an action of the classical linear oscillatdhe Hamil-  to the Ehrenfest time scale i < 7,, which may be realized
tonian(1) becomed = wJ+ uJ?. In what follows we use the in modern experiments in the quasiclassical region of param-
following dimensionless notationr=wt, u=hu/w, ug eters (e<1). This means that generally the environment-
=ud/w, ande=#/J. Thus, the quantum paramefercan be induced decoherence is insufficient for recovering the
presented as a product of two parameters, quantum and clasgantum-classical correspondence for observables in quan-
sical, u=eug. The parameteg, characterizes the nonlinear- tum nonlinear systems. This is an important observation for
ity in the classical system and can be written A§ at least two reasonsga) It means that pure quantum effects
=(J/2w)(dwy/dJ), wherewy=dHy/dJ=w+2uJ is the clas-  can be observed for times much longer thgnand(b) pure
sical frequency of nonlinear oscillations. The limif;<1  quantum dynamical effects can be important in experiments
corresponds to weak nonlinearity, whilg,= 1 corresponds even in the quasiclassical region of parameters. Finally, the
to strong nonlinearity. The parameteris a quasiclassical classical limit appears in our system under very natural con-
parameter. Namely; ~ 1 corresponds to the “pure” quantum ditions 7p < 7 < 7, < T < 7.
system ande<<1 corresponds to the quasiclassical limit, One type of system that could be considered for observing
which is the subject of this paper. guantum effects in the quasiclassical region of parameters is
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Bose-Einstein condensat¢BEC'’s). These are particularly as we already stated, environment-induced decoherence is in
suited to analyzing the interplay between nonlinear dynamicfact ineffective in recovering the quantum-classical corre-
and environmental interactions in the realm of quantum mespondence for this nonlinear system.

soscopic systems. This is because they are macroscopic mat-In the following we compute quantum observables in the

ter waves, often described theoretically by the Grossy norentstate basis. For an arbitrary operator funcfion
Pitaevskii (GP) equation, which formally is a classical -

nonlinear field theory. Going beyond the GP equation allows=f(@",8), the time-dependent expectation value of such a
one to understand the role of quantum effects in the quastunction (observablg f(a", a,t)=(a|eH fe"HV% o) for an
classical region of parameters. Another important feature Onitial coherent statéa), satisfies a partial differential equa-
BEC's is that they are expenmentally eqsﬂy accessible a_nﬂon of the form[15] 8f/&7=kf, whereK =K |+ﬁk " Here
controllable by means of trapping potentials and tunable in- - ) R
teractions. BEC'’s have already been used to demonstrate tHae operatoK includes only the first-order derivatives and
nonlinear dynamics of collapses and revivals of a cohererléscribes the corresponding classical limit, while the other
matter wave in the pure quantum regif¥. Here, the con- operatorK, includes higher-order derivatives and is respon-
densate was initially trapped in the lowest-energy band of gible for quantum effects. For the model given by E.we
three-dimensional optical lattice. By adiabatically raising theget
heights of the barriers it was possible to suppress tunneling
between sites and at the same time maintain the system in the I [ d
superfluid regime, so that within each lattice site independent 97 I(L+p+2u]af’)| @ s Yoa f
coherent states were engineered with an average number of P

- a2—2>f. (2

atoms of order 1. Every BEC in each lattice site is well +iml (a)?
described in the single-mode approximation by the QNO d(a’)? da

Hamiltonian given in Eq(1), with @ being the trapping fre- .

quency in each lattice site and being proportional to the In particular, forf=2a the evolution off(7) corresponds to the
s-wave two-body scattering length. This single-mode ap-evolution of the condensate matter-wave field(7)
proximation is valid when the many-body interactions pro-={(a|a(7)|a). In this case Eq(2) can be solved exactlfi5]:
duce a small modification of the ground state of the indi- o _

vidual potential on each site, the mode structure being a(7) = a e exd|of*(e7 247 - 1)]. 3
sparce, such as in tightly optically trapped systems. In CONThe quantum evolution of this expectation value departs
trast, in weakly or nontrapped systems, such as the propaggar e corresponding classical evolutiag(r) = ae " as
tion of light through a Kerr mediunp8], a multimode treat- 252 = — )

ment is necessary. For Bose-Einstein condensates trappedd7) = aq(7)€ ™ "?E[1+0(u7) +O(|a’u*7)], where is the
optical lattices, the single-mode approximation leads to preEhrenfest time scale given by

dictions for the quantum dynamics of the condensate with 1

excellent agreement with experimer9,19. Other sys- TE= )
tems that could be used for observation of quantum nonlinear 2u]al
effects in the quasiclassical region of parameters are micr
mechanical[12] and nanomechanic@l3] resonators, high-
frequency cantileverl4], nonlinear optical systems, and su-

(4)

9he amplitudes of quantum and classical observables coin-
cide at multiple times of the quantum recurrence time scale:

perconductive junctions. -
The QNO is one of the simplest quantum nonlinear sys- TR= —. (5
tems for which the breakdown of the quantum-classical cor- M

respondence can be exactly calculated. The quantum anqbte that the quasiclassical limit, which is considered in this
classical dynamics of an initial coherent wave packet evolvpaper, corresponds to the following conditions/ 7,

ing under Eq(1) was computed by Bermaet al.[11]] and by  =£12/27<1. So in what follows we will be interested only
Milburn [3]. The characteristic time scale for departure of thejn the region of parameters wherg< 7z, Quantum recur-
guantum dynamics from the corresponding classical one, thesnces of the matter-wave field of a BEC in there quan-
so-called Ehrenfest time, was introduced for this system iRum regimea=~ O(1) (or e~ 1) in each lattice site were ob-
[11]. In [3] a similar problem was studied using tQequa-  served in[7] at 7r~100 (tz=0.55 m3, larger than the
siprobability distribution. It was shown that the presence Ofcorresponding Ehrenfest time scafe~15. At the same
non-positive-definite second-order terms in the quantum evjme quantum dynamical effects in the quasiclassical region
lution equation forQ, not present in the evolution of the ¢ parameters have still not been observed in BEC's.

classical probability density, is responsible for quantum re- Expressinge=J/e %, we can rewrite Eq(2) as
currences and prevents the appearance of fine-scale-structure '

“whorls” predicted in the classical description. [4,5] the af af &1

interaction of the QNO with the environmefthodeled by a P 1+ Zﬂcl)ﬁ + Zsﬂclm- (6)
thermal bath of harmonic oscillatgreras studied in the limit

of small nonlinearity, and it was argued that such an interacThe quantum term appears as a singular perturbation of the
tion was effective in destroying quantum interference effectglassical equation because the small parametewltiplies

and restoring the classical phase-space structure. Howevée higher-order derivative. Note that the quantum effects for

062110-2



SURVIVAL OF QUANTUM EFFECTS FOR OBSERVABLES. PHYSICAL REVIEW A 69, 062110(2004

observables vanish in two casé9:e=0, which corresponds F () =-ia+al B.(na+aB
to the classical limit, andii) uy=0, which corresponds to {P)= =3l Ba(7) 1(7)
the quantum linear oscillator. The fact that for nonlinear +i(é2(7-)é__é’fé2(7-))'l3}], (10)

quantum systems the terms with high-order derivatives in the
evolution equations for the density matrix and for the Wigneris related to noise. The time-dependent, operator-valued co-

f.“”.C“OF‘ represent a s_ingular perturbation to Fhe (T‘IaSSicaéfficientsA- andB; depend on the frequency operator
limit (Liouville function) is well known. However, in spite of ! :

a large number of papers on this subject, from this fact it is N _ Ata
still unclear what are the conditions for the quantum- Q=1+p(l+2a'8)
classical correspondence fobservablesThe solution(3) of
Eq. (2) for the observablex(7) (and also for an arbitrary
observablg15]) demonstrates that quantum effefdecond- L
order derivatives in Eqs2) and (6)] represent a singular @)= yoA?
perturbation to the classical equation fadyservableswhich A2+ 2
includes only the first-order derivatives and can be solved by
the method of classical characteristj@&,15. This results in
a secular behavior of quantum corrections in the solution fo
the observablex(7), Eq. (3). So the question is, under what
conditions does the environment “kil{if at all) the quantum .
corrections which represent a singular perturbation twthe Al(r) =f dsn(s)cos(fls), (12)
servablesof the classical world? 0

Following [4,5] we model the environment as a bath of
harmonic oscillators in thermal equilibrium at a rescaled .
temperaturgB=fiw/kgT linearly coupled through position to AZ(T) :f dsn(s)sin(fls), (12)
the QNO described by Eql). This model has also been 0
used to study decoherence of quantum-coherent atomic tun-
neling between two Bose-Einstein condensates, each treated ,
in the single-mode approximation by Eql) plus a él(T) :f dSV(s)cos(fls), (13)
Josephson-like coupling between théir6]. More realistic 0
models for the interaction between the condensate and envi-
ronment invoke density-density terms arising from collisions .
between the condensate and thermal, noncondensed atoms. 5 _ -
In [17] the decoherence of a BEC Schrodinger cat state was Ba(7) = fo dsu(s)sin((2s), (14
analyzed with a single-mode model for each component of
the cat state, and it was shown that via quantum-state engjghere the dissipation and noise kernels are, respectively,
neering of the environment it is possible to significantly ré-given by
duce decoherence rates. [h8] the previous single-mode
model plus environment was extended to two modes, obtain- =
ing the same qualitative results as before. All the above 7(s) = f do—J(w)sin(ws), (15)
shows the robustness of the single-mode description of the 0 77
system, given by Eqil), and the treatment of a multimode
environment, either of harmonic oscillators or thermal atoms. . — —

In the Born-Markov approximation, the master equation us) :f dEgJ(B)coth<@>cos(Es). (16)
for the reduced density matrix reads 0 2

and on the spectral density of the environment,

yvhich we chose to be Ohmic, with a UV cutoff andy a
system-environment coupling constant. Explicitly,

dp

— =Fiedp) +F(p) +F,(p), (7) The matrix elements of the operatoﬁs and I§i can be
dr straightforwardly computed in the Fock basis and shown to
where the first term, have an analpgous behavior to that of {he0, quantum
Brownian motion cas¢19].
Fredp) = —i[a'a+ w(a'8)% 5], (8) To study the decoherence effects of the environment we

first start by considering an initial Schrodinger cat state
corresponds to the free, unitary evolution, the second one, formed by large-amplitude coherent statgg0)=/\{|a)
, +|8)({a|+(B|), with |af?,|8?>1, and V' a normalization
F(p) = '_[a+ at {Ay(na+arAy(n) +i(Al(na constant. For simplicity we take and 3 to lie along a com-
2 mon radius, and we parametrize themaasxe? and 8=(x
SRS - +6x)€?. Decoherence is due to the term in the master equa-
- &Thy(n) 1], (99 €. Deconer naster eq
tion containing B;. In the coherent state basis, the off-
accounts for dissipation, and the third one, diagonal matrix elements of the density matrix evolve as
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FIG. 1. Comparison between the numerically obtained decoher-
ence timerp and the approximate relation given by E@9), ob-
tained retaining only one term in the master equation. The dashed
line corresponds tap(theory = rp(numericg. Data are obtained by
varying parameters in the following regions: 20,<100, 103
<p=<4,10%<p=<1, and 10°<y<1072

FIG. 2. The average po_sition as a function of the dimensionless

time 7. In all cased =50, 8=1. (a) Parameters ara=0.1 andy

=10 The dashed curve corresponds to (exf ), where 7

=18> 7=0.7.(b) is an enlargement of the first bump @. Two

more curves have been added: a dashed-dotted line corresponds to
the average position fop=1072, so thatry=0.18< 7, and a dotted

line that corresponds to the envelope @xﬁlzé). (c) is an en-
largement of the third bump af). The dotted line corresponds to

the envelope exp 7/ mo)exd—(7— TR)Z/ZTZE], where 7g=107. (d)
Parameters arg=y=107, so thatrp <7< 7, < TR

d
d—T(a|ﬁ|,3> ~ = 2By(lo, ()X pI B), (17)

where By(lg, 7 =(a|B1(7|a) with 1,=|a?. For > 1/A,
B,(lg, 7) is approximately equal to its asymptotic value

A
Bty = 2 22,

decoherence time isD%fryﬁszkBTJd, where 7,=2/y is
the time scale of the relaxation of quantum observables due

2 A2+f_22 2

to interaction with the environment.
Having the density matrix elements, we can easily deter-

With Q=1+u(1+2). Therefore, the decoherence time scalemine the average values of any observable—for instance, for

IS the positionx(r)E(f((r)>=(a(r)+a*(7-))/\f§. An example of
1 such simulations is given in Fig. 2. The time scale for the
T ——————. (18) overall decay of the amplitude of recurrences, shown in Fig.

2B1(0)(8x)? 2(a), is set by the decoherence time scaje the relative

. . . heights of two peaks, taken at two neighbor recurrent times,
In this paper we are interested in the decoherence effects %Iereduced by a factor expra/ 7). An enlargement of the
the environment coupled to the anharmonic oscillator, ini-first bump of Fig. 2a) is givenRin ID:i'g 2b). As one can see in
tially prepared in a coherent staie). Due to this coupllng,_ oth cases reported in the figure, the time scale which gov-
the quantum recurrences of the system decay exponential ’

. > . . rns the envelope of(7) is the Ehrenfest timeg, which is
on a time scale that coincides with the time scale of decoi—nde endent of the couling to the environment. The same is
herence of a Schrodinger cat, given by Eg8). Indeed, in b ping :

the case of an initial coherent ste®)?~ (alx2a)~ o, SO true for any of the following revival bumps; see FigcR

) _ .. Let us also notice that in Fig.(B) the curves fory=10"%
that the decay t!me_ of quantum recurrences of the 'n't'atsolid line) and for y=10"2 (dashed-dotted lineare slightly
coherent statéw) is given by

shifted one to the other. This is due to the fact that the fre-

quency of motion is slightly dependent on the bath-oscillator
— (19)  interaction strengthw?,=0%-yA%/(A2+Q?). This is not at
loy€2 all surprising since the renormalization of the frequency is a

We checked this estimation by numerical simulations of quealtr?rgié)f ;(h;) (t:r?gS;?/Z:demgc?;iiroiq;agli?t]téd for a case in

(7 using as intal state a quasiclassical coherent State. Agycy =) <x 27 (2074, ryc5.12, 7671, 1,

can gseen inFg. 4, e,agreeme” IS fairly good within e:200, andrz=314). This figure represents the most impor-

numerical errors. In the limit of small temperatyfé)>1  tant result of the present work: Usually, in the quasiclassical

and small nonlinearityulo<1 the decoherence time scale regjon of parameters and for rather large values of the cou-

coincides with the one derived [d]; however, we stress that pling to the environmenty= 1072, the characteristic deco-

in the general case, differently frof@], the decoherence perence time scale is much shorter than the Ehrenfest time

time, as given by Eq(19), depends on the parameter of scale, 7, < 7. Despite this, the system does not become en-
tirely “classical,” since quantum effects persist up to the

_tan F(,B_QIZ)

)

nonlinearity, u. In the high-temperature limiBQ <1, the
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12 decay factor of the average positiatr) e It is given
Ty T by
] I S S
............... —2 12
~~~~~~~ yr  4pfal _ _
4 D(r)=—+———=|[1-e"coq2
_ (7) 2 4ﬁz+72[[ 2u7)]
ey
“ 1 - X, ‘Wsin(zﬁr)]. (22)
4 2p

Let us first analyze the casg/2<u, corresponding tore
<7, Let us express the time around a given recurrence
time asT=nrx+7, Wheren is a non-negative integer. Assum-
ing that the timer is much shorter than the relaxation time,
yr<1, and thatur<1, we can expand(7) = |a|2(2u?7

FIG. 3. The average position(7) in the “classical” limit: 75, +N7rY). Hence, in these limits, the decay of the average
< 1y<T,<7c <7k Parameters arg=10"% B=1, y=0.01, and,  POSsItion Is
=50, so thatry=0.92, 7=2m, 7,=200, 7=707, andrz= X 10%. NS
The correct decaydotted ling, as given by the relaxation time, X(7) o € 717TE €RD, (23
is compare_d with the “wrong” decafdashed ling given by the  \\hare e is defined in Eq(4) and rp=1/y|a/? is the zero-
Ehrenfest timerg, temperature limit of Eq(19) for u|a|?<1. Therefore, the
Ehrenfest time. Indeed, fot(0)=(a+a")/\2=12l,=10 and decay ofx(7) wifchin any recurrence bl_Jmp is _de_termined by
75=0.74, the dependenag0)exp(—7/ 75) would give us, for ~ the Ehre_nf_est time scale, and even in the limjt< 7z the
example, forr=10 the value 1.% 105, which is signifi- ~decay within the first bumgn=0) is still governed by the
cantly smaller than the corresponding value 3.7 defined b§ghrenfest time scale, which agrees with our numerical results
the functionx(0)exp(-72/272) for x(0)=10, =10, and7z  presented above. This implies that some quantum effects sur-
=7.1 [which corresponds to the results presented in Figvive the loss of quantum coherence due to the interaction
2(d)]. with the environment. On the other hand, whg2> u (i.e.,

In our model the classical limit corresponds to the follow- 7, < 7¢) the classical limit is attained, and the decay is gov-
ing inequalities:rp < 7y < 7, < e < 73 (See Fig. 3 Because erned by the relaxation rate.
in the quasiclassical region of parameters the inequalities Persistence of quantum effects after the decoherence time
Te< 7R and 7o < 7 are always satisfied, the really important can be also observed analyzing the Fourier spectrum of the
condition for the classical limit is-,< 7. In this case the average position in timg(r)=X, x,€“". When the system is
system effectively behaves as a classical damped oscillatotlosed—i.e., no coupling to the environment—the Fourier
and quantum effects cannot be observed. For comparison w®mponents are given by

-12 s | s ] n ] n l L 1 L
0 20 40 60 80 100 120

T

plot in Fig. 3 the overall decay of oscillations, given by
with the one that would be given by the Ehrenfest time. The X, = 2A< @ __1> +c.c.,
perfect agreement of the decay relaxation time with the data 2 2u

and their wrong dependence on the Ehrenfest time is a mani-

festation of the classicality for this case. where
To gain a qualitative understanding of these numerical m T i o o
findings we consider a simplified version of our master equa- A(n) = ;f & blel™2iunrg . (24)
0

tion (7) at zero temperature, in which we keep only the effect

of dissipation and decoherence due to the environment a”@stimating this quantity in the limilzr<1 we obtain the
make the rotating-wave approximation. In this way we getfrequency spectrum for the QNO:

the standard master equation in quantum optics for the QNO:

~ 1 (0- a)C|)2

dp ata  ——atano a1 Yomnnat  atan  Anta X ex
d—T=—|[aTa+ M(a*a)z,p]+E(ZapaT—aTap—paTa). “ an|a? 2A w2

]X(O), (25)

(20)  which is a Gaussian distribution centered around the classi-
cal oscillation frequencywy=1+2u|al?> with a spectral

This equation is precisely the one considerefipwhere an it given by the inverse of the Ehrenfest time scale,

e>§act solution_ for thg _q_uasiprobabili@ function_was ob- :Tél_ In Fig. 4 the Fourier spectrum, for the QNO coupled
tained, assuming an |n|t|al_coherent s_thth In particular, an to the environment is shown for the cage< .. As one can
exact expression forAihe time evolution of the average poSigeg in 41| cases presented in Figwhatever the relation is
tion (x(7))=[(&(7))+(a'(7))]/2 can be written, where between the decoherence time and the Ehrenfest) tihee
(a(7) = ae(1+,7)Te—w/ze—ua\2/(1+k2>](1+ik)(1_e—we—2i;77>’ (21) width of thg Fourier spectrum is alyvays given by the invgrse
B Ehrenfest time. Whem, < 7¢ the width of the spectrum is
with k=+/2u. Note that for no coupling to the environment given by the relaxation rate, and the classical limit is ob-
(y=0) we recover Eq(3). From Eg.(21) we can read the tained.
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0.3 0.3F n b) The quasiclassical parametereis 1/N. Therefore,
202 802 | ! p——
1
I P o / .
0'1- ) - l’l \‘ BEC_ a 'n'ﬁ ’T.y> 1 (27)
Og T2 For example, for a=5nm, m=1.5x10%kg, /27
0/, =100 Hz, and estimating the dimensionless relaxation time
03 03F ,‘\ 7, from the lifetime of the condensateay,t,=1 sec, sor,
i A I d) =wt,=27x 10%), we need a total number of particlel,
& 0.2 802 I > 1. In the case of a cantilevéor a mechanical resonajor
o1l o1l i \ the quasiclassical parameterds 1/n, wheren in the aver-
L "l i age number of levels involved in the coherent state of the
05 8 S cantilever. For the dimensionless relaxation timewve take
/o 7,=2Q, whereQ is the cantilever quality factor. Then, for a

cantilever the conditioni26) takes the form

FIG. 4. The Fourier spectrum of the average position versus the
rescaled frequency, wheke,=1+2ul, is the classical frequency. Y 4pgQ 1 (28)
At the dashed black line we show the theoretical expression, Eq. cantlever™ ) '
(25), for the closed system. Paramet@su, lq are the same as in
Fig. 2, while (a) y=10"°, 7,=180>7=0.7, (b) y=104 = We take the following dimensional parametg26]: the am-
=18>7=0.7 (c) y=1073, 15=1.8>7=0.7, and(d) y=1072, 7, plitude of the cantilever oscillations,,,=10 nm; the spring
=0.18< 7z=0.7. As one can see, decreasing of the decoherenceonstantk,=6x 1074 N/m; and the frequency of the funda-
time has no effect on the width of the Fourier spectrum. mental mode of the cantileven,/27=6.6 kHz. In this case,
the number of cantilever levels can be estimatednas

The important condition for survival of the quantum ef- =K%/ fiwc=6X 10" We also takeQ=1CF. Then, we have

fects for observables related to the Ehrenfest time scale #0m Eq.(28) the estimate for the parameter of nolinearity:
7e<r,, which can be written in the form 1e>0.2. We hope that these conditions can be experimen-

tally realized and quantum effects related to the Ehrenfest

T time scale can be observed in the quasiclassical region of
D= Y= 12
Te e 1y > 1. (26) parameters.
For BEC's the parameter of nonlinearipy,=uJ/ w can be We acknowledge useful discussions with G. Nardelli. This

written asuq=Nya’mw/27h, whereN is the number of par- work was supported by the U.S. Department of Energy
ticles in the condensata,is thes-wave scattering lengtim  (DOE) under Contract No. W-7405-ENG-36 and by the De-
is the mass of the atoms, anrgis the trapping frequency. fense Advanced Research Projects Age(@asRPA).
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