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We review our results on a mathematical dynamical theory for observables for open many-body
quantum nonlinear bosonic systems for a very general class of Hamiltonians. We argue that for open
quantum nonlinear systems in the deep quasi-classical region, important quantum effects survive
even after decoherence and relaxation processes take place. Estimates are derived which demonstrate
that for a wide class of nonlinear quantum dynamical systems interacting with the environment, and
which are close to the corresponding classical systems, quantum effects still remain important and
can be observed, for example, in the frequency Fourier spectrum of the dynamical observables and in
the corresponding spectral density of noise. Preliminary estimates are presented for Bose-Einstein
condensates, low temperature mechanical resonators, and nonlinear optical systems prepared in
large amplitude coherent states.

PACS numbers:

I. INTRODUCTION

Real physical systems are not isolated, they are cou-
pled to external degrees of freedom. The classical and
quantum dynamics of these open systems are espe-
cially complex for nonlinear systems (with non-quadratic
Hamiltonians) that exhibit several phenomena, includ-
ing quantum revivals, decoherence, and dissipation. Re-
cently much theoretical and experimental effort has been
devoted to study the open dynamics of nonlinear quan-
tum systems, with the aim of understanding the quantum
to classical transition in a controlled way.

Standard mathematical treatments of open quantum
nonlinear systems suffer from problems arising from the
interplay between the nonlinearity and the openness of
the system. Usually the dynamics of open quantum sys-
tems is studied using different mathematical approaches,
such as the master equation for the reduced (averaged
over the environmental variables) density matrix [1], and
quasi-probability distributions (e.g. the so-called Q-
function [2], the Wigner function [3], etc). Although all
of these approaches allow one, in principle, to calculate
the time evolution of the average values of the dynamical
variables (observables), they have significant drawbacks.
In particular, they may not be positively defined; they
may be inconsistent for certain density matrices; it may
be difficult to extract physical information from these
distributions, especially in the context of quantum non-
linear open systems; in the “deep” quasi-classical region
of parameters, ε = ~/J � 1 (where ~ is Planck constant
and J is a characteristic action of the corresponding clas-
sical system) these quasi-probability distributions exhibit
fast oscillations due to phases like exp(iS(t)/~), with
|S(t)| ' J . Therefore, it is difficult to separate the phys-
ical effects for dynamical observables (requiring an addi-
tional multi-dimensional integration of quasi-distribution
densities) from the effects of errors related to a concrete

mathematical approach.
We are approaching these problems using an alterna-

tive strategy that starts from a mathematical dynamical
theory based on exact, linear, partial differential equa-
tions (PDEs) for the observables of open many-body
quantum nonlinear bosonic systems governed by a very
general class of Hamiltonians. The key advantage of this
method is that it leads to a well-behaved asymptotic the-
ory for open quantum systems in the quasi-classical re-
gion of parameters. This approach is a generalization to
the open case of the asymptotic theory for bosonic and
spin closed quantum systems [4–6], and it can be applied
to general open quantum nonlinear bosonic (and spin)
systems for a large range of parameters, including the
deep quasi-classical region.

In this contribution we review our first studies [7, 8]
of this new approach to quantum nonlinear systems in-
teracting with an environment. As will be discussed be-
low, certain quantum effects present in the dynamics of
these nonlinear systems are robust to the influence of
the environment, and can survive long after decoherence
and relaxation processes take place. In order to observe
these effects experimentally it is necessary to have quasi-
classical systems in certain region of parameters. Many
quasi-classical systems have the drawback that they are
either “too classical” (i.e., they have a large J so that
the quasi-classical parameter ε is extremely small), or
they interact too strongly with the environment (i.e.,
their effective temperature is so high that quantum ef-
fects are killed). Only recently have adequate open non-
linear quasi-classical systems become available, including
Bose-Einstein condensates (BEC) with a large number of
atoms and thermally well isolated, high frequency can-
tilevers with large nonlinearities and at sufficiently low
temperatures, and nonlinear optical systems in high Q
resonators. We will present estimates on the param-
eter regions where survival of certain quantum effects
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to environment-induced decoherence can be observed in
these systems.

II. DYNAMICS OF QUANTUM OBSERVABLES
FOR CLOSED QUANTUM NONLINEAR

SYSTEMS

We first consider closed nonlinear systems. As a simple
example we take the one-dimensional quantum nonlinear
oscillator (QNO) described by the Hamiltonian [4, 6]

Hs = ~ωa†a + µ~2(a†a)2 , [a†, a] = 1, (1)

where a, a† are the annihilation and creation opera-
tors, ω is the frequency of linear oscillations, and µ is
a dimensional parameter of nonlinearity. We assume
that initially the QNO is prepared in a coherent state
|α〉 (a|α〉 = α|α〉). In the classical limit (a → α, a† →
α∗, |α|2 →∞, ~|α|2 = J , the classical action of the linear
oscillator) the Hamiltonian (1) becomes Hcl = ωJ +µJ2.
Below we use the following dimensionless notation: τ ≡
ωt, µ̄ ≡ ~µ/ω, and µcl ≡ µJ/ω. The quantum parame-
ter of nonlinearity µ̄ can be presented as the product of
two parameters, quantum and classical, µ̄ = εµcl. The
parameter µcl characterizes the nonlinearity in the clas-
sical nonlinear oscillator (BEC, cantilever, optical field,
etc) and can be written as µcl = (J/2ω)(dωcl/dJ), where
ωcl = dHcl/dJ = ω + 2µJ is the classical frequency of
nonlinear oscillations. The limit µcl � 1 corresponds to
weak nonlinearity, while µcl ' 1 corresponds to strong
nonlinearity. As was mentioned above, ε is the quasi-
classical parameter. Namely, ε ' 1 corresponds to the
pure quantum system, and ε � 1 corresponds to the
quasi-classical limit, which is the subject of our interest.

The time evolution of the expectation value of any ob-
servable of the system can be easily calculated when the
system is initially populated in a coherent state |α〉. For
an arbitrary operator function f = f(a, a†), the time-
dependent expectation value (observable) of such a func-
tion,

f(α∗, α, τ) = 〈α|eiHt/~fe−iHt/~|α〉,

satisfies a PDE of the form

∂f/∂τ = K̂f,

where K̂ = K̂cl + εµclK̂q (see [4] and references therein).
Here the operator K̂cl includes only the first order deriva-
tives and describes the corresponding classical limit,
while the operator K̂q includes higher-order derivatives
and describes the quantum effects. For the Hamiltonian
(1) we have

∂f

∂τ
= i(1 + µ̄ + 2µ̄|α|2)

(
α∗ ∂

∂α∗ − α
∂

∂α

)
+iµ̄

(
(α∗)2

∂2

∂(α∗)2
− α2 ∂2

∂α2

)
f. (2)
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FIG. 1: Quasi-classical dynamics as described by the ob-
servable in Eq. (3). Parameters are ε = 0.02, µ̄ = 0.01,
τE = 5, τR = 314, τcl = 2.09, |α|2 = 100, µcl = 1. Hence
τcl < τE < τR.

In particular, for the operator function f(τ = 0) = a the
evolution of f(τ) corresponds to the evolution of α(τ) =
〈α|a(τ)|α〉, with the initial condition α(τ = 0) = α. In
this case Eq.(2) can be solved exactly [4, 6]

α(τ) = αe−i(1+µ̄)τ e|α|
2(e−2iµ̄τ−1). (3)

Figure 1 depicts the dynamics described by the observ-
able Eq. (3) in the coordinate-momentum plane. The
effective coordinate is defined as

x(τ) = (α∗(τ) + α(τ))/
√

2,

and the effective momentum is defined as

p(τ) = i(α∗(τ)− α(τ))/
√

2.

The classical dynamics is described by the function

αcl(τ) = e−i(1+2µcl)τ ,

which corresponds to the circumference in Fig. 1.
The solution (3) has three characteristic time-scales.

In the limit µ̄τ � 1, Eq. (3) can be written in the form

α(τ) = αcle
−τ2/2τ2

E
[
1 + O(µ̄τ) + O(|α|2µ̄3τ3)

]
. (4)

Thus, the first time-scale is the characteristic classical
time-scale, which can be chosen as the period of classical
nonlinear oscillations,

τcl = 2πω/ωcl = 2π/(1 + 2µcl).

The second time-scale is a characteristic time of depar-
ture of the quantum dynamics from the corresponding
classical one. We call this time the Ehrenfest time-scale,

τE = 1/2µ̄|α|
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(a similar time-scale for quantum systems which are clas-
sically chaotic was introduced in [9], and was widely dis-
cussed. See, for example, [10, 11]). The amplitudes of
quantum and classical observables coincide at multiple
times of the quantum recurrence time-scale, which is the
third characteristic time-scale,

τR = π/µ̄.

Since we are interested in the quasi-classical region of pa-
rameters, it is reasonable to impose the following inequal-
ities on these three characteristic time-scales: τcl < τE �
τR. In our case, τcl/τE = 4πµ̄|α|/(1 + 2µcl) ≈ π

√
ε � 1,

and τE/τR ≈
√

ε/π � 1. When deriving the first in-
equality, we used the conditions |α|2 ' J/~ = 1/ε and
µcl ' 1, which corresponds to the condition of strong
nonlinearity. Note that the condition |α|2µ̄3τ3 ' 1 (see
the third term in (4) in the square brackets in the ex-
pression for α(τ)) gives the characteristic times τ � τE,
namely τ/τE = 2/ε1/6 � 1. This means that the third
term in Eq. (4) is small on the time scale τE. For the val-
ues of parameters in Fig. 1, the inequalities τcl < τE � τR

are satisfied.

A. Quantum effects as a singular perturbation to
the classical solution

As was mentioned above, the general form of the dif-
ferential operator K̂ is

K̂ = K̂cl + εµclK̂q.

The operator K̂cl includes only the first order derivatives
and describes the classical dynamics of the system. Usu-
ally, the corresponding classical solution can be found by
the method of characteristics, or some alternative well-
developed methods. Note that even this part of the solu-
tion can be rather complicated, especially for classically
unstable and chaotic systems, and usually requires large-
scale numerical simulations. (See details for closed quan-
tum nonlinear systems and quantum nonlinear systems
interacting with the time-periodic fields [4]). Another ex-
ample is the classical mean field GP equation for BECs,
which is also described by the differential operator K̂cl

[12]. For quantum linear systems (µcl = 0) the quantum
effects vanish (except for renormalization of parameters)
for any values of the quasi-classical parameter ε. The
differential operator K̂q includes second and higher or-
der derivatives, and it describes quantum effects. The
solutions of these PDEs are well behaved in the quasi-
classical region, ε � 1, and in contrast to the fast oscil-
lating WKB solutions (typical of standard methods based
on quasi-probability distributions), our method leads to
the so-called Laplace-type expansions [5]. The crucial
property of the Laplace asymptotics is that the dynami-
cal observables are exponentially localized in phase space
around coherent states.

As it follows from our considerations, quantum effects
for observables represent a singular perturbation to the

classical solution. Indeed, in the quasi-classical region,
quantum terms in our PDEs are represented by the prod-
uct of the small parameter ε times high order derivatives.
Consequently, these quantum terms lead to a secular be-
havior of the solution, which diverges in time from the so-
lution describing the corresponding classical world. Only
the case ε = 0 (for finite µcl) corresponds to the exact
classical limit. But the problem with this limit is that for
any real system ε 6= 0 (because ~ 6= 0 and J 6= ∞). Then,
even a very small value of ε still results in a singular per-
turbation to the classical solution due to the quantum
terms.

The singularity arising from the quantum terms re-
minds, up to some extent, of the singularity provided
by a “small” viscosity in the Navier-Stokes (NS) equa-
tion, describing the dynamics of liquid and gas flows.
Indeed, in the NS equation a small viscosity multiplies
the higher order spatial derivatives. Then, even for very
large Reynolds numbers (when the nonlinear terms are
very large compared to the viscous ones), the viscosity
(which formally represents a “small” perturbation) plays
a crucial role in the dynamics of the flow. Similarly, a
small parameter ε multiplies the higher order derivatives
resulting in a quantum singular perturbation for observ-
ables, even in a “deep” quasi-classical region. It is this
singularity that leads to a significant difference from the
classical solution.

The fact that for quantum nonlinear systems the terms
with high-order derivatives in the evolution equations for
the density matrix and for the Wigner function represent
a singular perturbation to the classical limit (Liouville
function) is well known. However, in spite of a large
number of papers on this subject, from this fact it is still
unclear what are the conditions for the quantum-classical
correspondence for observables. The important question
is: Under what conditions does the environment kill (if at
all) the quantum corrections which represent a singular
perturbation to the observables of the classical world?
Our answer to this question is the following: Generally,
for open quantum nonlinear systems in the deep quasi-
classical region of parameters, quantum effects survive
after decoherence and relaxation processes took place.

B. Frequency Fourier spectrum of the effective
momentum

The observable α(τ) can be written in the form

α(τ) = αe−i(1+µ̄)τ−i|α|2 sin(2µ̄τ) e−2|α|2 sin2(µ̄τ). (5)

The first exponent in Eq.(5) is responsible for phase mod-
ulations of the classical dynamics, while the second one
is responsible for amplitude modulations. The charac-
teristic time-scale of the amplitude modulations, τam, is
defined by the condition |α|2µ̄2τ2

am ≈ 1, or by the Ehren-
fest time scale τam ≈ τE. The time-scale of phase modula-
tions of the classical dynamics is defined by the condition
|α|2µ̄τph ≈ 1, or τph ≈ τE/

√
ε � τE. Thus, the shortest
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FIG. 2: Frequency spectrum of the effective momentum p(τ).
Parameters are ε = 1/900, µ̄ = 1/900, τE ≈ 15, τR ≈ 900π,
τcl ≈ 2π/3, and |α|2 = 900. Hence τcl < τE < τR.

time-scale which characterizes the deviation of the quan-
tum dynamics from the corresponding classical one is the
Ehrenfest time. Moreover, this time-scale is responsible
for the finite width of the spectral line ∆νE ≈ 2

√
2/τE.

Figure 2 depicts the frequency Fourier spectrum of the
effective momentum p(τ), with initial condition p(0) = 0.
One can see that the frequency spectrum consists of one
central line with ν = ωcl = 1 + 2µcl, and a width which
is approximately equal to ∆ν ≈ ∆νE. In our case the
analytical estimate gives ∆νE ≈ 2

√
2/τE ≈ 0.19, which

is very close to the numerical results presented in Fig. 2,
∆ν ≈ 0.183. The fine structure of the frequency spec-
trum is provided by the characteristic revival time scale
τR = π/µ̄, or by the frequencies νn = 2µ̄n, which are
responsible for the complicated dynamics of quantum re-
currences.

III. DYNAMICS OF QUANTUM OBSERVABLES
FOR OPEN QUANTUM NONLINEAR SYSTEMS

The Hamiltonian of open quantum nonlinear system
interacting with an environment contain three terms,

Ĥ = ĤS + ĤE + Ĥint.

The first term is typically a time-independent polynomial
Hamiltonian of a general form which describes the self
evolution of the closed system,

ĤS =
∑
l,s

Hl,sa
†l1
1 . . . a†lNN as1

1 . . . asN

N ,

where Hl,s = H∗
l,s, l = (l1, . . . , lN ) ∈ ZN

+ , and s =
(s1, . . . , sN ) ∈ ZN

+ . The operators al and a†k satisfy
bosonic commutation relations, [al, a

†
k] = δl,k. A par-

ticular system corresponds to a particular choice of the

coefficients Hl,s in ĤS. The second term is the Hamil-
tonian of the environment, which, for example, can be
modeled by a collection of harmonic oscillators,

ĤE =
N∑

j=1

~ωjb
†
jbj .

Usually, the oscillators of the environment are assumed
to be initially in thermal equilibrium,

ρE(t = 0) = Z−1
E e−ĤE/kBT ,

where ZE = Tr[e−ĤE/kBT ] is the partition function of
the environment, T is the temperature of the environ-
ment, and kB is Boltzmann constant. The third term is
the interaction Hamiltonian between the system and the
environment. Prototype examples are the dipole-dipole
interaction Hamiltonian,

Ĥint =
∑
n,j

gn,j [(a†n + an)(b†j + bj)],

the density-density interaction Hamiltonian [7], etc.

A. The differential operator K̂ for many-body
systems

In a general many-body system the differential opera-
tor K̂ can formally be written as

K̂ =
i

~
e−

∑
(|αn|2+|βj |2)

∑ [
H

(
α∗

l , β
∗
q ,

∂

∂α∗
l

,
∂

∂β∗
q

)
−H

(
αl, βq,

∂

∂αl
,

∂

∂βq

)]
e−

∑
(|αn|2+|βj |2). (6)

Note that after explicit differentiations, exponents in K̂
vanish. Specific examples considered in our previous
works include: (i) the closed quantum one-dimensional
nonlinear system in the vicinity of an elliptic point [4, 6];
(ii) the closed quantum one-dimensional nonlinear sys-
tem in the neighborhood of a hyperbolic point [6, 12];
(iii) chaotic systems describing the interaction of atoms
with radiation and external rf fields [4]; (iv) finally, in
[7, 8] we considered the open system of a QNO interact-
ing with different types of environments.

B. Frequency Fourier spectrum of p(τ) in the
presence of an environment

Now we introduce formally a relaxation (dissipation)
term into Eq. (3). Namely, we consider the function

α(τ) = αe−γτ−i(1+µ̄)τ e|α|
2(e−2iµ̄τ−1), (7)

where the parameter γ plays the role of an effective relax-
ation. Then, the characteristic time scale of relaxation is
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FIG. 3: Fourier frequency spectrum of the momentum p(τ)
obtained from Eq. (7). Parameters are: a) γ = 0.0005, τγ =
2000 � τE ≈ 15; b) γ = 0.5, τγ = 2 < τE ≈ 15; all other
parameters are the same as in Fig. 2.

τγ = 1/γ. We consider the frequency Fourier spectrum
of the momentum

p(τ) = i(α∗(τ)− α(τ))/
√

2,

with α(τ) from Eq. (7), for two cases: (i) τγ � τE

(Fig. 3a), and (ii) τγ < τE (Fig. 3b) (similar dependences
can be built for the effective coordinate x(τ)). As one
can see, when the influence of the effective dissipation is
small (Fig. 3a), the width of the Gaussian spectral line
(at the level e−1) is still determined by the Ehrenfest
time-scale (∆νE ' 2

√
2/τE ≈ 0.19), and not by the en-

vironment (∆νγ ' 2γ = 0.001). The numerical results
give ∆ν ≈ 0.186. Note that in this case the fine struc-
ture of the spectral line is not completely destroyed, as
both time-scales, τR ≈ 2826 and τγ = 2000, are of the
same order. In the case of strong dissipation (Fig. 3b),
the width of the spectral line has a Lorentzian form,

Re(pν) = γ2Re(p0)/(γ2 + ν2),

with a width (at Re(pν) = 1/2) determined by the dissi-
pation parameter γ (∆νγ ≈ 2γ = 1). The numerical re-
sults are in good agreement, ∆ν ≈ 1. Also, the fine struc-
ture is destroyed, as in this case τγ = 2 � τR ≈ 2826.
Similar dependences of the frequency spectrum on the
parameters are given in [8] for a concrete example of the
QNO interacting with the environment.

IV. AN EXACTLY SOLVABLE EXAMPLE OF
AN OPEN QUANTUM NONLINEAR SYSTEM

Although the PDEs described above look rather com-
plicated (especially for open quantum nonlinear sys-
tems), we have found the exact solution for a QNO in-
teracting with the environment in the special case of

a density-density type of interaction [7]. These results
demonstrate that, for some region of parameters, quan-
tum effects survive the effects of the environment, and the
corresponding observables do not have a classical limit.
We present here the results of [7] in the context of the
quantum-classical transition for observables and the fre-
quency Fourier spectrum. Following [7], we choose ĤS as
Eq. (1), and

ĤE =
N∑

j=1

~ωjb
†
jbj

Ĥint = a†a
N∑

j=1

gjb
†
jbj . (8)

As was discussed above, for the simple closed quan-
tum nonlinear system given by Eq. (1) there are three
characteristic time-scales (see [5] for details on multi-
dimensional systems). Due to the interaction with the
environment, two new time-scales appear: τd - a very
short decoherence time, and τγ -the relaxation time. All
of these five time-scales depend on the parameters of the
system and the environment. The typical region of pa-
rameters in which one can observe quantum effects after
decoherence and relaxation is τd � τcl < τE < τγ < τR.
The key inequality is τE < τγ . In this case, the devia-
tion of the quantum dynamics from the classical one for-
mally works as an effective “quantum relaxation” (or a
“quantum amplitude modulation”), which gives the main
contribution to the frequency spectral line width. The re-
lations between τcl and τE , and between τR and τγ are
not so important. There can be additional time-scales
related to accumulation of quantum phases [8], multi-
dimensionality [5], etc. The details for a one-dimensional
case were presented in [7, 8].

For the model under consideration the interaction
Hamiltonian commutes with Hamiltonian of the system.
Thus, the operators a†a and Ĥint are integrals of motion.
At the same time, such dynamical observables as x(τ) or
p(τ) experience the influence of the environment. Note
that the dynamics of the observables for the Hamiltoni-
ans Eqs. (1), (8) can be calculated in the Schrödinger
representation. At the same time, this model system is
useful as an easy demonstration of our approach. Fol-
lowing our previous results [7] it is possible to write an
exact linear PDE for any quantum dynamical observable

f(α∗, α;β∗
j , βj; t) = 〈α, βj|f̂(t)|α, βj〉,

where

f̂(t) = f(a†(t), a(t); b†j (t), bj(t))

is a generic Heisenberg operator function, and |α, βj〉
is an initial coherent state of the system and the en-
vironment. Here a†(t), a(t), b†j (t), and bj(t) are the
Heisenberg bosonic creation and annihilation operators
for the system and the environment, respectively, and
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FIG. 4: Fourier frequency spectrum of the effective momen-
tum p(τ) obtained from Eq. (10) for different values of γE . All
other parameters are the same as in Fig. 2. (a) γE = 5×10−5.
The characteristic relaxation time due to the interaction with
the environment is τγE = 200. The characteristic width of the
spectral line due to the interaction with the environment is
∆νγE ≈ 2

√
2γE = 0.02. The Ehrenfest time scale is τE ≈ 15,

hence τγE � τE. The width of the spectral line due to the
Ehrenfest time scale is ∆νE ≈ 0.19, and the numerical result
give ∆ν ≈ 0.183; (b) γE = 0.2 (τγE = 3.16 and ∆νγE ≈ 1.26).
The Ehrenfest time scale is τE ≈ 15, hence τγE < τE. The nu-
merical result for the width of the line is approximately 1.29,
that corresponds to ∆νγE .

j = (j1, . . . , kN ). Consequently, the physical interpreta-
tion of the solution is straightforward and does not re-
quire the computation of multi-dimensional integrals over
rapidly oscillating functions in order to calculate physical
quantities. The corresponding PDE has the form

∂

∂t
f(α∗, α;β∗

j , βj) = K̂f(α∗, α;β∗
j , βj; t), (9)

where the differential operator K̂ includes the derivatives
of different orders over α∗, α, β∗

j , and βj, and depends
on the explicit form of the corresponding Hamiltonian,

Ĥ = ĤS + ĤE + Ĥint.

As before, the general form of the differential operator K̂
is K̂ = K̂cl+K̂q. The operator K̂cl includes only the first
order derivatives and describes the classical dynamics of
the system and environment. The operator K̂q (now it
includes all small parameters) describes the quantum ef-
fects of the system and the environment. The explicit
expressions for both these operators are given in [7].

The function f(α∗, α, β∗
j , βj) has to be traced over the

variables of the environment β∗
j , βj. We have assumed

above that initially each jth environmental oscillator is
populated initially in the coherent state |βj〉. Let us now
assume that the each environmental oscillator is initially
in a mixed (thermal) state at temperature T . Then we

should perform an additional averaging of the environ-
mental oscillators over the thermal distribution. The
corresponding procedure is thoroughly explained in [7].
We have the following exact solution for the observable
〈α(τ)〉E , averaged over the environmental variables,

〈α(τ)〉E = e−γEτ2/2 e−iδω̄τ α(τ), (10)

where the thermal relaxation γE , and the thermal phase
shift δω̄ are given by :

γE = (1/~2ω2)
∑

j

g2
j [〈n2

j 〉 − 〈nj〉2]

δω̄ = (1/~ω)
∑

j

gj〈nj〉

The function α(τ) in Eq. (10) coincides with Eq. (3). It
is clear from Eq. (10) that under the condition

1
τ2
E

> γE , (11)

the width of the frequency spectrum of 〈α(τ)〉E is defined
by the Ehrenfest time-scale τE and not by the interaction
with the environment (see Fig. 4a.). In the opposite case,
1/τ2

E < γE , the width of the spectral line is determined
by the interaction with the environment (see Fig. 4b). A
similar result was obtained in [8] for the QNO interacting
via the dipole-dipole interaction with the environment.

V. CONCLUSIONS

Our main statement is that generally there is no classi-
cal limit for quantum nonlinear systems interacting with
the environment, even when these systems are in the deep
quasi-classical region of parameters (the quasi-classical
parameter ε is small but finite). In this context we
note that most classical systems surrounding us repre-
sent a very particular exception due to (i) either an ex-
tremely deep quasi-classicality (extremely small value of
ε) and/or (ii) a very strong interaction with the envi-
ronment. At the same time, the general belief in the
recent scientific literature is that after the process of de-
coherence, the quasi-classical system can be described
by using classical probabilistic approaches. According to
the results discussed here it appears to be true only for
quantum linear systems (with quadratic Hamiltonians).
In the general case of quantum nonlinear systems, in the
deep quasi-classical region, quantum effects survive after
the processes of decoherence and relaxation took place.
Moreover, these quantum effects make a crucial contribu-
tion to the dynamics of observables. This observation will
have a significant influence, for example, on our under-
standing of the properties of noise in complex quantum
technological systems and nano-devices. In particular,
the performance of future BEC based interferometers and
nano-devices will be limited by the level of noise. Thus,
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understanding the properties of noise is a very important
issue for quantum technologies. A generalization of this
result to many-body systems is straightforward. At the
same time, many additional details will appear in the
many-body systems.

The key condition for survival of quantum effects for
observables related to the Ehrenfest time-scale is τE < τγ ,
which can be written in the form:

Θ ≡ τγ

τE
= 2µcl

√
ετγ � 1. (12)

We now present estimates on different quasi-classical
nonlinear physical systems that may satisfy the above
condition, and therefore may lead to the observation
of certain quantum effects that survive the process of
environment-induced decoherence and dissipation.

We start by considering Bose-Einstein condensates
(BECs). The quantum many-body BEC Hamiltonian
can be reduced to the QNO Hamiltonian in the so-called
single mode approximation. This is valid as long as
the total number of depleted atoms from the condensate
mode is small. This condition holds in the limit N � 1,
and Na = const, where a is the s-wave scattering length.
The quasiclassical parameter is ε = 1/N , and the classical
parameter of nonlinearity is µcl = 4π~Na/mωVeff . Here
m is the mass of the atoms, ω is the trapping frequency
(we are assuming an isotropic harmonic 3D trap, with a
potential V (x) = mω2|x|2/2), and V −1

eff =
∫

d3x|Ψ(x)|4,
where Ψ(x) is the condensate Gross-Pitaevskii wave func-
tion. The condition (12) can be satisfied by a 3D BEC
in the Thomas-Fermi (TF) limit, in which the nonlin-
earity outweighs the kinetic energy. This limit corre-
sponds to κ ≡ Na/losc � 1, where losc =

√
~/mω

is the width of the harmonic oscillator ground state
wave function. The TF condensate wave function is
Ψ(x) =

√
(µchem − V (x))/Ng, where µchem is the chemi-

cal potential and g = 4π~2a/m. Computing the effective
volume one gets

Veff =
56

4 · 152/5
(Na)3/5

(
~

mω

)6/5

.

Therefore, the dimensionless Ehrenfest time in this case is
τE = ωtE = 56

√
N/(8π152/5κ2/5). Using typical param-

eters for 87Rb, a = 5 nm, m = 1.5×10−25 kg, ω/2π = 100
Hz, and N = 104 we have κ ≈ 50 � 1 and τE ≈ 16. As-
suming tγ ≈ 1 sec (i.e., τγ ≈ 600), the condition τE � τγ

would be satisfied.

For a cantilever (or a mechanical resonator) the quasi-
classical parameter is ε = 1/n, where n is the average
number of levels involved in the coherent state of the
cantilever. For the dimensionless relaxation time we take
τγ = 2Q, where Q is the cantilever quality factor. Then,
for a cantilever the condition Eq. (12) takes the form

Θcantilever =
4µclQ√

n
� 1. (13)

Different aspects of cantilevers, from kilohertz to gi-
gahertz frequencies, including their nonlinear properties,
are discussed, for example, in [13, 14]. A condition simi-
lar to Eq. (13) holds for quantum nonlinear optical sys-
tems in high quality resonators. In this case, is the av-
erage number of photons in the initially coherent state
of the cavity resonance mode, and a classical parameter
of nonlinearity can be written as µcl = χJ/ωcav, where
χ is the nonlinear susceptibility, and ωcav is the cavity
resonance frequency [15].

We hope that the condition (12) can be experimentally
realized, and quantum effects related to the Ehrenfest
time-scale can be observed in the quasi-classical region
of parameters.
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