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Anisotropic classical Heisenberg models with all-to-all spin coupling display a topological nonconnectivity
threshold (TNT) for any number N of spins. Below this threshold, the energy surface is disconnected in two
components with positive and negative total magnetizations, respectively, so that magnetization cannot reverse
its sign and ergodicity is broken, even at finite N. Here, we solve the model in the microcanonical ensemble,
using a recently developed method based on large deviation techniques, and show that a phase transition is
present at an energy higher than the TNT energy. In the energy range between the TNT energy and the phase
transition, magnetization changes sign stochastically and its behavior can be fully characterized by an average
magnetization reversal time. The time scale for magnetic reversal can be computed analytically, using statis-
tical mechanics. Numerical simulations confirm this calculation and further show that the magnetic reversal
time diverges with a power law at the TNT threshold, with a size-dependent exponent. This exponent can be
computed in the thermodynamic limit (N— o), by the knowledge of entropy as a function of magnetization,
and turns out to be in reasonable agreement with finite N numerical simulations. We finally generalize our
results to other models: Heisenberg chains with distance-dependent coupling, small 3D clusters with nearest-
neighbor interactions, metastable states. We conjecture that the power-law divergence of the magnetic reversal
time scale might be a universal signature of the presence of a TNT.
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I. INTRODUCTION

Statistical mechanics deals with systems containing a very
large number (10?%) of interacting particles. Nowadays, as
the experimental investigation of few-atom systems is be-
coming possible, the analysis of small systems raises funda-
mental questions [1], and the problem of a statistical descrip-
tion of few-body systems with strong nonlinear interaction is
a subject of current research [2]. Unfortunately we are still
far from understanding what are the conditions for a few-
body system to reach, if any, an equilibrium, and how to
describe it in the same way as statistical mechanics provides
a powerful description of large systems.

It has been recently shown that, for a Heisenberg model
with all-to-all coupling, there exists a specific energy thresh-
old below which total magnetization cannot change its sign,
even when the number of spins is finite [3]. This ergodicity
breaking phenomenon has been related to the existence of a
topological nonconnectivity threshold (TNT) of the energy
surface. This type of ergodicity breaking at finite N is differ-
ent from the N— o ergodicity breaking in a standard Ising
model below the critical temperature. It has been recently
claimed that ergodicity breaking is a generic feature of sys-
tems with long-range interactions [4]. Indeed, the existence
of this threshold is not restricted to the infinite range cou-
pling case. It is also present when the interaction among
Heisenberg spins decays as R™%, where R is the distance
between two spins. Indeed, it has been proved [5] that, for a
d-dimensional system, the ratio of the disconnected portion
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of the energy range with respect to the total energy range
tends to zero in the thermodynamic limit for a>d (short-
range interactions) while it remains finite for «<<d (long-
range interactions). On the other hand, although the mean-
field (all-to-all) type of spin coupling might appear
unphysical, magnetic systems can be realized, using modern
experimental techniques [6], which are well described by
Heisenberg-like Hamiltonians with an infinite range term.
Moreover, when the range of the interaction is of the same
order of the size of the system, all-to-all coupling may be a
meaningful first-order approximation [1,7]. This could be the
case for small systems used in current nanotechnology,
which requires one to deal with systems made of a few dozen
particles. Otherwise, all-to-all coupling is relevant for mac-
roscopic systems with long-range interactions, like gravita-
tional and unscreened Coulomb systems[7].

We address in this paper the issue of providing a theoret-
ical framework to calculate the magnetization reversal time
for the mean-field anisotropic Heisenberg model in a mag-
netic field, in which a finite number N of spins interact with
all-to-all couplings. This has been done by integrating ex-
plicitly the Hamiltonian equations of motion on the constant
energy surface. Anisotropic exchange coupling has been
found experimentally in UNiGe compounds [8] and investi-
gated in different theoretical models [9]. We have already
stressed that below the TNT the total magnetization cannot
reverse its sign, thus magnetization does not relax to its equi-
librium value. In this paper we will answer the following
questions: (i) Above the TNT, does the magnetization reverse
its sign? If so, on which time scale? (ii) What is the rel-
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evance of the TNT in a system with a standard magnetic
phase transition? Thus, the aim is to explain the main physi-
cal effects associated with the TNT, and how it affects the
phase transition appearing in this model at a higher energy.
The latter is studied in the microcanonical ensemble, apply-
ing a recently developed solution method of mean-field
Hamiltonians based on large-deviation theory [10]. We study
in detail, numerically and analytically, the time scale for
magnetization reversal. At the TNT, the reversal time di-
verges as a power law, with a characteristic exponent propor-
tional to the number of spins N. Based on analytical calcu-
lations, we expect this property to be universal. Finally, we
extend some of the results obtained for all-to-all coupling to
other models: chains with distance-dependent couplings and
small clusters with nearest-neighbor interactions. We show
the existence of the TNT also in these cases, and we present
strong evidence for the power law divergence of the reversal
time.

II. THE MODEL

The Hamiltonian of the model is

N N
T ,
H:BES;+EEE(S’{S;—S§S}Y, (1)
i=1 i=1 j#i

where S;=(S},87,57) is the spin vector with continuous com-
ponents, N is the number of spins, B is the rescaled external
magnetic field strength, and J is the all-to-all coupling
strength (the summation is extended over all pairs). Let us
also define

1 N
_ = X,V.Z
Myy .= NEI Si
i=

as the components of the total magnetization of the system.
Due to the anisotropy of the coupling, the system has an easy
axis of the magnetization along the y direction (the easy axis
is defined by the direction of the magnetization in the mini-
mal energy configuration of the system). We consider here a
specific kind of anisotropy (ferromagnetic in the y direction
and antiferromagnetic in the x direction) because in this case
the analytical expression of the TNT is known. Nevertheless
it can be shown [3,5] that TNT exists for any kind of aniso-
tropy between x and y terms, even with the same sign.

The equations of motion are derived in a standard way
from Hamiltonian (1), and we obtain

= — BSY — JS° Y
§¥=—BS) JS,EmSj,

S} =BS;-JS;>, . S,

92
$i=J2, (SIS]+5]S)). 2)

The total energy E=H and the spin moduli |S;?=1 are con-
stants of the motion. Dynamics, already studied in a similar
model [3,11], is characterized by chaotic motion (positive
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maximal Lyapunov exponent) for not too small energy val-
ues and spin coupling constants. For /=0 the model is ex-
actly integrable, while for generic J and B there is a mixed
phase space with prevalently chaotic motion for |E| <JN.

III. THE TWO THRESHOLDS

We will now show the existence of two distinct thresholds
in this model: first we derive analytically the topological
nonconnectivity threshold (TNT), then we will present the
microcanonical analysis and the analytical evaluation of the
statistical threshold, at which a second-order phase transition
occurs in the N— o0 limit.

A. The topological nonconnectivity threshold

The phase space of the system is topologically discon-
nected below a given energy density €, which can be ob-
tained as in Refs. [3,12]. From symmetry considerations,
both positive and negative regions of m, exist on the same
energy surface. Indeed the Hamiltonian is invariant under a
rotation of 7 around the z axis for which §Y— -5} and
§; —=S;. Switching dynamically from a negative m, value to
a positive one requires, for continuity, to pass through
m,=0. Hence, for all energy values above,

€4is = Min[H/N|m, = 0],

magnetization reversal is possible, while below this value
magnetization cannot change sign.
Hamiltonian (1) can be written as follows:

J J .
H=BNm_+ “N*m —m}) + 22 (S)° = (5% (3)

The topological nonconnectivity threshold (TNT) is defined
as the minimum of the Hamiltonian under the N+1 con-
straints:

(@) (S)*+(S)*+(5)*=1, (4)

(b) m,=0. (5)

Instead of solving the constrained problem, we simplify it by
calculating the absolute minimum of

F=BNm 3 S~ (7]

If the minimal solution satisfies both m,=0 and my:O, the
problem is equivalent to the original one. Condition (4) is
taken into account, setting

Si=cos 6;, S;=sin ;cos ¢;, S}=sin 6;sin ¢;.
Taking the derivatives of F we obtain

JF i .
— =J sin” fcos ¢; sin ¢, =0, (6)
I

OF
g =Sin 6,(B +J cos 6; cos ¢;) = 0. (7)

L

If B>J, Eq. (7) has the solution, sin 6,=0, that also satisfies
Eq. (6). It corresponds to all spins lying along the z axis and
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€iis=—B. )

If B<J, then from Eq. (7) we have two possible solutions for
each i:

(1) O=m;

(2) sin ¢=0 and cos 6,=—B/J.
Let us define 0<n,<N as the number of spins satisfying
condition 1 above. Then

n B J
F(n)=_—=(B-J 2—N(—+—>,
(n) =5 (B-J) YA
so that the minimum is reached for n,=0 or cos §;=—B/J and
sin ¢;=0 for all i. This in turn implies m,=0 and, for N even,
m,=0 (choosing, for instance, ¢;=7/2 for i=1,N/2 and

¢;=—m/2 for i=N/2+1,N). Then we have (for N even)

(2. o
Cis="\ 5T a)
Summarizing, we get [13]
-B for J<B,
= B J 10
Cdis —(—+—> for J > B. (10)
2J 2

The existence of €, does not represent a sufficient con-
dition in order to demagnetize a sample for €> €. As it will
be shown in Sec. IV B, regular structures indeed appear in
some cases, preventing most trajectories from crossing the
my,=0 plane.

B. The statistical threshold: Phase transition

Besides the topological threshold studied above, we now
show that the model displays a statistical phase transition in
the microcanonical ensemble. To keep the calculations easy,
we will first neglect the term J/2Z(SY)*~(S})? in (3). We
will show later how to take into account this term. In order to
facilitate the calculations, we will also set

€ — €/B,

JN
I— E (11)

Thus we can consider the following mean-field Hamil-
tonian:

1
HMpzN(mz+5(mf—m§)>, (12)

Note that this mean field limit is formally identical to
phenomenological single spin Hamiltonians used to model
micromagnetic systems [14].

Using this simplified Hamiltonian, we can calculate the
entropy, counting the number of microscopic configurations
associated with given values of m,, m,, and m, indepen-
dently of the energy of the system. This can be done using
the Cramér theorem, a basic tool of large deviation theory
[15]. Each single spin is characterized by two angles 6 and
¢, such that S,=cos 6, S,=sin #cos ¢, and Sy:sin 0sin ¢.
We calculate the function
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1 T 21
W(NLALN) = —f sin 0d0f do

4770 0

Xexp(\ cos O+ \, sin 0 cos ¢
+\, sin fsin ¢). (13)

We then get the entropy s(m,,m,,m,) through a Legendre-
Fenchel transform of InW:

s(my,my,m;) =~ sup [Ngn,+ Ny +Nm,—In W\, \,N)].

Ay

(14)

This calculation gives us an approximate expression for
the probability P(m,,m,,€), which describes the system for
each energy:

1
P(my,my, €) = exp[Ns(mx,my,mz =e— E(m)zf - mf))] .

(15)

Integrating over m,, one gets the marginal probability dis-
tribution P(m,, ). We define the paramagnetic (resp. ferro-
magnetic) phase by a probability distribution P(m,,€) which
is single peaked around m,=0 (resp. double peaked). To lo-
cate the statistical phase transition energy €, we assume
that the transition is second order; it is then sufficient to
study the entropy around m,=0. We will also set m,=0, since
it is easy to see that a nonzero m, would only decrease the
entropy for negative energy states; thus these states with
nonzero m, have little influence. Physically, the picture is the
following: the negative energy has to be absorbed by either a
nonzero m, Or a nonzero m, or both. For small negative
energies, it is entropically favorable to decrease a bit m,,
since it has a linear effect on the energy. For negative enough
energies, however, it costs much entropy to decrease m, fur-
ther, so that a nonzero m, is favored; this is the phase tran-
sition. As a small mvresulis in a small \,, we develop ¥ and
InW up to second order in Ay )

sinh X A\ cosh \ —sinh \
+ N

W\, \) = 5 N . (16)

sinh A\ A2\ cosh A —sinh \
InW(\,\) = 1n< ) + . (17

2 A sinh A
The maximization over \ and A, yields the equations
)\2
mz=>\¢(>\)+—;¢’(>\), (18)
my=N,B(N), (19)
where
A cosh N —sinh A

dN)=— 75— (20)

N2 sinh A

2

From Eq. (18), we write A=Ng+a\],

implicitly by

where A is defined

011108-3



CELARDO et al.

PHYSICAL REVIEW E 73, 011108 (2006)

FIG. 1. Comparison of the distributions P(in,)

obtained analytically (solid lines) and numeri-
cally (open circles). All plots are for N=6 spins, a
coupling J=1/3, and a field B=1. From top to
bottom, the energy per spin is e=—0.7 (ferromag-
netic phase), e=—0.5 (close to the phase transi-
tion), and e=—0.3 (paramagnetic phase). In panel

(a) the dashed line shows the improved analytical
calculations in which the nonmean field terms are

taken into account.

mz = )\0¢()\0), (21)

and a, is a coefficient. We then compute the entropy up to

second order in my:

2
My
2¢(\)
note that the terms with a, canceled. Using energy conserva-
tion m_= e+1m3/ 2, we obtain the entropy s(my; €) as a func-

tion of m, alone, € being now a parameter. The equation for
)\O 18

sinh >\0>
; 22
X (22)

- )\0(}’”2) + 1n(
0

s(my,€) =—

1
€+ Emﬁ =Nod(N). (23)
We then write )\0=,u+m§,u,2, with e=u@(u), and substitute
into Eq. (22) to get s(m,;€) up to second order in m,;:

inh 1 I
s(my,€) =— pe+ ln< o M) - m%(— + —). (24)
’ 7 \2e 2

The vanishing of the second derivative in m,=0 yields the
critical energy: €,,,=—1/1, which can be expressed in the old
variables, see Eq. (11):

€star =~ - (25)

At this threshold entropy has a maximum in m,=0, with
vanishing second derivative. In the thermodynamic limit the
second derivative of the entropy as a function of € becomes
discontinuous in €, indicating that a true second-order
phase transition occurs at €, for N— oo, This analytically
calculated value of €, is in reasonable agreement with nu-
merical results obtained using the full Hamiltonian (1).

The corresponding probability distribution P(m,,€) ob-
tained from the mean-field Hamiltonian (12) should be com-
pared with that obtained (numerically) from the full Hamil-

tonian (1), for instance by sampling of the phase space.
Results are shown in Fig. 1. As one can see the agreement is
quantitatively good in the paramagnetic phase, but only
qualitatively correct in the ferromagnetic phase; here the
double-peaked shape is correct, but the details are signifi-
cantly off.

The inaccuracy of the calculation may come from both
the small value of N and from the term J/23,(S?)*~(S7)?,
which has been neglected till now. It can be included in the
statistical analysis as follows. The Hamiltonian depends now
on another global quantity, A={(S})*~(S?)?). It is possible to
include it in the large deviation calculation; Eq. (13) is modi-
fied into

_ 1 T 21
W\ AN ) = —f sin Hdb’J dep e s ?
47T 0 0

Xe)‘x sin 6 cos rfz+)\y sin @ sin ¢7e,u sinzﬁ(coszd)—sinzqﬁ)_
(26)

One proceeds by writing a probability distribution
P(m,,my,m,,A) > exp[Ns(m,,m,,m,,A)], taking into ac-
count the energy conservation mzze—l(mi—mi)/ 2+JA/2
(for B=1) and integrating over m, and A to obtain P(m,, €).
This last step has to be carried out numerically, and no
simple expression as (25) is available any more. A compari-
son with a numerical investigation of the phase space shows
that the additional term gives a significant contribution; the
P(my) we obtained in the ferromagnetic phase improves on
the mean field calculation (see Fig. 1). We conclude that the
remaining discrepancies come from the small value of
N (N=6 on Fig. 1).

Let us finally remark that in this statistical framework, the
TNT energy, €,,, can be recovered as the energy such that
5(0, €45) =—0. From Egs. (21) and (24) with m, =0, it is easy
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to get €;,=—1; this implies, using Eq. (11), €;,=—B, which
is the same as in Eq. (10) in the limit N— o for J<B.

IV. TIME SCALE FOR MAGNETIC REVERSAL

In the following, we will study the dynamics of the full
Hamiltonian (1), which, at variance with (12), is noninte-
grable and can display chaotic motion. Let us first notice that
in the large N limit the minimal energy can be easily esti-
mated (see Appendix A) as

B? B
- forJ= —,
2JN 2 N

€min = (27)
B
-B for J < —.
N

From Egs. (10), (25), and (27) we have that if J>B/N,
then €,,,>> €;,>> €,,,- In what follows we will restrict our
consideration to the region of parameters for which these
three thresholds are different.

The two thresholds, €, and €,,,, define three energy re-
gions which show different dynamical and statistical proper-
ties:

(1) For €<ey,, the probability distribution of m,
P(my) has two separate peaks, with P(m,=0)=0, so that m,
cannot change sign in time.

(2) For €y, <€e<0, m, quickly changes sign in time
and P(m,) is peaked at m,=0.

(3) For €;,<€e<e¢,,, the probability distribution is
doubly peaked around the most probable values of the
magnetization. These two peaks are not separated and
Py=P(m,=0)#0. What actually happens dynamically de-
pends on the relative strength of the coupling J with respect
to B. More specifically we can characterize two different
behaviors, chaotic and quasi-integrable.

A. Chaotic regime
1. Time scale for magnetic reversal and relaxation

For J big enough (fully chaotic regime) the behavior of
my(t) resembles a random telegraph noise [16] [Fig. 2(a)]:
magnetization switches stochastically between its two most
probable values, reversing its sign at random times. If we
sample the magnetization reversal times, 7, defined as the
time interval between two crossings of m,=0, we find that
they follow a Poissonian distribution with average (7). Such
distribution of the reversal times is a consequence of strong
chaos: the system loses its memory due to sensitivity to ini-
tial conditions and the reversal probability per unit time,
A=1/(7), becomes time independent.

Since the magnetization reverses its sign randomly, any
initial macroscopic sample with m, # 0 will relax to an equi-
librium distribution with a vanishing average magnetization.
In order to characterize quantitatively the relaxation process,
we introduce the probability to have a positive magnetiza-
tion, P,(f), at time ¢. This is measured by considering an
ensemble of 7 initial conditions and counting, for each time
t, the number of trajectories n,(¢) for which m,>0. At equi-
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FIG. 2. In this figure all data refer to the N=6, B=1, J=3
case. (a) Magnetization m, versus time. Reversal times (times
between neighbor zeros of nﬁy have been indicated as 7, ..., 7. (b)
Solid line: probability distribution of reversal times versus the
normalized time 7/(7), for one trajectory and 10* different
crossings. Dashed line: probability distribution of relaxation times
P=(P+(t)—%)/(P+(0)—%) vs. 2t/{7). As initial condition we choose
P,(0)=1 and 10* different initial conditions.

librium we have P,=1/2, in agreement with standard sta-
tistical mechanics considerations. Below €4, P, cannot
change in time because the sign of m, remains the same for
all trajectories. Above €, P,(f) can change in time. Nu-
merical results show that P,(¢) decays exponentially to the
equilibrium value 1/2 and that the time scale for reaching
the equilibrium value is independent of the initial probability
distribution,P,(0) [see Fig. 2(b) (dashed line)].

A simple statistical two-state model can explain the quali-
tative features of this magnetic relaxation process. Let us
start with an ensemble of » initial conditions, of which n,
with a positive magnetization and n_ with a negative magne-
tization are such that n=n,+n_. Assuming that m, can take
only two values, + and —, we can write a pair of differential
equations for the populations with positive and negative
magnetizations:

n,=—N\n,+\n_,

n_=-—N\n_+A\n,,

where N is the reversal probability per unit time defined
above. Defining P,=n,/n, we can solve these equations, ob-
taining

P(0)-3=[P,(0)- 1] e (28)

P, (¢) reaches the equilibrium value with a typical relaxation
time 7=1/(2\). This simple model predicts a magnetic relax-
ation time, 7, proportional to the average magnetization re-
versal time, which checks pretty well with numerics [com-
pare solid and dashed lines in Fig. 2(b)]. Therefore, hereafter
we will use indifferently the two concepts. Let us notice that
the use of this simple two-state model is a common paradigm
in reaction rate theory [17]. This approach is valid whenever
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FIG. 3. Panel (a) shows the scaling of the magnetic relaxation
time 7 for different values of N, for the case B=0, J=3. The relax-
ation time has been computed starting from an ensemble of 100
different initial conditions. The dashed line is the linear fit:
(1/N)1og(7)=0.075-0.82 log(e—¢€,;,). In panel (b) we show the
times resulting from statistical mechanics, see Eq. (31), versus the
dynamically computed relaxation times, for different N values.
P,,.x! Py, the main ingredient of formula (31), is numerically deter-
mined for each energy density choosing 10° points in a small
energy interval. Symbols for the statistical times are as follows:
N=6 (circle), N=12 (cross), N=24 (plus), and N=48 (diamond).
Dashed line is y=x.

it is possible to clearly separate two time scales, the relax-
ation time scale inside one region of phase space and the
escape time scale from a region to the other.

Analyzing the magnetic relaxation times for all energies
in the range (€, €4), We find that they grow exponentially
with the number of spins for sufficiently large N, as expected
for mean-field models. More remarkable is the power law
divergence of relaxation time at the nonconnectivity thresh-
old. Numerical data are consistent with the following scaling

law,
1 aN
T~ ( ) , (29)
€ — €gjs

for which a theoretical justification will be given below.
Equation (29) is valid above the nonconnectivity threshold
and not too close to the statistical threshold ¢,,,. The com-
parison of this formula with numerical results is shown in
Fig. 3.

To explain and substantiate these numerical findings, we
now turn to an analytical estimate of the relaxation times,
based on statistical mechanics. In Refs. [18,19], on the basis
of fluctuation theory [20,21], it has been argued that meta-
stable states relax to the most probable state on times pro-
portional to exp(NAs) where N is the number of degrees of
freedom and As is the specific entropic barrier. In our case
exp(NAs) is nothing but P,,,./P,, where P,,,, is the value of
P(my) for the most probable value of m,, and Py=P(m,=0).
Thus, the exponential divergence as a function of N shown in
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Fig. 3(a) is consistent with Refs. [18,19]. These papers, how-
ever, did not study the behavior of 7 at fixed N in the neigh-
borhood of the nonconnectivity threshold. We perform this
calculation in Appendix B, obtaining

T~ 1/(e— €4, (30)

with a=1 generically, but @=3/4 for B=J=1. This result is
qualitatively correct (power law divergence, exponent pro-
portional to N) and quantitatively reasonable. Indeed, nu-
merical simulations give @=0.82 (instead of a=1) for
J>B and B=0 (see Fig. 3), and a=0.55 (instead of
a=3/4) for B=J=1. We expect these qualitative features to
be valid beyond the all-to-all coupling studied here, as it will
be shown in Sec. V.

The calculations to evaluate P,/ P, rely on several ap-
proximations, the most doubtful being the large N assump-
tion (as seen also in Sec. III B). Hence, despite the discrep-
ancies in the exponents found above, the proportionality
between 7 and P,/ P, may still be valid, also for small N.
To test this proportionality, we have calculated numerically
the value of P, /P, and we have found this value to be
proportional to the relaxation time in any case. In particular,
for the case B=0, we have found a very good fit setting

_ 2 Pmax

=P, (31)

r
The P,,,./ P, factor in this formula represents the probability
to cross the entropic barrier, and the 1/J factor can be heu-
ristically associated with the typical time scale of the system
(for B=0 the Hamiltonian is proportional to J). A deeper
theoretical justification of this formula should be obtained in
view of its success in describing the numerical results for
different N values [see Fig. 3(b)].

2. Chaotic driven phase transition

Let us now answer the following question: if the mea-
sured values of the magnetization are given by the time av-
erage of the magnetization, for which energies will the sys-
tem be found magnetized and for which unmagnetized?

From Eq. (29) and from the proportionality of the relax-
ation times and the reversal times, it is clear that the infinite
time average of the magnetization will be zero above the
TNT and different from zero below, due to the divergence of
the reversal time. Nevertheless, the conclusion is different
for a finite observational time 7., In Fig. 4 we show the
time-averaged magnetization

1 Tobs
— f dt m(t)

obs Y 0

<my>obs =

versus the specific energy e for N=35 [Fig. 4(a)] and N=50
[Fig. 4(b)] spins during a fixed observational time. While in
(a) (my) s is zero just above €4;; in (b) it vanishes at a value
€,,s located between €;, and €,. Indeed, if 7,,,> 7, the
magnetization has time to flip between the two opposite
states and, as a consequence, (1n,),,,=0. On the contrary, if
T,ps << T the magnetization keeps its sign and cannot vanish
during 7,,,. Defining an effective transition energy e, from
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FIG. 4. Time average of m, over the observational time 7, vs.
€ for different numbers of particles (a) N=5 and (b) N=50, with
fixed J=B=1. Each single point has been obtained taking the time
average over the time intervals 7,,,=10° (a) and 7,,,=10* (b).
Dashed curves indicate the equilibrium value of m,, obtained from
statistical mechanics. Vertical lines represent the'nonconnectivity
and the statistical threshold, respectively. The arrow in panel (b)
indicates the energy value €, of the chaotic driven phase transi-
tion due to the finite observational time.

T,ps= T(€,ps), ONE gets, inverting Eq. (29), the value indicated
by the vertical arrow in Fig. 4(b). This is, a posteriori, a
further demonstration of the validity of Eq. (29) for any N.

From a theoretical point of view, it is interesting to note
that, for any fixed N, if the fully chaotic regime persists
down to €, €,,,— €4, When 7,,,— . On the other hand, in
agreement with statistical mechanics, for any finite
Tobss €obs— €gar When N—oo. This implies that the limits
Typs— %@ and N— % do not commute. From the above con-
siderations it follows that if 7,,,— 0 at finite N, the threshold
which distinguishes between a magnetized energy region and
an unmagnetized one is €y, and not €, We can thus con-
sider €, as the critical threshold at which a “dynamical”
phase transition takes place: we call this transition achaotic
driven phase transition even if it should not be considered a
phase transition in the usual sense.

Let us finally note that, usually, for long-range interac-
tions, the interaction strength is rescaled in order to keep
energy extensive [22]. In our case this can be done setting
J=I/N. With this choice of J as N— o, at fixed I, J becomes
much smaller than B, then a quasi-integrable regime sets in
and Eq. (29) loses its validity (see Sec. IV B). The presence
of the TNT is therefore hidden.

B. Quasi-integrable regime

In this section we will give numerical evidence of the
quasi-integrable regime for J<<B, in the energy region be-
tween €, and €, If the system dynamics is not in a fully
chaotic regime, there are important consequences for reversal
times. For instance, reversal times strongly depend on initial
conditions and Eq. (29) loses its validity:

In Fig. 5 we consider a system with different interaction
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FIG. 5. (Color online) Magnetic relaxation probability
P(0)=(P,(1-2)/(P,(0)~3) and probability distributions of m, in
the quasi—integrable (J=0.5, e=—0.8) [red panels (a) and (b)], and
chaotic (J=3, €=-0.9) [black panels (c) and (d)] regimes. For both
cases, N=6 and B=1. The specific energies for the two cases have
been chosen in such a way that P,,,./ P is the same [see panels (b)
and (d)]. We compare P(¢) for the two different dynamical regimes.
In the fully chaotic regime, panel (c), P(r) decays exponentially
with time #, and the average relaxation time is of order 1. In the
quasi—integrable regime, panel (a), the decay of P(¢) is much slower
(observe the difference in the time axis scale).

strengths J in order to enter a quasi-integrable regime (a and
b) and a chaotic one (¢ and d). The energy in the two cases
has been chosen such that the entropic barrier is roughly the
same [see Figs. 5(b) and 5(d)]. This means that, from a sta-
tistical point of view, both systems are characterized by
roughly the same probability to jump over the barrier. Nev-
ertheless, as one can see in panels (a) and (c) of Fig.5, the
behavior of the probability P(t):[PJr(t)—%]/[PJr(O)—%] sig-
nificantly differs in the two cases. Such a big difference in
the statistical properties of magnetic reversal times can be
explained only by a drastic change in the dynamical proper-
ties of the system. Indeed, while Fig. 5(a) refers to a quasi-
integrable regime, Fig. 5(c) refers to a fully chaotic regime.
This cannot be explained by the different J values, which, as
we have shown in the previous section, have only a linear
effect on the reversal probability per unit time.

To better understand the origin of this quasi-integrable
regime, it is interesting to compare the dynamics obtained
from the full Hamiltonian (3) with the dynamics obtained
from the mean-field Hamiltonian (12). Taking into
account the conservation of the total angular momentum
m2=mf+m§+mf, a change of variable maps (12) onto a 2
degrees of freedom Hamiltonian; the dynamics of the global
magnetization is then obviously integrable.

In Fig. 6 we show the projection of some trajectories on
the (m,,m,) plane. We considered the two different dynami-
cal regimes described above. For definiteness, we vary J but
we choose the specific energy in order to keep the same
value of P,,,./Py~20. Let us first discuss Fig. 6(a). Lines
represent orbits of the mean-field Hamiltonian (12). The or-
bits of the macroscopic variable n7=(mx,my,mz) cover tori,
since the mean-field Hamiltonian (12) is exactly integrable.
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FIG. 6.

(Color online) Projections of the trajectories of
= (m,,m,,m,) over the (m,,m,) plane in a quasi-integrable regime
(upper panel) and in chaotic regime (lower panel). (a) Lines (1) and
(2) have been obtained with the mean-field Hamiltonian (12), while
scattered dots (black and gray) refer to two diffrent orbits of the full
Hamiltonian (3). Data are J=0.2, e=—0.3. As one can see the orbits
of the full Hamiltonian remain close to the orbits of the mean-field
Hamiltonian up to an integration time (10%). Note also that the
crossing or not of the m,=0 plane happens for the mean-field and
the full Hamiltonian as well. In panel (b) (J=3, €=-0.32) the sys-
tem is in a highly chaotic regime. In this case the orbit of the full
Hamiltonian (gray dots) does not remain close to the one of the
mean-field Hamiltonian (line 3) and covers most of the available
phase space. The integration time is, even in this case, 10%.

Nevertheless, trajectories display different features: while
trajectory (1) crosses the line m,=0, trajectory (2) remains
confined in the negative (my<0) branch belonging to the
same energy surface. Two trajectories of the full Hamiltonian
(3) and the same initial conditions as before are then consid-
ered (black and gray dots). As one can see these orbits stay
for a long time sufficiently close to the mean-field orbits.
Again, we can have a “ferromagnetic” behavior (black dots)
or a “paramagnetic” one (gray dots). Both trajectories have a
positive maximal Lyapunov and are therefore chaotic. Upon
increasing J, and keeping the same value of P, /Py~ 20,
we enter in the regime described by the panel (b) in Fig. 6. In
this case, as above, we show the orbit (3) of the mean-field
Hamiltonian (actually a “ferromagnetic” one). The corre-
sponding orbit of the full Hamiltonian (gray scattered dots) is
still characterized by a positive Lyapunov exponent and cov-
ers both branches, my,>0 and m, <0, thus inducing the de-
magnetization of the system. What is important to stress is
that in this case the trajectories of the full Hamiltonian cover
both the positive and the negative magnetization branches on
the same energy surface. Having in mind the mechanism that
produces the transition to global stochasticity in low-
dimensional Hamiltonian systems [23], we can conjecture
that invariant curves, slowing down the motion, exist in the
case of Fig. 6(a). The breakdown of these invariant curves
signals the transition to a globally chaotic motion. Of course,
characterizing such a breakdown is a hard task, due to the
high-dimensionality of the phase space.

The determination of parameter regions in which the sys-
tem is quasi-integrable or fully chaotic is still an open ques-
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tion. We can only make a few qualitative considerations. Let
us consider Hamiltonian (3); it contains the sum of two
terms: a mean-field integrable term plus the term
JI12Z(87)*~(S})% which is responsible for the chaoticity of
the system. The minimal specific energy of this term is
€haos ~—J /2. We can thus suppose that for e<e.,,, the
quasi-integrable regime prevails, while for €> €., a fully
chaotic regime sets in. Thus, in order to have a fully chaotic
regime in the energy region between €, and €, it is nec-
essary that €,;,> €., This is always the case if J>2B
since for these values of J, €~ €.440s- On the contrary, for
J<2B we expect a quasi-integrable regime between €;,and
€.ha0s» Which should persist in the thermodynamic limit.

V. OTHER MODELS

Till now, we have concentrated our analysis on a spin
system with all-to-all anisotropic coupling. The results ob-
tained concerning the TNT and the time scales for magnetic
reversal can be extended to more general situations. In this
section, we consider two possible generalizations and discuss
how our results can be extended to (i) distance dependent
interactions and (ii) metastable states.

(i) Distance dependent coupling. In Ref. [5] a spin cou-
pling has been considered which decays with the distance as
R™“. It is possible to prove that in the N—oo limit, for
a<d, a finite portion r of the energy range corresponds to a
disconnected energy surface. For aw>d, this portion vanishes
in the N—o limit. For finite N, however, a well-defined
nonconnectivity threshold €,,> €,,, exists in both the short
and the long case when the anisotropy of the coupling in-
duces an easy axis of the magnetization. Numerical simula-
tions support the conjecture that the behavior of the average
magnetization reversal time is qualitatively similar to the
a=0 case. A power law divergence of the average reversal
time when € approaches € ;, is observed (see Fig. 7).

More realistic models of micromagnetic systems include
3D clusters of spins interacting only with their neighbors.
Again, for large N, the nonconnectivity threshold energy €,;,
converges to the ground state energy e,,,. However, for
small clusters a significant portion of the energy range cor-
responds to a disconnected energy surface. We have per-
formed numerical simulations on a cluster of nine spins, ar-
ranged on a cube, with one spin in the middle. Each spin of
the cube interacts with its three neighbors and with the
middle spin. Figure 7 shows that the divergence of the mag-
netic relaxation time close to €, is again compatible with a
power law.

(i) Metastable states. The existence of the TNT has im-
portant consequences for the decay time from metastable
states. In order to discuss this feature for a simple example,
let us consider Hamiltonian (1), adding a term, B, 2 S?, which
contains a coupling to an external field directed along the
easy axis of the magnetization. In this case the nonconnec-
tivity threshold still exists (it has the same value as before)
but the two peaks of P(m,,€) below e, do not have the
same height [see Fig. 8(a)]. Thus, we can consider the time
needed to reach the equilibrium value of the magnetization if
we start from a metastable state. Below €;;, metastable states
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FIG. 7. Magnetization relaxation time 7 versus energy
density for two different models. Open symbols: a chain of
N=6 Heisenberg spins with R™* interaction and a=2. A best
fit gives log(7)~-3.9log(e—¢;,), with €;,=-0.71. Here,
€,:,,=—1.083. Full symbols: 3-D cube with an additional spin
at the center and nearest-neighbor interaction. A best fit gives
log(7) ~=5.5 log(e—€g;,), With €;,=—~1.33. Here, €,,;,=—%.
becomes stable for any finite N. Above €, the decay time
diverges at €, as a power law [see Fig. 8(b)]. This decay
time can be estimated from the statistical properties of the
system. Indeed, employing the same simple model described
in Sec. IVA 1, we can evaluate the decay time scale.

3
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FIG. 8. Decay time from a metastable state. In panel (a) P(m,)
is shown for e=-0.5. In panel (b) we show the power law
divergence of the decay time from a metastable state (full
circles). To compute this decay time, n=100 initial conditions
have been considered for each energy. The best linear fit
log(7)=0.309-5.27 log(e—¢€,;,) is also shown (dashed line). The
decay times computed from Eq. (32) are shown as crosses. Apart
from a deviation for high specific energy, the statistically computed
decay times are in good agreement with the numerically computed
ones (full circles). Parameter values are N=6, J=3, B=0, and
B,=1.
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Denoting by P, P, .. and P,;, the probabilities of the

thermodynamic stable, metastable, and unstable states, re-

spectively [see Fig. 8(a)], and setting N,=P /P, and
q=P; ../ P, We get the following estimate of the decay
time:
P
7~ 1 max (32)
1+ q Pmin

The good agreement of this estimate with the computed de-
cay times is shown by the crosses in Fig. 8(b) (compare
crosses with full circles).

VI. CONCLUSIONS

Anisotropic Heisenberg spin models with all-to-all cou-
pling show a topological nonconnectivity threshold (TNT)
energy [3]. Below this threshold the energy surface splits in
two components, with opposite easy-axis magnetizations,
and ergodicity is broken, even with a finite number N of
spins. In the same model, a second-order phase transition is
present, at an energy higher than the TNT energy. We have
fully characterized this phase transition in the microcanoni-
cal ensemble, using a newly developed method, based on
large deviation theory [10]. For energies in the range be-
tween the TNT and the phase transition, magnetization ran-
domly flips if certain strong chaotic motion features are pre-
sented: the statistics of magnetization reversals is Poissonian.
Based on the knowledge of the microcanonical entropy as a
function of both energy and magnetization, we have derived
a formula for the average magnetic reversal time, which is
valid in the large N limit. This formula agrees well with
numerical results. The formula also predicts a power law
divergence of the mean reversal time at the TNT energy,
which is also well verified in numerical experiments. The
exponent of the power-law divergence is also in reasonable
agreement with numerical data, although finite N effects are
quantitatively important.

Finally, we have shown that all these features (presence of
TNT, power-law divergence of the reversal time, etc.) are not
limited to systems with all-to-all coupling. The phenomenol-
ogy is qualitatively the same for anisotropic Heisenberg spin
models with distance-dependent interactions and for small
clusters of Heisenberg spins with nearest-neighbor coupling.
We also considered systems where metastable states are
present. In this case, while below the TNT they are trapped,
above it their decay time diverges as a power law at the TNT.
Therefore, we conjecture that the power-law divergence of
the magnetic reversal time may be a universal signature of
the presence of the TNT, which is a generic feature of sys-
tems with long-range interactions or small systems for which
the range of the interaction is of the order of system size, if
the anisotropy of the coupling is such to determine an easy-
axis of the magnetization.
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APPENDIX A: MINIMUM ENERGY

In this section we find the minimum of the mean-field
Hamiltonian (12):

1
6=mz+§(m)2c—m)2,). (A1)
It is sufficient to find the absolute minimum of
m,— (I/2)m§
and verify that it satisfies m,=0. Taking derivatives
dNe I o $=0
—— =1Im, sin 6;cos ¢;=0,
de; g
dNe . .
g = Sin 0, — Im, cos 6, sin ¢;=0, (A2)
i

one gets two kinds of solutions (both with m,=0):

(1) 6;=7 and ¢;=0,,

(2) ¢y==m/2 and tan 6,==xIm,,.

Let us define Nn; the number of solutions of type 1 and
Nn, as the number of solutions of type 2 so that n;+n,=1.
Since m,=-n;—n, cos 6 and my=%n, sin 0 where 6 is the
solution of type 2, condition 2 is equivalent to cos 8=1/1In,.
Therefore, when In, <1 the set defined from 2 is empty and
only solutions in class 1 can be obtained. It is also easy to
find the expression for the energy in terms of 1//<n,<1:

1 I,
e=—1—-—+n,——n;.

21 2 (A3)

Minima must be sought among the extrema so that when
n,=1, then e,,;,=—1/21-1/2, and when n,=1/I, then
€,,=—1. In terms of /, one then has

{— 121-1/2 forI=1,

€m

(A4)
-1 forI<1.

From Eq. (A4) we have (10), using transformations in (11).

APPENDIX B: CRITICAL EXPONENTS

In this section, we study the divergence of the reversal

time for e— €, at fixed N. Let us assume that it is given by
7==maxP(m,€)/P(m,=0,¢);
m

'y

we show that

1

)aN’

N (€~ €4 (B1)

with @ a constant independent of N; we find a=1 or
a=3/4, depending on the parameters of the Hamiltonian.
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First, we note that although maxmvP(my,e) increases ex-
ponentially with N at fixed e, it does not change much at
fixed N when e— €, ; the behavior of 7is dominated by the
value of P(my=0,e)OCe‘M(’"y:°’f>. The problem is then re-
duced to the computation of s(m,=0, ).

Before turning to the actual calculation of s(my=0,
€— €4,), we consider the following problem, which will be
useful later. Let us consider the random variable x in
[-1,1] with distribution p(x); we call m=3Y x,/N and ask
the question: what is the behavior of P(m=1-5), <1, for
fixed N reasonably large? Using Cramér’s theorem, we write

1
T\ = J p(x)exp(\x) dx (B2)
-1

and

s(m) == sup[Am—In V(N)]. (B3)
N

m—1 implies A —, so the behavior of p close to x=1

dominates (B2). We write p(x) ~a(1-x)?, close to x=1, with

y>—1. Then for N\ — oo,

A
W(N) Nano u¥e™ du.
Then the maximizing A in (B3) is given by m=1-(y+1)/\.
Substituting into (B3), we get s(m=1-35)~ (y+1)Iné and,
finally, P(m=1-8)~ §"r+D,

We now apply this result to the easiest case, the
simplified Hamiltonian H=N[m,+1(m;—m;)/2]. The thresh-
old is €;,=—1 (we consider the case I>1); we write
e=—1+06, with 6<1. We want to compute the entropy
s(mx,my=0,mz=—1+5—lm)2(). Noticing that a small
6 implies a small m,, we simplify the calculation to
s(m=0,m,=0,m,=—1+6). We now use once again
Cramér’s theorem:

1 T 2
YN = —j sin GdHJ d e exp(\,sin 6 cos ¢)
47T 0 0

Xexp(\, sin @sin ¢+ N, cos 6). (B4)

Then s is given by
s(my,my,m,)

== sup [mN,+m\,+m\, —In W\ \,N\)].
Y ’

oy g

(B5)

For m,=m,=0, the maximizing A, and A, are found to van-
ish. Thus, the problem reduces to calculating s(m.=1-6)
(using also the symmetry m,—-m.). Recall that
m_={cos 6), with 6 the latitude of a point taken randomly on
the sphere with uniform probability. This is equivalent to
saying that m_=(q), with ¢ a random variable uniformly dis-
tributed between —1 and 1. Using the general result derived
above with y=0, we find that 7~ (€—€;,)*", with a=1.
We turn now to the complete Hamiltonian, with B=0,
H=N(I(m}-m})/2—JA/2). The threshold is now €;;,=—J/2.
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We set e=—J/2(1-6). Noticing that, again, a small §implies
a small m,, we compute s(m,=0,m,=0,A=1-5), in the
limit of small 8. A is defined as {(sin’> 6 cos 2¢), for 6 and ¢
coordinates of points taken randomly on the sphere with uni-
form probability. Again, this is equivalent to saying that
A={(g), with ¢ now having a nonuniform distribution p(g) in
[-1,1]. However, p(q) tends to a constant value as g— 1~
(the calculation is detailed at the end of the appendix), which
means y=0; thus Eq. (B1) holds, again with @=1. The con-
clusion is the same for all B#J.

Finally, we consider now the case B=J=1. Then
H=N(m +N(m;-m})/2—A/2). Setting e=—(1-6), we want
to compute s(m,=0,m,=0,m,~A/2=1-6). Calling M=m,
—A/2, we have M={(gq), with g=cos —(sin> fcos 2¢)/2 a
random variable in [—1,1] with distribution p(g). The calcu-
lations in the next paragraph show that p(g) diverges at the
boundary like (1-¢)?, with y=—1/4; thus Eq. (B1) still
holds, now with a= 3/4.

Derivation of the exponent vy:

(1) B=0: We need to compute the distribution
P(y=sin® fcos 2¢), close to y=1. We have, with u=cos 6,

1 2
P(y) = f duf dpdply - (1 —u’)cos 2¢],  (B6)
-1 0

where Sp(x) is the Dirac delta function. Writing y=1-4,
with 6<<1, we see that only the values of u such that
u*< & contribute. Integrating over ¢ we obtain

V6 du .
7 2((1 _ u2)2 _ (1 _ 5)2)1/2’

P(1—6)=4f (B7)

the factor of 4 in front comes from the four values of ¢ that
contribute the same amount to P. Expanding the denomina-
tor, neglecting order & terms, and performing the change of
variable u=\&t, we get
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1 [~
\N2dt

P(1—5)zf —_—

-1 \/1 —tz

Since this last integral does not depend on ¢ and has a finite
value, we conclude that y=0 for B=0.

(2) B=J=1: We need to compute now
P(y=u—(1/2)(1-u*)cos 2¢) close to y=1. This reads

(B8)

1 2
P(y) = duf d¢6D<y—u+%(1 —u®)cos 2¢).
-1 0

(B9)
Solving for ¢ inside the delta function, we get
2(u -
cos 2¢=%. (B10)
-u

This time, only the values of u close to u=1 contribute to P;
thus, we write u=1-s, y=1-6. From the inequalities
—1<cos2¢=<1, we get, neglecting terms of order $2,
5/2<s<\26. Integrating the delta function over ¢, we have
the expression for P:

f\ ° ds
Fizo=s ; (BI11
o 50 [(2s =522 —4(65-15)2]"2 (B11)
the change of variable t=2s/6 yields
W5y
-9 zf Th (B12)
1 V=1

This integral converges close to t=1; it diverges, however, at
large ¢, like ¢'%; since ¢ diverges as &2, we finally get
y=—1/4.

(3) General case B# J: We do not detail here the calcu-
lations, which are similar to those above. As soon as B # J,
the result is y=0, and thus a=1.
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