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The theory of the oscillating cantilever-driven adiabatic reversals �OSCAR� in magnetic resonance force
microscopy �MRFM� is extended to describe the relation between an external magnetic field and a dipole
magnetic field for an arbitrary location of the single spin. An analytical estimate for the OSCAR MRFM
frequency shift is derived and shown to be in excellent agreement with numerical simulations. The dependence
of the frequency shift on the position of the spin relative to the cantilever has characteristic maxima and
minima which can be used to determine the spin location experimentally.
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I. INTRODUCTION

Magnetic resonance force microscopy �MRFM� has
attracted much attention as a promising way to the mag-
netic resonance imagine with the atomic scale resolution.1–3

In particular, the oscillating cantilever-driven adiabatic rever-
sals �OSCAR� technique in MRFM introduced in Ref. 4 has
been used to successfully detect a single electron spin below
the surface of a solid.5 In the OSCAR MRFM technique the
vibrations of the cantilever tip �CT� with an attached ferro-
magnetic particle in the presence of a rf magnetic field cause
the periodic reversals of the effective magnetic field acting
on the single electron spin. If the conditions of adiabatic
motion are satisfied the spin follows the effective magnetic
field. The back action of the spin on the CT causes a small
frequency shift of the CT vibrations, which can be measured
with high precision.

The quasiclassical theory of OSCAR MRFM has been
developed in Ref. 6. This theory contains two important limi-

tations. First, it assumes that the external magnetic field B� ext

at the spin is much greater than the dipole field B� d produced
by the ferromagnetic particle. In real experiments, in order to
increase the frequency shift ��c, one has to decrease the
distance between the CT and the spin to values where the
dipole field becomes sometimes greater than the external
field.5 Second, it was assumed in Ref. 6 that the spin is
located in the plane of the cantilever vibrations. Thus the
quasiclassical theory should be extended in order to describe

both an arbitrary relation between B� ext and B� d and an arbi-
trary location of the spin. This extension is presented in our
paper.

A single spin is a quantum object which must be de-
scribed using quantum theory. The quantum theory of
OSCAR MRFM has been developed in Ref. 7 with the same
limitations as the quasiclassical theory. It was found, as may
be expected, that the frequency shift ��c in quantum theory
may assume only two values ±���c� corresponding to the two
directions of the spin relative to the effective magnetic field.
The value of ���c� in quantum theory is the same as the

maximum frequency shift calculated using quasiclassical
theory �where it can take any value between −���c� and
���c��. Thus, to calculate the quantum frequency shift, it is
reasonable to use quasiclassical instead of quantum theory.

II. EQUATIONS OF MOTION

We consider the MRFM setup shown in Fig. 1. The CT
oscillates in the x-z plane. The origin is placed at the equi-
librium position of the center of the ferromagnetic particle.
Note that here we ignore the static displacement of the CT
caused by the magnetic force of the spin. The magnetic mo-
ment of the spin, �� shown in Fig. 1, points initially in the

direction of the magnetic field B� 0, which corresponds to the
equilibrium position of CT �see Eq. �4��. We assume now

that the rf magnetic field 2B� 1 is linearly polarized in the

plane which is perpendicular to B� 0. �Later we will generalize

FIG. 1. MRFM setup. The equilibrium position of the spin and
the cantilever with a spherical ferromagnetic particle. m� is the mag-
netic moment of the ferromagnetic particle, �� is the magnetic mo-

ment of the spin, B� ext, B� d
�0�, and B� 0 are, respectively, the external

permanent magnetic field, the dipole field on the spin, and the net

magnetic field. In general the vectors B� d
�0� and B� 0 do not lie in the

x-z plane.
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this to an arbitrary direction of polarization.� The dipole

magnetic field B� d is given by:

B� d =
�0

4�

3�m� · n��n� − m�

rv
3 , �1�

where m� is the magnetic moment of the ferromagnetic par-
ticle pointing in the positive z-direction, rv is the �variable�
distance between the moving CT and the stationary spin, and
n� is the unit vector pointing from the CT to the spin. We
define:

rv = ��x − xc�2 + y2 + z2, �2�

n� = � x − xc

rv
,

y

rv
,

z

rv
� , �3�

where x ,y ,z are the spin coordinates, and xc is the CT coor-
dinate �i.e., the coordinate of the center of the ferromagnetic
particle�. At the equilibrium, the net magnetic field at the
spin is

B� 0 = B� ext + B� d
�0�, �4�

B� d
�0� =

3m�0

4�r5 �zx,zy,z2 −
r2

3
� , �5�

B� ext = �0,0,Bext� , �6�

where r=�x2+y2+z2. In the approximation which is linear in

xc, the magnetic field B� d changes by the value of B� d
�1�:

B� d
�1� = − �Gx,Gy,Gz�xc, �7�

�Gx,Gy,Gz� =
3m�0

4�r7 „z�r2 − 5x2�,− 5xyz,x�r2 − 5z2�… , �8�

where �Gx ,Gy ,Gz� describes the gradient of the magnetic
field at the spin location at xc=0:

�Gx,Gy,Gz� = � �Bd
x

�x
,
�Bd

y

�x
,
�Bd

z

�x
� . �9�

�Note that the magnetic field and its gradient depend on
the CT coordinate xc.� Next we consider the equation of mo-
tion for the spin magnetic moment �� in the system of coor-
dinates rotating with the rf field at frequency � about the

magnetic field B� 0. �The z̃ axis of this new system points in

the direction of B� 0.� We have

�̇� = − ��� � B� ef f ,

B� ef f = �B1,0,B0 − ��/�� − xc	
i

Gi cos �i� ,

cos �i = B0
i /B0. �10�

Here �i �i=x ,y ,z� are the angles between the direction of the

magnetic field B� 0 and the axes x ,y ,z of the laboratory system

of coordinates; and � is the gyromagnetic ratio of the elec-
tron spin. �� is the absolute value of the gyromagnetic ratio.�
We ignore the transverse components of the dipole field B� d
because they represent the fast oscillating terms in the rotat-
ing system of coordinate. Also we consider only the rotating
component of the rf magnetic field.

The equations of motion for the CT can be written as

ẍc + �c
2xc = Fx/m

*, �11�

where �c and m* are the frequency and the effective mass of
the CT and Fx is the magnetic force acting on the ferromag-
netic particle on CT. We consider the CT oscillations in the
laboratory system of coordinates. Ignoring fast oscillating
terms in the laboratory system, we obtain

Fx = − �z̃	
i

Gi cos �i. �12�

Next, we will use the following units: for time 1/�c, for
magnetic moment �B, for magnetic field �c /�, for length the
characteristic distance L0 between CT and the spin, and for
force kcL0, where kc=m*�c

2 is the effective CT spring con-
stant. Using these units, we derive the following dimension-
less equations of motion:

��̇ = − �� � B� ef f ,

ẍc + xc = Fx,

B� ef f = �B1,0,	 − 
Gxc� ,

Fx = − �
G�z̃,

	 = B0 − � ,

G =
1

r7 �z�r2 − 5x2�cos �x − 5xyz cos �y + x�r2 − 5z2�cos �z� .

�13�

The parameters � and 
 are given by

� =
�B�c

�kcL0
2 , 
 =

3��0m

4��cL0
3 . �14�

Note that all quantities in Eq. �13� are dimensionless, i.e., x
means x /L0, � means � /�B, B0 means �B0 /�c, and so on. In
terms of dimensional quantities the parameter 
 is the ratio
of the dipole frequency �Bd

�0� to the CT frequency �c, and the
product �
 is the ratio of the static CT displacement Fx /kc to
the CT-spin distance L0. The derived equations are conve-
nient for both numerical simulations and analytical esti-
mates.

III. THE OSCAR MRFM FREQUENCY SHIFT

In this section we present the analytical estimates and the
numerical simulations for the OSCAR MRFM frequency
shift. When the CT oscillates, the resonant condition �
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=��B� ext+B� d� can be satisfied only if the spin is located inside
the resonant slice which is defined by its boundaries:

�B� ext + B� d�xc = ± A�� = �/� , �15�

where A is the amplitude of the CT vibrations. For an ana-
lytical estimate, we assume that the spin is located at the
central surface of the resonant slice. In this case in Eq. �13�
	=0.

To obtain an analytical estimate for the OSCAR MRFM
frequency shift we will assume an ideal adiabatic motion and

put �̇� =0 in Eq. �13�. Let the CT begin its motion �at t=0�
from the right end position xc�0�=A. Then the initial direc-

tion �i.e., at t=0� of the effective magnetic field B� ef f relative

to the magnetic field B� ext+B� d and of the magnetic moment ��

depends on the sign of G: B� ef f and �� have the same direction
for G�0 and opposite directions for G�0. Substituting the

derived expression for �z̃
−Bef f
z G / �B� ef f��G� into Fx we ob-

tain the following equation for xc:

ẍc + xc�1 +
�
2G�G�

�B1
2 + �
Gxc�2� = 0. �16�

We solve this equation as in Ref. 6, using the perturbation
theory of Bogoliubov and Mitropolsky,8 and we find the di-
mensionless frequency shift �see the Appendix�:

��c 

2

�

�
2G�G�
�B1

2 + �
GA�2�1 +
1

2

B1
2

B1
2 + �
GA�2

�
ln�4�B1
2 + �
GA�2

B1
� +

1

2
�� . �17�

In typical experimental conditions we have

B1 
 
GA ,

and Eq. �17� transforms to the simple expression

��c =
2

�

�
G
A

. �18�

One can see that the frequency shift is determined by the
ratio of the static CT displacement Fx /kc to the amplitude of
the CT vibrations A. We will also present Eq. �17� in terms of
dimensionless quantities:

��c

�c
=

2�BG0

�Akc
, �19�

where

G0 = 	
i

Gi cos �i. �20�

Equations �17� and �19� represent an extension of the esti-
mate derived in Ref. 6. These equations are valid for any
point on the central resonant surface and for any relation

between B� ext and B� d. It follows from Eq. �17� that ��c is an
even function of y and an odd function of x.

In our computer simulations we have used the following
parameters taken from experiments:5

�/2� = 5.5 kHz, kc = 110 �N/m, A = 16 nm,

Bext = 30 mT, �/2� = 2.96 GHz, �/� = 106 mT,

�Gz� = 2 � 105 T/m, B1 = 300 �T, L0 � 350 nm.

The corresponding dimensionless parameters are the fol-
lowing:

� = 1.35 � 10−13, 
 = 1.07 � 106, A = 4.6 � 10−2,

B1 = 1.5 � 103, Bext = 1.53 � 105, � = 5.4 � 105.

FIG. 2. The OSCAR MRFM frequency shift ��c�z� at the cen-
tral resonant surface �	=0�, for x�0. The symbols show the nu-
merical data, the lines correspond to the estimate �17� for �a� y=0
�circles�, �b� y=x /2 �squares�, and �c� y=x �diamonds�. Solid
squares and circles indicate frequency shifts at the spin locations
indicated in Fig. 3. In all figures the coordinates x, y, and z are in
units of L0 and the frequencies are in units of �c.

FIG. 3. Cross sections of the resonant slice for z=−0.1 and z=
−1. The dashed lines show the intersection between the cross sec-
tions and the central resonant surface. The solid squares and circles
indicate spin locations which correspond to the frequency shifts
given by the same symbols in Fig. 2.
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As initial conditions we take

�� �0� = �0,0,1�, xc�0� = A, ẋc�0� = 0.

Below we describe the results of our computer simula-
tions. Figure 2 shows the frequency shift ��c as a function of
the spin z-coordinate at the central resonant surface �	=0�.
First, one can see an excellent agreement between the nu-
merical data and the analytical estimate �17�. Second, as ex-
pected, the maximum magnitude of the frequency shift ���c�
can be achieved when the spin is located in the plane of the
CT vibrations y=0. However, for y=x, it has almost the
same magnitude ���c� �with the opposite sign of ��c�. More-
over, for y=x the dependence ��c�z� has an extremum,
which can be used for the measurement of the spin
z-coordinate. If the distance between the CT and the surface
of the sample can be controlled, then the “depth” of the spin
location below the sample surface can be determined. �In all
figures, the coordinates x, y, and z are given in units of L0,
and the frequency shift is in units of �c.�

Figure 3 shows the cross sections of the resonant slice for
z=−0.1 and z=−1. The greater the distance from the CT, the
smaller the cross-sectional area. The solid squares and circles
in Fig. 3 show the spin locations which correspond to the
frequency shifts indicated by the same symbols in Fig. 2.

Figure 4 demonstrates the “radial” dependence of the fre-
quency shift ��c�rp�, where rp= �x2+y2�1/2. The value of rp

can be changed by the lateral displacement of the cantilever.
As one may expect, the maximum value of ���c� corresponds
to the central resonant surface. The maximum becomes
sharper as z decreases. Thus a small distance between the CT
and the sample surface is preferable for the measurement of
the radial position of the spin.

Figure 5 shows the “azimuthal dependence” of the fre-
quency shift ��c���, where �=tan−1�y /x� and the spin is
located on the central resonant surface. Note that for the
given values of z and �, the coordinates x and y of the spin
are fixed if the spin is located on the central resonant surface.
The value of � can be changed by rotating the cantilever
about its axis. One can see the sharp extrema of the function
��c���. Again, the small distance between the CT and the
sample is preferable for the measurement of the “azimuthal
position” of the spin.

Finally, we consider the realistic case in which the direc-

tion of polarization of the rf field 2B� 1 is fixed in the labora-
tory system of coordinates. Now the angle � between the

direction of polarization of 2B� 1 and the field B� 0 depends on
the spin coordinate because the magnitude and the direction

of the dipole field B� d
�0� depend on the spin location. To de-

scribe this case we ignore the component of 2B� 1 which is

parallel to B� 0, and change B1 to B1 sin � in all our formulas.
As an example, Fig. 6 demonstrates the dependence ��c�z�
for the case in which the rf field is polarized along the x axis.
One can see that in a narrow region of z the magnitude of the
frequency shift sharply drops. This occurs because in this

region the magnetic field B� 0 is almost parallel to the x axis.
Thus the effective field B1 sin � is small: the condition of the

adiabatic motion ��B1 sin ��2� �dB� ef f /dt� is not satisfied; and
the spin does not follow the effective magnetic field. The
dashed lines in Fig. 6 correspond to the analytical estimate

FIG. 4. �a� The OSCAR MRFM frequency
shift ��c�rp� inside the cross-sectional area of the
resonant slice for x�0. The solid lines corre-
spond to y=0 and the dashed lines correspond to
y=x. Lines are 1, z=−0.1,2, z=−0.43, and 3, z=
−1. rp= �x2+y2�1/2. �b� The cross section of the
resonant slice z=−0.1. The bold segments show
the spin locations which correspond to lines 1 in
�a�.

FIG. 5. �a� ��c���, with �=tan−1�y /x� for the central resonant
surface: z=−0.1 �full line�, z=−0.43 �dashed line�, z=−1 �dotted
line�. �b� Solid line shows the cross section of the resonant slice for
z=−0.1. Dashed line shows the intersection between the plane z=
−0.1 and the central resonant surface. The solid circle in �b� shows
the spin location � /�=−0.1 whose corresponding frequency shift is
marked by a solid circle in �a�.
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�17� with the substitution B1→B1 sin �: the analytical esti-
mate assumes adiabatic conditions, which are violated for
small �.

The sharp drop of ���c� could be observed either by the
change of the distance between the CT and the sample sur-
face or by the change of the direction of polarization of the rf
field. In any case this effect provides an independent mea-
surement of the spin “depth” below the sample surface.

IV. CONCLUSION

We have derived the quasiclassical equations of motion
describing the OSCAR technique in MRFM for an arbitrary
relation between the external and dipole magnetic fields and
arbitrary location of a single spin. We have obtained an ana-
lytical estimate of the OSCAR MRFM frequency shift ��c
which is in excellent agreement with numerical simulations.
We have shown that the dependence ��c on the position of
spin relative to the cantilever contains characteristic maxima
and minima which can be used to determine the position of
the spin. We believe that moving the cantilever in three di-
mensions, rotating it �or the sample� about the cantilever’s
axis, and changing the direction of the polarization of the rf
magnetic field, experimentalist eventually will enable the de-
termination of the position of a single spin. We hope that our
work will help to achieve this goal.
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APPENDIX

Equation �16� can be written in the following form:

d2xc

d�2 + xc = �f�xc� , �A1�

where �=�ct is the dimensionless time,

f�xc� =

Gxc

�B1
2 + �
G�2xc

2
, �A2�

and �=−�
�G�.
The approximate solution of Eq. �21� can be written as8

xc��� = a���cos ���� + O��� , �A3�

where in the first order in �, a��� and ���� satisfy the equa-
tions:

da

d�
= �P1�a� + O��� ,

d�

d�
= 1 + �Q1�a� + O��� , �A4�

and the functions P1�a� and Q1�a� are given by

P1�a� = −
1

2�
�

0

2�

f�a cos ��sin � d� , �A5�

Q1�a� = −
1

2�a
�

0

2�

f�a cos ��cos � d� . �A6�

On inserting the explicit expression �22� for f�a cos �� one
gets:

P1�a� = 0, �A7�

Q1�a� = −
2
G

��B1
2 + �
Ga�2�

0

�/2 �1 − sin2 ��
�1 − k2 sin2 �

d� ,

�A8�

where

k2 =
�
Ga�2

B1
2 + �
Ga�2 . �A9�

Equation �28� can be written as

Q1�a� = −
2
G

�k2�B1
2 + �
Ga�2

��k2 − 1�K�k� + E�k�� ,

�A10�

where K�k� and E�k� are the complete elliptic integrals of the
first and second kind. When k
1 elliptic integrals can be
approximated by

FIG. 6. �a� ��c�z� when the rf field B� 1 is parallel to the x axis.
The spin is located at the central resonant surface y=0, x�0. Solid
line is numerical data, dashed line is the analytical estimate �17�,
which assumes adiabatic motion of the spin magnetic moment ��

parallel to B� ef f. For a few numerical points indicated as solid cirlces

in �a� the corresponding B� 0 field is shown in �b�. �b� Solid line:
intersection between the central resonant surface and the x-z plane.

Arrows show the magnetic field B� 0 on this intersection at the points
indicated as solid circles in �a�. The absolute value of the frequency

shift ���c� drops at the spin locations where B� 0 is approximately

parallel to B� 1��
1�.
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K�k� � ln
4

�1 − k2
+

1

4�ln
4

�1 − k2
−

1

2��1 − k2� ,

�A11�

E�k� � 1 +
1

2�ln
4

�1 − k2
−

1

2��1 − k2� . �A12�

In the first order approximation the frequency shift is

��c 
 �Q1�a� =
2

�

�
2G�G�
�B1

2 + �
Ga�2�1 +
1

2

B1
2

B1
2 + �
Ga�2

�
ln�4�B1
2 + �
Ga�2

B1
� +

1

2
�� . �A13�

In the approximation a�A, one obtains Eq. �17�.
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