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Topological nonconnectivity threshold in long-range spin systems
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We demonstrate the existence of a topological disconnection threshold, recently found by Borgonovi et al.
[J. Stat. Phys. 116, 1435 (2004)], for generic 1—d anisotropic Heisenberg models interacting with an interpar-
ticle potential R™* when 0 <@ <1 (here R is the distance among spins). We also show that if « is greater than
the embedding dimension d then the ratio between the disconnected energy region and the total energy region
goes to zero when the number of spins becomes very large. On the other hand, numerical simulations in d
=2,3 for the long-range case a<<d support the conclusion that such a ratio remains finite for large N values.
The disconnection threshold can thus be thought of as a distinctive property of anisotropic long-range inter-

acting systems.
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I. INTRODUCTION

Despite the wide use in statistical physics, long-range in-
teracting systems, that is those systems characterized by a
pairwise interaction decaying as a power law of the mutual
distance with an exponent « less than the embedding dimen-
sion, do not have a well-defined thermodynamic limit [2].
Also is it not at all clear whether their equilibrium properties
can be described by the ordinary tools of statistical mechan-
ics. For instance, the nonequivalence between the microca-
nonical and the canonical approach has been recently found
in a long-range rotators model in the thermodynamic limit
[3].

Besides these relevant implications in the foundation of
statistical mechanics and in theoretical physics as well [4],
the nonextensive behavior of long-range systems has nowa-
days become important for applications too, ranging from
neural systems [5] to spin glasses [6].

Within the class of long-range interacting systems, classi-
cal spin models, widely investigated during the last years [7],
are the most easy-to-handle both from the analytical and the
numerical point of view. Within such class of systems (to be
more precise, a class of anisotropic Heisenberg models) the
existence of a threshold of disconnection in the energy sur-
face has been demonstrated [1] for an interparticle interac-
tion with infinite range. It has been called nonergodicity
threshold for historical reasons [8], even if the term can gen-
erate some confusion. Indeed nonergodicity is only an obvi-
ous consequence: it simply means that the energy surface is
topologically disconnected in two regions characterized by
positive and negative magnetization. In other words it cannot
exist a dynamical path connecting them and all trajectories
starting from one region of the phase space stay there for-
ever. For this reason we prefer here to call it Topological
Nonconnectivity Threshold (TNT).

The presence of the TNT cannot be considered an exotic
mathematical peculiarity of some toy model. Its dynamical
relevance has been studied in Ref. [9], where an explicit
expression for the reversal times of the magnetization (the
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time necessary to jump from one disconnected region to the
other) has been given in the neighbors of the critical energy
point. Reversal times diverge at the TNT as a power law with
an exponent dependent on the number of the particles (and,
probably, on the embedding dimension) as in ordinary phase
transitions. Strictly speaking, even if in different context and
for different models, the relationship between energy thresh-
olds and topology transitions in the configuration space of
classical spin models has been recently investigated in Ref.
[10].

Also, while the threshold was explicitly found within a
class of anisotropic classical Heisenberg models with an easy
axis of magnetization and all-to-all constant interaction, at
the same time systems with nearest neighbor interaction
were found to have a different behavior. For instance, the
portion of disconnected energy region grows with the num-
ber of particles N, less than the energy itself, thus resulting in
a zero ratio in the thermodynamic limit. Needless to say,
such ratio stays finite for anisotropic coupling and all-to-all
interaction.

While this feature is surely due to the anisotropy of the
coupling (such finite ratio disappears for isotropic coupling
even in the case of infinite-range interaction), the question
arises whether the presence of the TNT can be considered a
pathological effect of the infinite interaction range or it is just
somehow related with the long-range effects. This does not
represent an academic question. Indeed, despite the possible
applications of such model even in the case of all-to-all in-
teraction [11], physical models require taking into account
more realistic interactions, usually anisotropic [12] and de-
pending generically from the interspin distance, as for the
dipole-dipole coupling or when the spin is coupled with the
electron spin of the conduction band of a metal, e.g., the
RKKY model [13]. This leads quite naturally to Hamilto-
nians with an interparticle potential decaying as a generic
power law with an exponent « of the relative distance R. The
results found in Ref. [1] can thus be recovered by letting,
respectively, @— 0 (all-to-all coupling) or a— o (nearest-
neighbor coupling).
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Here, we extend the previous results to the whole class of
models with an inverse power distance potential and show
that =1 is a critical exponent for nonconnectivity in d=1
chains.

In general, the extension to higher dimensions is far from
trivial, both numerically and analytically. However, we prove
that the TNT, if any, cannot “survive” (and we will specify
the precise meaning below) when N — oo, and a>d. Numeri-
cal simulations in two dimensions (2D) and three dimensions
(3D) also suggest that, for a<d, the ratio between the dis-
connected energy region and the total energy range is finite
in the thermodynamic limit. We thus conjecture that the TNT
is a generic property of anisotropic long-range systems in
any dimension.

II. THE MODEL

The Hamiltonian is a simple generalization of that consid-
ered in Ref. [1], and it is given by

N
1 ,
H===2 cjj(SiS] - 1SiS)), (1)
2~ Y i
JFi

where Sj-:(Sf ,57,87) is the spin vector with continuous
components and modulus 1, N is the number of spins,
7(0=<»n<1) is an anisotropic coefficient, and ¢);_j=|i—j|™*,
with a>0. For definiteness we consider here only the case
of an even number N of classical spins and 0= n<<1. The
case —1 <7<0 will be discussed separately in Sec. V.

Such kind of models are characterized by a minimal and
maximal energy E ., E... and by a finite energy range
Epax— Enin that we call energy spectrum (ES). In order to
define properly the disconnection threshold, let us introduce
the set A of all spin configurations with a zero projection of
the total magnetization along the y axis,

N
A=1C(Sp,....Sy)my =2 ST =0 2)
i=1

The TNT is thus defined as
Emt = minCEA[H] 5 (3)

and the spin configurations corresponding to E,, will be in-
dicated as C,,. Here, we are mainly interested in all those
cases where the TNT, if any, occupies a significant portion of
the ES in the thermodynamic limit. For this reason let us
define the disconnection ratio

r:Etnt_Emin >0. (4)

|Emin|

A system will be considered disconnected only if r— const
>0, when N—oo. Note that the definition of r given in Eq.
(4) has a meaning only for systems with a bounded energy
range.

A dynamical consequence of the TNT is that below it, a
sample with a given initial magnetization m,, cannot change
the sign of m, for any time, since the constant energy surface
is disconnected in a positive and a negative magnetization
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regions, thus no continuous dynamics can bring an isolated
system from one region to the other.

Our proof will follow two steps: in the first part we find
the minima of the x and y parts separately. Then we will
show that the disconnected ratio goes to zero for short-range
interaction, while it goes to some finite constant in the long-
range case.

III. ONE DIMENSIONAL CASE
A. TNT, if any, is in the XY plane

Roughly speaking, since Hamiltonian (1) is independent
of the z component of spins, the minimum will occur when
the spins are as large as possible in (1), namely in the XY
plane.

In order to prove that the configuration C,,, effectively lies
in the XY plane, let us assume that it has some S, component
different from zero. For definiteness assume S >0. It is then
possible to define another configuration C’' simply making a
rotation around the y-axis clockwise or counterclockwise
which puts the spin S5 onto the plane XY. The energy differ-
ence between these two configurations can be computed at
glance,

N
AE= 72 ¢ STxN1 - (8% - 871 (5)
=2

Here the different sign + indicates the different way
(clockwise or counterclockwise) of rotation. Since
St=+/1-(57)>=(S5)?, it is then clear that, according to this
sign it is always possible to rotate in such a way to have
AE=<O.

The same procedure can be applied n times for any
other S7#0, so that we will end with a configuration
C" e A (the rotation does not change the constraint) with
energy EW<E,,. We can therefore consider the configura-
tions in the XY plane. This choice has the main advantage
that it is sufficient to consider as independent variables the
angles 6, of the ith spin with respect to the x axis, thus
satisfying automatically the conditions on the unit spin
modulus, Si=cos §; and S}=sin 6,. Therefore we have to
minimize the following expression:

1
H= 5; c|i_j|(77cos 6, cos §;—sin 6, sin 6,) = yH, +H,,
JFIi

(6)
under the constraint Eﬁl sin 6;=0. Since
Ep = min(H|m, = 0) = min(nH,) + min(H |m,=0), (7)

a lower bound of E,, can be provided finding the minima of
the two terms in the right-hand side of Eq. (7). Note that the
first term on the right-hand side of Eq. (7) does not contain
constraints, indeed we will show in the next section that the
absolute minimum of H, automatically satisfies the con-
straint m,=0.
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B. Minimum of H,

The minimum of H, due to the overall plus sign (7>0),
can be obtained as in a standard antiferromagnetic spin sys-
tem with neighbors interaction, that is disposing alternatively
the spins along the x axis as +1 and —1.

Indeed, for any «, let us call the kth spin component
Si=s and rewrite the energy as follows:

—sz Clj- k‘S + 2 c‘k l|SkS =as+b,

where a, b are constants independent of s. There are two
possibilities, a=0 or a#0. In the first case the energy E,
turns out to be independent of the kth spin, while for a # 0,
the minimum is attained when s has its maximal value (+1 if
a<0, =1 if a>0). So, in any case we can say that the
minimum occurs when |s|=1. Since the procedure can be
iterated for all spins components, the minimum occurs when
=+1 for any k, namely in the class of Ising models
(oy,...,0y) with g;=%1 and long-range interaction.

We still must prove that the minimal energy is obtained
when the spins have alternating signs. To this end, let us
consider the interaction between two neighbor spin pairs, the
jth, namely 0,05, and the (j+k+1)th, namely
02j12k4 1024242 (this can be done since there is an even num-
ber of spins). There are 16 possibilities but only six of them
have different energy due to the symmetry on the whole
change of sign. They are

++ ++ E; =2+ Copss + 20000+ Copas
++  +- Ey=con1— Copss
++ -+ E3j=-E,
++ == Ey=2—Cpp1 — 20000 = Cope3s
4 — + — E5 =—2—6‘2k+1 +262k+2_c2k+3’

+— =+ Eg=—2+Cope1 — 20040 + Copes-

From the monotonicity of the function ¢, one gets
ES < El& E2’ ES’ E4'

From the convexity property of c,,

2Cok40 < Copsl F Copa3o

it also follows, Es<<Eg. Since E5 is minimal for each pair

interaction, the absolute minimum will be obtained using, for

each pair, the configuration
Co={Si=(= D}, (8)

The energy E, for this configuration can be computed imme-
diately,

E = E( 1)k(N 23 9)
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Let us notice that such a result is far from being obvious.
Indeed a decreasing nonconvex function c, could give rise to
a different minimal configuration.

C. Minimum of H,

Let us now switch to the more difficult task (due to the
constraint) of computing E,=min(H, |m,=0). Physically, due
to the overall minus sign in front of H y, one can expect that
clusters of aligned spin with unit modulus (ferromagnetic
order) will decrease the energy with respect to other configu-
rations. This is surely true for nearest-neighbor interaction
(a=) but it cannot be true for all « values. For instance,
when a=0, the energy corresponding to the configuration
with one-half of the spins equal to 1 and one-half equal to —1
(the order is irrelevant) is Eq=N/2>0, while the true mini-
mum E=0 is attained when all spins are 0.

Then, the question arises of what can be the minimum in
the presence of a generic a.

Applying the standard Lagrange multipliers formalism,
one must minimize the function

E Cjij Sin 6 sin 6, — )\2 sin 6;, (10)
ﬁﬁt

where \ is the Lagrange multiplier associated to m,=0.
Taking the derivatives, we get, for each spin, two possible
solutions,

cos 6,=0, (11)

EC‘I_]‘SIH 0]—)\=0 (12)
J#i
However, solving the system (11) and (12) is more difficult
than finding directly the minimum.

We have therefore calculated the minimal configuration
under constraint, using an iterative optimization approach
based on the FFSQP solver [14] and also developing the
following approach outlined here below.

(i) Start with a random configuration with m,=0.

(ii) Chose for the kth spin a new value between —1 to
1 and compute the energy. This generally produces a change
in magnetization Am, # 0.

(iii) Distribute equally Am,# 0 among the other spins
taking into account the constraint about their modulus. Spe-
cifically subtract and/or add to every spin the minimum of its
distance from the values +1 and the mean of Am,.

(iv) Iterate over all spins up to an energy variation less
than some fixed value (from 1073 to 10~ in our simulations).

The two approaches give the same result: for any initial
random configuration the algorithm described above con-
verges to some smooth configuration, for any finite N and
a>0, as indicated in Fig. 1. There, we considered, respec-
tively, the case of « fixed varying N [Fig. 1(a)], and N fixed
varying « [Fig. 1(b)]. Within the numerical errors the spins
in the minimal energy configuration are distributed mono-
tonically and antisymmetrically with respect to the center of
the chain. Then we assume that E is given by an antisym-
metric distribution of the spin with a nondecreasing (or non-
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FIG. 1. (Color online) Spin values along the chain vs the spin
index (only the central part of the chain has been shown) for the
Hamiltonian H,: (a) for fixed a=0.1 and different N values as in-
dicated in the legend; (b) for fixed N=20 and different « values (see
the legend).

increasing) monotonic dependence of the y spin component
along the chain.

An interesting feature is the presence of a finite domain
wall (defined by those spins having length less than 1) be-
tween two clusters with §Y=+1(T) and SY=-1(]), respec-
tively. With decreasing range of interaction [increasing «,
Fig. 1(b)] or increasing number of spins [Fig. 1(a)], the in-
terface region between the clusters (1) and (]) decreases.
This agrees, at least qualitatively, with the results obtained
for the nearest-neighbor model (a=%) where the minimal
configuration is given by

CH=(T"'T;l"'l)-

Thus, due to long-range interaction, an interface region
between the two clusters with opposite magnetization is pro-
duced. It is, of course, physically relevant to understand if
the size of the interface region goes to zero in the N— o
limit.

Strictly speaking the configuration E; is not an absolute
minimum for any >0 and finite N. In order to prove that,
consider the configuration

Co= (1 Tisimsil -+ 1),

with N-2 spins satisfying condition (11) and the two central
ones satisfying the condition (12). The energy E; correspond-
ing to C, can be written as

EX=E+ C1S2—2S(C1—CN/2), (13)

where E is independent of s. The minimum is thus obtained
when s=1-cyp/c; # 1. The energy difference to Ey| is

ca 2\
AE:EJ—EH=—L/2=—(—> <0. (14)
(&) N
Therefore, for any finite chain and finite a, E,<Ej|.
Physically, C; has an energy less than C;| due to border
effects. Indeed the energy of two opposite spins of length 1 is
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FIG. 2. Critical N, as a function of a. The region above the line
is where the TNT is given by E, (one spin pair decreased) and the
region below it is where the TNT has more than one spin pair
decreased (E,,).

E=c,, while it is only c¢;s> for two shorter spins |s|<1.
On the other hand, the interaction between the spin with
§,=+s and the spins with §,= + 1 is canceled one to one but
the interaction with the closest spin (—s ¢;) and with the last
opposite one (s cyp,). This gives Eq. (13).

The same procedure can be applied taking a trial configu-
ration with energy E,,

Cxtz(T “.T;Z;S;_S;_t;l"'l).

In this case a minimum with s<7<1 can be found only
for N<N,_(a)=(2%"'=1/2)"*. Asymptotically, for large N,
this implies that for N>2C"¢ (where C=2¢ "*>1) the
minimal solution has energy E,. In Fig. 2 we show the
graph of N.(«a), and the two regions in the plane (N, ),
where E| is the minimal solution, and where another minimal
solution with four (or more) spins with length less than 1 is
possible (E,,). Since N, (a)—x for a—0, for any a#0 a
sufficiently large N> N, («) value exists (thus in the thermo-
dynamic limit) such that E| is the minimal solution. Then, for
N>N,(a):

2 2a
Eﬁ‘%‘(;,) ; (15)
where E;| can be written in closed form as
Ni2-1
2\t 3k-N  NI2-k
E.=|— + + . 16
I (N) E @ tonene 19

We thus proved that, for >0 and N> N_(«),
E;| = Ey= 9E,+E,, (17)

where the expressions for E, ., E, and E,, are given, respec-
tively, by Egs. (9), (15), and (16).

D. Thermodynamic limit

Let us now show that, in the long-range case 0 <a <1,
the ratio r between the disconnected ratio, defined by Eq. (4),
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goes to a nonzero constant when the number of spins goes to
infinity, while, for short-range interaction a>1, it goes to
zero, thus revealing the intrinsic long-range nature of the
TNT.

In the ground state all spins are directed along the y axis
as shown in the Appendix. The minimum energy, having as a
configuration Cmin:{S;:l}ﬁ-\;l (all spins aligned along the y
direction) can be easily found

Mk-n

Emin = 2

k=1 k¢

(18)

Let us also define the quantities,

_ EX + 77Ex - Emin

=
: |Emin|

>

ry = E1L" Emin.
|Emin|

Due to Eq. (17), 0<r;<r<r,.

(19)

1. Long range

Consider first the long-range case 0 <a<1. The follow-
ing asymptotic expression, for N— o, can be found by sub-
stituting sum with integrals:

2—«a
Enin == 0 i * O(N), (20)
EH:NZ_am+O(N), (21)
. =-b,N+O(N'"), (22)

where b,>0 is a constant independent of N.

Since both r; —|2-29| and r,— [2—2¢| for N— o, it fol-
lows r—[2-29 too, so that the disconnected energy region
remains finite with respect to the ES in the thermodynamic
limit. This prove the disconnection of the system below the
TNT. It is interesting to note that, as a— 1, r—0.

2. Short range

In the short-range case, «> 1, one can write the following
asymptotic expression (by substituting sums with integrals)

Emin = caN+ O(Nz_a)’ (23)

where

l-a

<ca<—1+ .
- l-«a

Let us first show that, as N— oo,

E. —E.;
Jim —H——"0 _ . (24)
N

N—»

Computing explicitly the lhs of (24) one gets
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FIG. 3. (Color online) E, (full black line), E; (dashed red line)
and E,, (open circles) versus a, for 7=0.9 and different N values:
(a) N=10, (b) N=100.

NI2-1 N-1
2 1 N-k
0= lim;/< > o+ p )

a—
k=1 k k=N/2+1 k

2 N2 - N N—x
< lim— dxx' ~%+ dx—
N—=N\J, Ni2+1 X

=0. (25)

Then, r,— 0 and, since r,=r=0 it follows r— 0 and the
system is not disconnected. This concludes our proof.

E. 1D, numerical solution for the full model

Even if the proof of the existence of the TNT did not
require the explicit knowledge of the spin configuration, it
may have some interest to find it.

Finding analytically the spin configuration of the
full model under the constraint my=0 for any «, », and N
is a complicated task. Indeed, depending on the different
values of the parameters, the minimal configuration can
completely change its shape, for instance from all spins
along the x axis with alternating signs (giving rise to
the energy E,) to all spins along the y axis (first half positive,
second half negative) giving rise to E;|. For instance, when
a=0, E,<0<E;, while for «—c and N sufficiently large
E; <E,<0 (for small N it is also possible to have
E,<E; <0).

This is explicitly shown in Fig. 3, where E,, E;|, and Ey,
obtained numerically for two different N values have been
plotted as a function of a. As one can see, for a less than
some value depending on 7z and N, say «y(N,7), one has
E,<E;|, while for @> a,(N, 77), one can have different pos-
sible situations depending on the # and N values. For in-
stance for N=10 and 7=0.9, E, <E;| [Fig. 3(a)] for a—oe,
while E; | <E, for a— o and N=100 [Fig. 3(b)].

It is also instructive to describe the behavior of E as a
function of a. As one can see [Fig. 3(a)], for relatively small
a, E, closely follows E, while for large « values, E,,, even
if different from both, is closer to E;, than to E,. This is the
rule, at least for large N values, and the difference between
the configurations given by E;| and Ey, is only restricted to
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50| y 5 o0 25 50

(b)

FIG. 4. (Color online) (a) x and y spin components for the
numerical TNT. Here is N=100, 7=0.9, and «=0.05. (b) x and y

spin components for the numerical TNT. Here is N=10, 7=0.9, and
=,

a small domain wall in the central part of the chain, see Fig.
4(a), where the configuration C, in a long-range case has
been shown. Completely different is the situation for small N
values, e.g., Fig. 4(b). Here only 10 particles are considered.
In this case, for a— o (see discussion above) E,<E;  and
the configuration Cy, is between C, and C; | [see Fig. 4(b)].

It could also have some interest to compare the shape of
the domain wall with those studied in the literature for
nearest-neighbor coupling [15] and suitable boundary condi-
tions. We reserve this interesting subject for future investiga-
tions.

Let us analyze in detail the behavior of the domain wall
under a change in the parameters of the system. To this end
we define the energy domain as

E 4omain = |Etm - ETL| . (26)

Its behavior for different N and « values has been shown in
Fig. 5. As one can see, in the large N limit, the energy do-

10

domain
-

| N N N " N TR |
0158 100

N

FIG. 5. (Color online) Domain wall energy as a function of N
for different « values, as indicated in the legend, and 7=0.9. Also
shown as horizontal dashed line |AE'|=72/(1+ 7).
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main approaches, for any «, some finite nonzero value de-
pendent only of 7. This is remarkably different from the
domain wall obtained by minimizing H, under the constraint
myzO, see Sec. III C, where the formation of the domain
wall was essentially due to border effects and whose energy
goes to zero for large N values, see Eq. (15).

This asymptotic value can be understood as follows: con-
sider the trial configuration

§t={0,...,0, + V1 =%, = V1 = 5%,0,...,0}
TS = {1 s sm 1= 1
(27)

The energy E(s) of this configuration is given by
E¥(s)=E+cys>=2s(c; —cyp) — ey (1=5%),  (28)

where E is independent of s and 7.
The minimum, as a function of s, is

C1=CnNp
Spin="" =

m=C1(1+7I). (29)

Then, for N—o, s.;,— 1/(1+7), which is independent
from «. This value can be compared with our numerical
results. The energy difference to £y in the limit N —co is
7
1+7

AE" = E™(spi) — Ey = <0. (30)

Its absolute value has been indicated as a horizontal dashed
line in Fig. 5. As one can see, all curves are close to |AE’]
even at N~ 100. While we cannot exclude that other con-
figurations, with four or more central spins SY <1, have an
energy less than EY(s,;,), we surely have found a minimal
configuration whose energy is differing from £, for a finite
quantity in the limit N — .

This remark can be relevant in discussing the effects of
different boundary conditions. For instance on taking peri-
odic boundary conditions the resulting minimum constrained
configuration consists of two domain walls. While this can
lead to differences for finite systems, all results concerning
the thermodynamic limit will not be affected since the total
energy, at variance with the domain wall energy, increases
with the number of particles.

As a last remark, let us stress that the connected system
(defined by r—0 for N—o) can have a TNT at finite N,
even for short-range interaction. To this end let us consider
the strongest short-range coupling, namely the nearest neigh-
bor one (a=%) and compute numerically the TNT. Results
are presented in Fig. 6. As one can see, the numerically com-
puted E,, is different from E_;, for »# 1 so that a finite
range of energies E,<E<E, exists for finite N and
nearest-neighbor interaction. Increasing N, the size of this
energy range remains constant, while E,;,~N. That is why
the ratio r— 0 for large N values. From the same Fig. 6, it is
also clear that C,, goes continuously from a configuration
close to C;| when 7<1 to one close to C, when n=1.
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FIG. 6. (Color online) TNT for the nearest-neighbor interaction
(a=) vs the parameter 7. Here is N=20. Different energies are
indicated in the caption inside the figure.

IV. MULTIDIMENSIONAL CASE

The results obtained in the preceding sections for d=1 can
be extended in greater dimension d=2.

While it can be easily shown that, in the short-range case
d<a, the system cannot be disconnected in the thermody-
namic limit, the proof of the disconnection for the long-range
case is essentially based on the assumption that the minimum
energy with the constraint m,=0 is given by an obvious ex-
tension of what we have found in d=1. This assumption has
been verified by our numerical simulations.

Let us consider a d-dimensional hypercube of side L, such
as LY=N and divide it in two equal halves. Let us then put
half of the spins with y component in one region and the
other half in the remaining with opposite y component and
call Ey| the resulting energy for such configuration. Surely
the TNT has an energy value less or equal to £y, that is
En<E;|.

Let us then write

Emin = ET + ET + VTT’

where E;, E| are the energies of the respective halves and
Vi,V are the interaction energies between the two halves
with, respectively, antiparallel and parallel spins.

Since E\=E| and —VTTzV”>O, one has

VTl _ 2ET - Emin
|Emin| |Emin|

We will make use of the results found in Ref. [16], that in
our variables read as

0$r$rn=2

(32)

. Emin(d7 a»N)
oim ey = Cl @) (33)

for @#d and where the constant Cy(a)>0 for d<a and
C () <0 for d> a depends only on d and «.
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A. Short range

Let us discuss the short-range case a>d. In this case we
have
Emin d, a,N
lim % =Cyla), (34)

N—w
and, since E;=E,;,(d,a,N/2), we can write

2E,/N — E o/ N

—0 for N— . (35)
|Emin/N|

0 =rs r” =
This proves that, in the short-range case, r—0 for
N— o0,

B. Long range

In the long-range case, & <d, let us assume that, for large
N values, Eyy— Ey).
Estimate (33) becomes in this case

. Emin(da a’N)
lim N2-d

N—x©

=Cyla), (36)

so that, for N— o,

2ET/N2_a/d _ Emin/NZ—a/d
|Emin/N2_a/d|

= rTL= —>2—2a/d. (37)

That way, r— const# 0 for N—o and a#d, and a finite
disconnected energy range exists in the thermodynamic limit.

It is also interesting to note that, as a—d, r—0, so that
the result (35) is recovered.

The disconnection of the system in the long-range case
can thus be proved if we assume Cy,,~C;|. Numerical simu-
lations confirm this assumption. Indeed, let us define
ay(n,N) as the smallest value such that,

Ex(a()’ 77’N) = EH(QO» 77’N) .

Its general dependence on parameters has been presented in
Fig. 7 for d=2, 3. As one can see, oy~ 1/N—0 when
N — . In the same picture we indicate the regions where E,
or Ey| are, respectively, the minimal energies satisfying the
constraint m,=0. Also, ay=d is plotted as a horizontal line,
showing that the short-range case (above the line) is charac-
terized by E; |, while the long-range case (below the line) can
have different behaviors (E, or E;)), even if physically inter-
esting long-range interactions are generally characterized by
E..
HAS for the spin configuration Cy,, both for d=2 and d=3,
all physically significant cases can be represented by Cy.
Deviations occur for a<<d, where a domain wall appears, see
for instance Fig. 8. As one can see, C,, is generically repre-
sented by two macroscopic blocks, with opposite sign of the
y magnetization, with a domain wall at their interface. In the
domain wall the y components increase in absolute value
toward the center and the x components are more or less
distributed with alternating signs, see Fig. 8.

Defining the domain energy, as the difference between the
numerically found TNT and the energy E; | given by Eq.
(26), one has that with increasing N it goes to some constant

026116-7
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FIG. 7. Critical a; as a function of the number of spins for
different 7: 7=0 (dotted line), 7=0.5 (dashed line), =1 (dashed-
dotted line). (a) d=2, (b) d=3. Horizontal lines are ay=d.

or zero value (see Fig. 9) so that, in the thermodynamic limit
Ew~E;), which justify, at least numerically, our previous
assumption. This concludes the proof of the disconnection
for long-range interaction in any dimension d and positive 7.

V. NEGATIVE 7

In this last part we briefly discuss the case 7#<<0. First of
all #>0 is not a necessary condition for the existence of a
finite disconnection region.

Let us first consider the 1-d case. In Eq. (7) nH, becomes
ferromagnetic as H,, and the configuration

C={Si=1}Y, € 4, (38)

has an energy E; <E, [which is the energy of the configura-
tion C,, see Eq. (8)]. Moreover, since the number of parallel
spins in C; is larger than in C;|, we will expect that the
energy E., even if decreased by a factor 7, will become
sooner or later less than Ej ).

While this has no consequences in the case a> 1 (we still
have r,—0 and the TNT does not exist), in the long-range

VAN N e e e s
NS N /N N

x

FIG. 8. TNT for the 2D square lattice with N=16X16=256
spins. Parameters are a=0.1 and 7=0.5. Numerical values are
E=—655.968 997, while E;| =-654.7308.
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L8 |
10F ]
= [
£ 1
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m L
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10 100 1000

FIG. 9. (Color online) Domain energy as a function of the num-
ber of lattice spins, for the 2D square lattice and 7=0.5, asterisks
(@=0.1), circles (a=1). For a>1, Ejomain becomes smaller than
the computer precision.

case (0<a<1) some interesting features appear.

From Eq. (19) one has r;—|[2+7-29/2 for N—o
and a finite disconnection energy region still exists for
2¢-2 < 5<0.

In the other case —1<7n<<2-2% nothing can be said,
even if, according to our numerical simulations Cg,~C,.
This effectively happens in all dimensions d=1, 2, 3, as
indicated in Fig. 10, where E, is a function of # as shown
in a long-range case. As one can see E is close to E;
(equal, within numerical accuracy, according to our simula-
tions) for < 7.(a,N), while it becomes close to E;, for
7> n.{(a,N). That holds true in any dimensions.

Let us note that, as a realistic 7., we can assume the
intersection point between E; and E; |, see Fig. 10. An esti-
mate, that holds only in the thermodynamic limit can be
obtained following the considerations made in Sec. IV giving
Ner ™ 1_201/(1_

-100 ==
T 1d =T
2000 o ’_.,”...."......’..-
[ 2 -
...................................................... ;.‘..4.’.-................-
64| o
200+ 2d -
A
e
e
S x ’)?‘x)oo
3d -
-
200 ’x,x
P
L .
x’x‘
) . der . I . ! X
40?0.4 -0.3 -0.2 -0.1 0

FIG. 10. E,, (symbols) as a function of % for the long-range
case a=0.5 and N=64(d=1), N=8 X8(d=2), N=4 X4 X 4(d=3).
Also shown as the dotted horizontal lines E; |, and, as dashed trans-
verse lines E|.
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It is also clear that assuming

Etnt = 77Ex == 77Emin

one has r— 1+, and the system is disconnected even for
negative 7 in all dimensions.

VI. CONCLUSIONS

Summarizing, we have studied the occurrence of a topo-
logical nonconnectivity threshold (TNT) in anisotropic
Heisenberg models in d=1, 2, 3 with an interaction strength
depending on a power law of their relative distance with the
exponent . We have found that the system, in the thermo-
dynamic limit, is disconnected only in presence of a long-
range interaction 0 < @ <<d. On the other side, in the short-
range case, the ratio between the disconnected energy region
and the total energy region goes to zero when N— . The
anisotropy represents in this class of systems a necessary
condition: indeed, in the isotropic case, the TNT coincides
with the minimal energy, thus there is no disconnected en-
ergy region.

Future investigations concern the experimental evidence
of TNT, for instance by looking for the divergence of demag-
netization times [9] as a function of energy in small magnetic
samples.

Finally, let us point out that from a quantum mechanical
point of view the classical disconnection does not exclude
the flipping of the magnetization through macroscopic quan-
tum tunneling [17]. Thus the existence of TNT could give the
possibility to study the emergence of macroscopic quantum
phenomena in a wide energy range (for macroscopic long-
range interacting systems), as has been shown in Ref. [18],
where the quantum signatures of the TNT in an anisotropic
Heisenberg model with all-to-all interaction have been stud-
ied, and the relevance of the TNT with respect to macro-
scopic quantum phenomena addressed.
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APPENDIX

Consider the Hamiltonian
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N

7 Sis; 1
H(S) =23 0 —E (A1)
Hﬁj |l_.]| Hﬁ]
where |S;|=1 for i=1,...,N and |7|<1.
We want to prove that
13
mlnH—— r—— (A2)
t#j |l

which is achieved in the configuration $7=0, $Y=1, S7=0(i
=1,....N).

It can be easily shown that a minimum configuration lies
in the XY plane, hence we can set S;=cos 6; and S}=sin 6,
obtaining

cos 6; cos 0 sin 6; sin 6’
E —E

- - (A3)
21#] |l_.]| 2[#/ |l_]|
In particular H= Z#JHU, where
H;= W(ncos 0;cos 0;—sin §;sin 6)).  (A4)
=]

Now, each Hl-j is a two-variable function and the critical
points are given by

7 sin 6; cos ¢, + cos 6, sin 6;=0,

7 cos 6, sin 6, + sin 6; cos 6;=0, (A5)

hence (1-77)sin 6, cos 0;=0. Choosing ¢,=m/2 we get a
minimum for H;; (the other choices give maximum or saddle
points) and

min H,;(6;= m/2) = | T (A6)
L=J
Finally, we have
N
2 a——E min H;;(6; = m/2)
Hﬁ/ |l J| 21#1
<min H < H(0j= 7/2)
=- E (A7)

Hﬁ] |l_.]|a
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