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Adiabatic destruction of Anderson localization
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We study the diffusive wave spreading in a one-dimensional Anderson model due to a slow
parameter variation with a frequency w. The diffusion rate depends on frequency in a power law

D « w™. A theoretical approach based on Mott’s mechanism of energy absorption gives a = 2

3

in agreement with numerical data. The same results are also found for a kicked rotator model of

quantum chaos.

PACS number(s): 05.45.+b, 71.55.Jv

Recently many efforts have been devoted to the study
of the behavior of quantum systems under a slow param-
eter variation. In the domain of quantum chaos the level
dynamics with respect to a parameter variation has been
investigated [1] and a universal correlation for level ve-
locities has been found [2]. This theory can be applied
for dynamical models and for noninteracting electrons in
a random potential in the metallic regime, as well. Such
investigations are also important for understanding the
response to slow time variation of external electromag-
netic fields. For electrons in random potentials one of the
main related characteristics is the dependence of conduc-
tivity on the external field frequency. In the limit of small
fields the Kubo formalism can be applied to compute the
ac conductivity o,c(w). For localized states the depen-
dence of conductivity on small frequencies was derived
by Mott (see, e.g., [3]). Physically o, characterizes the
energy absorption under the influence of an external elec-
tric field. However, the time variation of the electric field
can also lead to the destruction of localization in one-
dimensional disordered chains and to the appearance of
electron diffusion along the chain itself. These effects are
usually treated by using a perturbative approach in the
limit where the fields go to zero. Then the question arises
as to what the result will be for a finite field amplitude.
This problem constitutes the main subject of our paper.

Here, we investigate the destruction of Anderson local-
ization in one dimension under the slow variation in time
of the external field or some other suitable parameter.
To the best of our knowledge this question has been ad-
dressed in different contexts in [4,5]. In [4] the destruc-
tion of dynamical localization was investigated for the
kicked rotator model with modulated amplitude. The nu-
merical experiments showed that slow parameter modu-
lation with frequency w leads to diffusion along the chain
with a diffusion rate D o« w®, where a =~ 0.6. However,
the theoretical consideration given in [4] was not able
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to derive the numerical value of a. Another theoretical
study of a related problem [one-dimensional (1D) local-
ized electron in an external ac field] was approached in
[5] where the exponent a = 1 was found, in disagreement
with the numerical value of [4]. This apparent contra-
diction stimulated our research on the phenomenon dis-
cussed.

The adiabatic destruction of Anderson localization was
investigated in two models. The first one is the 1D An-
derson chain with modulated hopping elements

i'(/)n = En¢n + V(]- + 6(t))("x["nﬂrl + 1/"n~1) . (1)

Here, E, are energies randomly distributed in the in-
terval [—W, W], €(t) = e(sin(w;t) + sin(wt)) character-
izes the modulated hopping, and w,w; are two incom-
mensurate frequencies. For ¢ = 0 all eigenstates are ex-
ponentially localized with a localization length given by
1~ 25(V/W)2 > 1 for E ~ 0 [8]. We chose two frequen-
cies since in this case for w ~ w; ~ 1 the problem can
be effectively reduced to a localization problem in two
dimensions [6,7,4]. In this case the localization length I,
generally grows exponentially as Inly ~ [, and the time t*
at which the localization takes place is also exponentially
large. For shorter times ¢t < t* the spreading of wave
packets over the lattice goes diffusively with a diffusion
rate D = (An)%/t. Our main task will be to determine
the dependence of the diffusion rate on the small fre-
quency w. This dependence also allows one to determine
the diffusion rate in the case of slow nonmonochromatic
perturbation (noise) with de/edt playing the role of the
typical frequency w.

Our theoretical understanding of the frequency depen-
dence of the diffusion rate along the chain is based on the
following mechanism. The time variation of the external
field leads, as in Mott’s picture, to a diffusive growth of
the electron energy with a diffusion rate Dg = (AE)?/t.
This energy absorption leads to a spreading in the elec-
tron momentum Ap ~ AE/V ~ /Dgt/V, since in
(1) the dispersion law, for small disorder, is given by
E = 2V cosp. Therefore the width of the spreading along
the lattice grows as An ~ VAp t ~ /Dg t3/%. The time
t. during which the spreading remains coherent can be
estimated from the condition An ~ I. After this time the
coherence is destroyed and random transitions between
localized states take place. The size of one jump is of
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the order of [ and the transition time is t. ~ (lz/DE)1/3.
Since these transitions occur in an uncorrelated way they
lead to a diffusion along the chain with the rate

D=1?/t.~1(IDg)Y/? . (2)

To obtain the final estimate for D we should use the
real expression for the diffusion rate in energy Dg. This
can in turn be estimated on the basis of Mott’s pic-
ture of energy absorption [3] due to transitions between
quasidegenerate double-hump states. The diffusion rate
is Dg ~ w®T with the transition rate T' ~ F2p, p ~ I/V
being the density of localized double-hump states and F
the matrix element for one-photon transition. For the
model (1) F' ~ €V and so

? ~ (ewlV/ V)3 . 3)

Of course, in the above estimate the parameter € can-
not be too small. Indeed the coherence time t. should
be larger than the transition time 1/T" [9], which gives
€ > y/w/V /l. Another more restrictive condition is that
I'p > 1 which characterizes the nonperturbative regime.
This gives a condition which is independent of frequency:
e> 1/l

It is interesting to note that if the perturbation is
characterized by a continuous spectrum (adiabatic noise)
with width w then the diffusion rate Dg is proportional to
the noise intensity v. In such a formulation D ~ #, with
B = a/2 = 1/3, which is the same as the effect of noise in
quasimomentum analyzed by Cohen [10] in the kicked ro-
tator model. The important feature of such kind of noise
is that, for small v, it gives a diffusion rate much bigger
than the rate for the standard type of noise (D ~ v [11]).
In spite of some analogy with [10] we should stress that
the noise considered there was not adiabatic and had a
very specific form, so that its physical applications were
quite restrictive and not obvious. The condition I'p > 1
which is necessary for two frequencies in (1) in order to
have a large 2D localization length might be unnecessary
in the presence of adiabatic noise. Let us mention that
our mechanism, which leads to a = 2/3, is quite differ-
ent from the approach [5] which gives & =1 > 2/3. This
means that at small frequencies the diffusion rate (3) is
dominating.

We tested the theoretical prediction (3) in numerical
simulations of the model (1). The typical example of
spreading over the lattice is presented in Fig. 1. The
width of the wave packet grows diffusively with time,
(An)? = Dt, which allows one to determine the diffusion
rate D. We studied the dependence of D on the diffe-
rent model parameters. The results are presented in Fig.
2. The ratio between the two frequencies was kept fixed,
wi/w = 1.618 ... . Initially the energy was chosen in the
middle of the band (E = 0), and we fixed € = 0.5 [12] and
V = 1. The parameter ranges were 2 x 107 < w < 0.6,
0.7 < W < 1.9, so the localization length was changing
by one order of magnitude. The diffusion rate obtained
varies in the interval 3 x 1072-42. After the rescaling
of variables according to (3) all data are approximately
described by D = 0.36/(wl)*. The least squares fit gives
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FIG. 1. Dependence of the square width of the wave packet
as a function of time for the model (1), with W = 1.5,
w = 0.001, w;/w = 1.618..., V = 1, and € = 0.5. The size
of the lattice is NV = 2048. Initially, only one site level is
excited with energy E = 0. The dashed line shows the linear
fit with D = 0.135.

a = 0.74 £ 0.02. This value is quite close to the theo-
retical value 2/3. However, a 10% difference is evident.
The value a/2 = 0.37 is in agreement with the numer-
ical results 0.35 < 8 < 0.38 of [10] and we think that
this difference is connected with the effect of quantum
correlations, as discussed in [10]. For wl > 1 saturation
takes place (see Fig. 2) and the diffusion rate D becomes
comparable with the classical diffusion rate Dy ~ [. This
happens when the coherence time becomes smaller than
the localization time t. < I[/V, from which it follows that
ewl > V.

We also studied the adiabatic destruction of coherence
in the kicked rotator model [13]. In this model the evo-
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FIG. 2. Diffusion rate D as a function of the rescaled vari-
ables for the model (1) with V =1, e = 0.5, | = 25(V/W)2,
wi/w = 1.618..., and E = 0. Symbols are o for W = 1.5,
e for W =1, x for w = 0.07, A for w = 0.005, and O for
w = 0.0003. Dashed line represents the least squares fit while
the full line shows the theoretical slope a = 2/3.
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lution operator is
U = exp(—iTn?/2) exp[—ik(t) cos 8], (4)

where k(t) = k(1 + €( cos(wt) + sin(w;t))) and t is mea-
sured in the number of kicks. For ¢ = 0 this is the stan-
dard kicked rotator model in which chaotic diffusive exci-
tation takes place for K = kT > 1, and the quasiclassical
limit correspondsto k > 1, T < 1, with K = const. The
diffusion rate is Do ~ k2/2 for K > 1. Quantum interfer-
ence leads to a localization of this diffusion with a length
l =~ Dg/2. The model (4) with one frequency has been
studied in [4]. Here we have chosen two frequencies since
in this case the model is effectively equivalent to a 3D
solid state problem [7], and unlike in [4] the localization
effects are much less pronounced.

The estimate (3) should be slightly modified to be
applied to (4). The dispersion law is still given by
E = 2kcosp, where p = 0 plays the role of momentum
and the estimate (2) holds. However, now the diffusion
rate in quasienergy is Dg ~ (ewl)? since for double-hump
states the matrix element F' ~ ek [14] and the density
p ~ 1, since the quasienergies are homogeneously dis-
tributed in [0, 27]. This gives

D
g~ (wDd?) e (5)

Our theoretical explanation is different from the ar-
guments presented in [4], where the exponent o was as-
sumed to be connected with the level statistics for states
in one localization length interval. To test this connec-
tion we slightly modified (4) by adding a second harmonic
(k/2) sin(26) in the kick potential and a magnetic flux ¢
in the free rotation term [n — (n + ¢)]. In this way the
system changes universality class, from GOE to GUE
[15]. However, our numerical calculations show that this
modification does not affect the exponent a which is in
agreement with (5).

Our numerical results for the diffusion rate dependence
on the parameters of (4) are presented in Fig. 3. The
parameters ranges were 3 X 107° <w < 1, 3 < k < 16.8,
2x 1072 < € < 0.5, kT = 6. The diffusion rate obtained
was in the range 9x 1073-1.3x 102, The basis was varying
up to 8192 levels. The rescaling of variables confirms the
scaling relation (5). The usual best fit procedure gives

D ~ 1.8Dy(ewD3?)* with o = 0.73 & 0.02. The value
of the exponent « is in agreement with the numerical
value obtained for the Anderson model. This confirms,
once more, that the kicked rotator represents a physically
meaningful model and the results obtained from it can be
used to explore solid state physics too. Let us note that
both the numerical value obtained for a and the scaling
relation (5) are slightly different from those obtained in
[4]. We think that the choice of two driving frequencies
instead of one allows us to investigate a much wider range
of parameters, which in turn leads to a better fitting of
the data.

The results obtained above allow us to find the diffu-
sion rate along the lattice for the more physical problem
of electrons in a random potential under the influence
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FIG. 3. Diffusion rate D as a function of the rescaled vari-
ables for the model (4) with kT = 6, w1/w = 1.618..., and
Do = k*/2. Symbols are o for k = 3, ¢ = 0.5; ® for w = 0.001,
€ = 0.5; X for w = 0.0001, € = 0.5; A for w = 0.001, &k = 10.08.
Dashed line represents the least squares fit while the full line
shows the theoretical slope a = 2/3.

of a low frequency electric field £(¢). For electrons with
the dispersion law F = V cos p the mechanism discussed
above gives the estimate (2). The diffusion rate in energy
is still given by the Mott formula but now the matrix el-
ement is F' = (m|E(t)Z|m’) ~ ElIn(V/w) for the 1D case.
Here £ is the electric field amplitude and we use units
in which 2 = e = a = 1, where a is the lattice spacing.
Then it follows that

D~ (w2€2l71n2(V/w)>

1/3

(6)

We note that the diffusion rate along the lattice obtained
in the limit of small frequencies decreases much more
slowly than the usual Mott rate for energy absorption
Dg x w?.

In deriving (6) we implicitly assumed that the driving
field is not monochromatic but contains at least two fre-
quencies of order w. Another possibility is to use a con-
tinuous field spectrum with a frequency width w. The
condition for the applicability of (6) for two driving fre-
quencies is I'p > 1, which gives £ > V/[I?In(V/w)]. For
adiabatic noise the condition is £, > 1/T" which leads to
E > VwV /P In(V/w).

It is interesting to note that, for electrons with the
dispersion law E = p%/2m, the energy change is AE =
(p/m)Ap. If p ~ Ap then Ap ~ (my/Dgt)'/?2. Fol-
lowing the same procedure as before we obtain D ~
l'3/5D;3/5m‘2/5 o w?/5. However, this model is not very
realistic since usually Ap is less than the Fermi momen-
tum, and the estimate (6) should be used.

Finally, we would like to mention another possible way
of understanding (2). In this estimate the main point
is the connection between the coherence time t. and the
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diffusion rate in energy Dpg. Since £. is the typical time
scale of the physical problem, its relation with Dg is
quite similar to the relation between the Kolmogorov-
Sinai entropy h and the diffusion rate 1/t ~ h x DlE/3
found in plasma physics for the problem of a charged
particle in a random magnetic field [16]. Indeed, the
equations studied in [16] for the computation of h are
close to those obtained for the model (1) written for the
1-function amplitudes C,, in the instant time eigenstate
basis [1]:

. i~ (OH /) mm—r (0
iCpy = EZ A TEmmeT i(em ‘Pm*T‘)mer , (7)
r#0 Em - Em——r

where H is the Hamiltonian. The expansion co-
efficients of the states (t) are defined by ¢(¢) =
Y m Cm exp[—ipm(t)]|m(e)) and @ (t) = [dtE,[e(t)].
Due to localization the contribution in the sum (7) is
given only by those elements with |r| < . Except for

¢ in the left-hand side, Egs. (7) are similar to the lin-
earized equations for the calculation of Lyapunov expo-
nents in dynamical systems [16,17]. There it was shown
that h oc é2/3, which determines, in agreement with (2),
the typical time scale ..

In conclusion, we have found a mechanism which al-
lows us to explain the behavior of electrons in a ran-
dom potential under slow field modulation. This mod-
ulation, for small field frequencies, leads to a relatively
fast electron diffusion along the lattice. Such diffusion is
in turn caused by the Mott mechanism of energy absorp-
tion, which leads to the destruction of phase coherence
and to delocalization. The diffusion along the lattice also
gives an induced dc conductivity at zero temperature,
Odc x w?/3. It would be interesting to test this frequency
dependence of dc conductivity in laboratory experiments.
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