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Abstract. We review, with emphasis on the dynamical point of view, the classical characteristics of
the Topological Nonconnectivity Threshold (TNT), recently introduced in F. Borgonovi, G.L. Celardo,
M. Maianti and E. Pedersoli, J. Stat. Phys. 116, 1435 (2004). This shows interesting connections among
Topology, Dynamics, and Thermo-Statistics of ferro/paramagnetic phase transition in classical spin sys-
tems, due to the combined effect of anisotropy and long-range interactions.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.45.Pq Numerical simulations
of chaotic systems – 75.10.Hk Classical spin models

1 Introduction

The magnetic properties of materials are usually described
in terms of system models, such as Heisenberg or Ising
models where rigorous results, or suitable mean field ap-
proximations are available in the thermodynamical limit.
On the other side, modern applications require to deal
with nano-sized magnetic materials, whose intrinsic fea-
tures lead, from one side to the emergence of quantum
phenomena [1], and to the other to the question of ap-
plicability of statistical mechanics. Indeed, few particle
systems do not usually fit in the class of systems where
the powerful tools of statistical mechanics can be applied
at glance. In particular, an exhaustive theory able to fill
the gap between the description of 2 and 1023 interact-
ing particles is still missing. In a similar way, long-range
interacting systems belong to the class where standard
statistical mechanics cannot be applied tout court. Indeed,
they display a number of bizarre behaviors, to quote but a
few, negative specific heat [2] and hence ensemble inequiv-
alence [3], temperature jumps, and long-time relaxation
(quasi-stationary states) [4]. Therefore, from this point
of view, few-body short-range interacting systems share
some similarities with many-body long-range ones.

Within such a scenario, and thanks to the modern
computer capabilities, it is quite natural to take a dif-
ferent point of view, starting investigations directly from
the dynamics, classical and quantum as well [5–7]. It was
in this spirit that quite recently in a class of anisotropic
Heisenberg-like spin lattice systems, a topological non-
connection of the phase space was discovered [6]. Initially,
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for historical reasons [8], this was referred to as broken er-
godicity, since if the phase space is decomposable into two
topologically non-connected components then a break-
ing of ergodicity is indeed a trivial consequence [9]. Here
we prefer to call Topological Nonconnectivity Threshold
(TNT) the value Etnt where such a disconnection sets in
upon lowering the total energy E of the system. This re-
sult was found, first numerically and later analytically, in a
class of spin models where important and rigorous results
have been obtained during the last century, though gen-
erally only in the thermodynamical limit. Nevertheless, to
the best of our knowledge, apparently nobody took care
of the dynamics, and consequently nobody spoke of this
simple but relevant property.

This dynamical point of view has a few interesting
classical consequences. First of all it explains, from the
point of view of microscopic dynamics, the possibility of
ferromagnetic behavior in small system. Indeed, in ab-
sence of external field and external noise (temperature)
a magnetized system, (belonging to one component of
the non-connected phase space) remains magnetized sim-
ply because it cannot move to the other component.
Furthermore, our TNT is surely related to recent re-
sults [10,11] connecting topological transitions (TT) and
thermo-statistical phase transitions (PT), even if such
investigations again concern the thermodynamical limit
only, and they relate to usual PT of canonical thermo-
statistics. However, it has been recently stressed [12] that
microcanonical thermo-statistics is the theoretically more
suitable description for systems with small size and/or
long-range interactions.

In Section 2 a short description of our class of
models and the topological properties of the TNT for
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finite and infinite N , pointing out the crucial role played
by the XY anisotropy is given. The deep connection
with long-range interaction is also reviewed. Dynami-
cal properties and their relations with thermostatistical
properties, namely the occurrence of a standard (param-
agnetic/ferromagnetic) PT, using techniques from large
deviation theory [14] within the microcanonical descrip-
tion of the system are described in Section 3. Conclusions
are given in Section 4. Here we restrict to the classical case;
for a recent discussion of quantum effects, we refer to [7].

2 Mechanics and topology

As a paradigmatic model example of TNT, let us consider
the following class of lattice spin models, described by the
Heisenberg-like Hamiltonian:
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where Sx
i , Sy

i , Sz
i are the spin components, assumed to

vary continuously; i, j = 1, ...N label the spins positions
on a suitable lattice of spatial dimension d, and rij is the
inter-spin spatial separation. Here for simplicity we con-
sider a d = 1 lattice. (See [15] for extensions to d = 2, 3.)
Each spin satisfies |S| = 1. Also, α ≥ 0 parametrizes the
range of interactions (decreasing range for increasing α)
and −1 < η ≤ 1 parametrizes the XY anisotropy. For
α = ∞ we recover nearest-neighbor interactions, while
α = 0 corresponds to infinite-range interactions. A mean-
field model is obtained by setting α = 0 and including as
well the (non-physical) self-interaction pairs i = j:

Hmf =
η

2
N2(mx)2 − 1

2
N2(my)2, (2)

where mx,y,z = (1/N)
∑N

i Sx,y,z
i . While this might be

thought of as a negligible modification for N → ∞, never-
theless it has non-negligible effects concerning the chaotic-
ity properties of the system. Indeed, the dynamics of the
mean-field system turns out to be exactly integrable [13].
Here we are not interested in the most general spin Hamil-
tonian giving rise to a TNT (for instance in [6,13] a term
containing a transversal magnetic field Bz has been added
to H). Rather, we focus on the very simple Hamiltonian
(1) which already contains the two essential ingredients
which give rise to the TNT, i.e. anisotropy and long-range.

Since −1 < η ≤ 1 the minimum energy configuration,
with energy Emin, is attained when all spins are aligned
along the Y axis [15], which defines implicitly the easy
axis of magnetization. In the same way, let us define the
TNT energy Etnt as the minimum energy compatible with
the constraint of zero magnetization along the easy axis
of magnetization:

Etnt = Min [ H | my = 0 ] . (3)

By definition, in general Emin ≤ Etnt, and in particular it
may be that Emin �= Etnt. We call this situation topologi-
cal non-connection, and, as will become clear in a moment,

its physical (dynamical as well as statistical) consequences
are rather interesting. Indeed, consider a system prepared
at time t = 0 with a definite sign of magnetization, say
my > 0 and an energy value Emin ≤ E ≤ Etnt. As time
goes by, the system evolves upon the constant energy sur-
face H(SN ) = E in configuration space. Nevertheless, due
to the continuity of the dynamical equations of motion the
magnetization my(t) (not a constant of motion) may well
change its size, but it can never change its sign, instead.
Indeed, in order to assume a value my < 0 it should have
to go through at least one configuration with my = 0,
which by definition cannot belong to the E < Etnt sur-
face. The whole situation can be summarized as follows.

Topology: in configuration space the surface at fixed en-
ergy E is topologically non-connected in two components,
each characterized by a magnetization either my < 0 or
my > 0.

Dynamics: though the two components are energeti-
cally accessible on equal grounds, the ergodicity of the
constant E surface is trivially broken, since there exist no
dynamically allowed path in between them.

Thermo-Statistics: de-magnetization is in principle im-
possible below the TNT, so we may speak in some sense
of a ferromagnetic phase. Of course, the application of a
magnetic field, or a thermal noise, can give the energy
necessary to overcome the energy barrier, thus in princi-
ple allowing for a magnetic reversal. On the contrary, for
energy values E > Etnt, de-magnetization is in principle
possible, and we may speak in some sense of a param-
agnetic phase. However, being above the TNT does not
automatically guarantee that, for any combination of pa-
rameter values and initial conditions, a system initially
magnetized at an initial time will for sure eventually de-
magnetize within a given finite observational time τobs.
As reported in [13], two distinct dynamical regimes may
come into play here. First, a quasi-integrable regime can
prevent the motion from covering the whole energy sur-
face. We can therefore say that strong chaos is somehow
another necessary ingredient in order for the system to
be in its paramagnetic phase. Second, even given strong
enough chaoticity to “encourage” the system to explore all
the available phase space, yet the system could be given
not enough time to actually do it, so effectively “freezing”
it within the my component where it started from.

For finite N systems the XY anisotropy is the only
necessary ingredient in order to have Etnt > Emin and
hence the TNT. For N → ∞, one quickly realizes that
both Emin → −∞ and Etnt → −∞, but may still won-
der whether Etnt → Emin as well, thus making the TNT
physically irrelevant. So we define the topological non-
connection ratio:

r =
Etnt − Emin

|Emin| , (4)

which expresses how large a fraction of the energy range
is topologically non-connected. Correspondingly, we will
refer to a system as topologically non-connected if r →
const. �= 0 in the limit N → ∞.
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Extensive numerical simulations using constrained op-
timization and analytical estimates as well have been per-
formed in [15], in order to evaluate r.

Such results can be summarized as follows:

i) Short Range case, α > d: it has been proved analyti-
cally that, ∀d and η �= −1, r → 0 for N → ∞.

ii) Long Range case, α < d: with the aid of numerical
simulations it has been proved that, for d = 1, 2, 3 and
η �= −1, r → const. �= 0 for N → ∞.

We can thus say that while the exchange anisotropy of
the coupling is the only necessary ingredient to induce the
presence of the TNT, in the large N limit, only long range
interacting systems give rise to a non zero topological non-
connection ratio r.

3 Dynamics and thermo-statistics

Following [13] here we focus on the time evolution of the
magnetization my(t) started with some E and my(0).
Complementary, we look at its statistical distribu-
tion Pens(E, my), built via a random sampling of an en-
semble of initial conditions, all with the same E. The
study of Pens(E, my) will lead to another energy thresh-
old, Estat, where the system undergoes a continuous
ferro/paramagnetic PT in the thermodynamical limit.
Our aim is to show the connection between Dynamics and
Thermo-Statistics and the relevance of Etnt w.r.t. the sta-
tistical phase transtion, Estat.

As usual, starting from the Hamiltonian (1) we
straightforwardly derive the equations of motion:

dSi

dt
= {H, Si}, (5)

where {, } are the canonical Poisson brackets. As is well-
known, for such dynamical equations the total energy E
and the spin moduli, |Si|2 = 1, are constants of the mo-
tion. Usually, for energies E not too close to Emin, the
dynamics is characterized by a positive largest Lyapunov
exponent, corresponding to strongly chaotic motion [6].
Typical examples of evolution curves of my(t) and the
corresponding Pens(E, my), are shown in Figure 1. Again,
the whole situation can be summarized as follows.

Thermo-Statistics: For E < Etnt (Fig. 1d) the two
peaks of the distribution Pens(E, my) are well separated,
while for E > Etnt (Fig. 1e) they are connected. At Estat

they merge into one single peak (Fig. 1f).
Restricting attention to the mean field

Hamiltonian (2), a detailed statistical analysis, using
techniques from large deviations theory, leads to def-
inite predictions (see [13] for details) concerning the
microcanonical (i.e., purely state-counting at fixed E)
probability distribution Pstat(my, E), the topological
energy threshold Etnt, and the thermo-statistical energy
threshold Estat.

Dynamics: at low energy, (Fig. 1a), the system is al-
ways magnetized, and at high energy, (Fig. 1c), the system
is on average non-magnetized. In between (Fig. 1b), in the
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Fig. 1. Left column (a, b, c): time evolution of the magneti-
zation my(t) for different specific energy values. Right column
(d, e, f): probability distribution of the magnetization at a
given specific energy. Parameters are α = 0, η = 1, N = 10.
For these parameters Etnt = −0.5 and Estat = 0. Upper line
((a, d) below the TNT): E/N = −0.7. Middle line ((b, e) be-
tween the TNT and the statistical thresholds. Lower line ((c, f)
above the statistical threshold) E/N = 0.1.

presence of strong chaos (dependent on the parameters N
and E) the magnetic reversals occur completely at ran-
dom, with jumping times following a Poisson distribution.
Indeed the magnetization jumps erratically up and down.
We can usefully define a magnetic-reversal time-scale [13],
as the average time necessary to magnetization to reverse
its sign.

Interestingly, and somewhat reminiscent of a critical
PT, as shown in Figure 2 the magnetic-reversal time-scale
diverges as a power law of E at the critical energy Etnt:

τrev ∼
[
E − Etnt

N

]−γ(N)

. (6)

Let us remark that detailed statistical consideration on
the mean field model (2) lead to the analytical estimate
γ(N) = N to be compared with the numerical result
γ(N) ≈ 0.88N , for α = 0 [13]. Note also that, to a rather
good accuracy [13], there holds the following proportional-
ity between the dynamical quantity τrev and the statistical
quantity Pens(E, my):

τrev ∝ Pmax

P0
(7)

where Pmax is the maximum value of the probability dis-
tribution and P0 = Pens(E, 0).

This behavior of the magnetic-reversal time-scale has
interesting consequences. Indeed adopting a viewpoint as
close as possible to the experimental one, we can introduce
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Fig. 2. Divergence of magnetization reversal times close to the
TNT. Here is α = 0, η = 1, and different N values as indicated
in the insert. Lines are the best fit according to equation (6).

an observational time τobs, during which the experiment
can be performed. Assuming the experimentally mea-
sured value and the dynamical time-average to coincide,
we introduce the τobs-averaged magnetization: 〈my〉obs =∫ τobs

0
dt my(t). It is clear that if τobs � τrev then the mag-

netization has time to flip between the two opposite com-
ponents and, as a consequence, 〈my〉obs 
 0. On the con-
trary, if τobs � τrev the magnetization keeps its sign and
cannot vanish during τobs. Defining an effective transition
energy Eobs from the condition τobs = τrev(Eobs), one gets,
inverting equation (6), the value of the energy at which
the system is not magnetized anymore [13]. This simple
argument shows the relevance of Etnt, besides Estat, to
determine whether a system has a paramagnetic of a fer-
romagnetic behavior. In particular the influence of Etnt on
the ferromagnetic behavior of a system should be stronger
in small chaotic systems where the condition τrev � τobs

can be expected to hold below Estat.

4 Conclusions

We showed the existence in classical Heisenberg spin mod-
els of a Topological Nonconnectivity Threshold (TNT),
caused by the anisotropy of the coupling when it induces
an easy-axis of the magnetization. Below the TNT the
constant energy surface is topologically disconnected in
two components.

This result on the Topology has deep connections
with the Dynamics (time-scales) and with the Thermo-
Statistics (PT) of the system as well. In each component
the magnetization along the easy axis has a definite sign
corresponding to a ferromagnetic behavior of the system.
Above the TNT, in a strong chaotic regime, the magne-
tization randomly reverses its sign with a characteristic
time-scale which diverges as a power law at the TNT.
Therefore paramagnetic behavior occurs, provided enough

chaos and sufficiently large time. The connection between
the TNT and the range of the interaction has also been
shown. For macroscopic spin systems the existence of this
threshold determines a disconnected energy range that re-
mains relevant (w.r.t. the total energy range) for long-
range interactions, while it goes to zero for short-range
interactions.
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