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Localization in Discontinuous Quantum Systems
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Classical and quantum properties of a discontinuous perturbed twist map are investigated. Different
classical diffusive regimes, quasilinear and slow, respectively, are observed. The regime of slow
classical diffusion gives rise to two distinct quantal regimes, one marked by dynamical localization,
the other by quasi-integrable localization due to classical cantori. In both cases the resulting quantum
stationary distributions are algebraically localized. [S0031-9007(98)06120-1]
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A major feature of quantum dynamics of classi-
cally chaotic systems is the quantum suppression of
classical chaotic excitations, a phenomenon known as
dynamical localization. A prototype model, both for
classical chaos and quantum dynamical localization is
the kicked rotator model [1] (KRM), whose dynamics is
described by the well-known Chirikov standard map [2]
(CSM). This is a 2D continuous perturbed twist map,
with a transition point, discriminating between bounded
motion [prevalently regular on invariant Kolmogorov-
Arnold-Mose (KAM) tori] and unbounded and diffusive
one (prevalently chaotic). Even though transport proper-
ties of 2D maps are now quite well understood, analytical
results are possible only for particular maps, e.g., linear
[3]. In particular, the latter are the simplest discontinuous
perturbed twist maps on the cylinder. For such discon-
tinuous maps the hypothesis of the KAM theorem is not
satisfied and the motion is typically unbounded even if
it is possible to mark two different dynamical regimes
(both diffusive). Discontinuous maps also emerge from
the study of more concrete physical models, such as
the motion of a particle colliding elastically within a
two-dimensional bounded region (billiard [4]). On
the other side very little is known about the quantum
dynamics of such discontinuous maps. In particular,
it is far from being obvious that the relation between
quantum localization and classical diffusion, obtained for
the KRM, holds in this case too.

To answer the above questions, let us consider the
following discontinuous map on the cylinderf0, 2pd 3

f2`, `g:
p̄ ­ p 1 kfsud ,

ū ­ u 1 Tp̄, mod 2 2p ,
(1)

wherefsud ­ sinsud sgnscosud. This function is a par-
ticularly simple approximation of the stadium map [4,5].
Moreover, it is quite similar to the CSM [wherefsud ­
sinu] which has been widely investigated in the past.

Even if the following analysis has been put forward for
this specific function, it can be generalized [5] to generic
discontinuous, periodic, and bounded [j fsudj # 1] func-

tions. This set of functions can be also enlarged to con-
tinuous bounded functions with a discontinuous deriva-
tive. In this case the situation is slightly complicated,
since usually a critical value of the parameterK ­ kT
appears (see [6] for the piecewise linear map) such that,
when K , Kcr , the phase space is covered by invariant
tori which do not permit unbounded motion along the
cylinder: only forK . Kcr the motion is diffusive.

The CSM is characterized by unbounded diffusive
motion in the momentump for kT . 1 while, when
kT , 1, the motion is prevalently regular with regions
of stochasticity bounded by KAM invariant circles. On
the other hand, the classical properties of map (1) are
quite different. Indeed, due to the discontinuities offsud
at u ­ py2, 3y2p, the hypothesis of the KAM theorem
is not satisfied and, generally speaking, KAM tori do
not exist, even for very smallk. This means that one
trajectory fills, in a dense way, any portion of the cylinder
(phase space), for anyk fi 0. Nevertheless cantori can be
proven to exist as for the continuous case [7]. Moreover,
since KAM tori suddenly disappear for any smallk, it is
reasonable to guess that most of the phase space will be
covered by cantori (remnants of KAM invariant tori) that
constitute partial barriers to the motion [8]. Because of
the sticking of trajectories along these invariant structures
the diffusive motion is slowed down in close analogy to
the saw-tooth map case described in [3].

An example of the classical map dynamics is given in
Fig. 1. In the right picture [1(b)], the Poincaré surface
of section is shown for the discontinuous map (1). A
single initial condition has been iteratedn ­ 3 3 104

times. As one can see a single particle is free to wander
in the whole phase space but the motion is far from being
random. Indeed, due to sticking in the neighborhood of
cantori, the trajectory is almost regular on a finite time
scalet. Diffusive motion results from jumping among
different stable varieties belonging to different cantori.
As the iteration time, or the number of initial particles,
is increased, regular structures disappear and the surface
of section appears to be covered uniformly. For the sake
of comparison in the left picture [1(a)] the same portion of
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FIG. 1. Poincarè surface of section fork ­ 0.01, T ­ 1.
(a) Ten different particles with initial momentump ­ 0.001
and different phaseu have been iteratedn ­ 103 times for the
Chirikov standard map. (b) One particle starting at the point
p0 ­ 0.011 andu0 ­ 3 has been iterated3 3 104 times using
the discontinuous functionfsud.

phase space is shown for the CSM, with the same value
of k. Here ten different trajectories have been iterated
n ­ 103 times: each trajectory covers just one torus.

Despite the “quasi” regularity of the motion, numerical
results show that, whenkT , 1, the dynamics is diffu-
sive, after a transient time, along the cylinder axis (p co-
ordinate) with a diffusion rateD given by

D ­ lim
n!`

kp2sndl
n

­ D0k5y2
p

T , (2)

wheren is the time measured in iterations of the map (1)
and the averagek· · ·l has been performed over an initial
ensemble of particles with the same momentump and
random phases0 , u , p. Also, in (2), D0 . 0.4 is a
numerical constant [dependent on the functionfsud] and
the factor

p
T has been added for dimensional reasons.

The origin and the parametric dependence of the transient
time that could be at the roots of the exponent5y2
requires further investigation.

On the other side, whenkT . 1, the random phase
approximation [2] can be applied and one finds diffusive
motion along thepdirection with a diffusion rateD .
Dql ­ k2y2, where Dql is the diffusion rate in the
quasilinear approximation, namely, assuming the phases
u to be completely random uncorrelated variables. Notice
that, in the undercritical regionkT , 1, the diffusion
coefficient D . k2

p
kT is less than the quasilinear one

Dql , k2, due to the sticking of trajectories close to
cantori. In Fig. 2 the dependence of the diffusion rate
D is shown as a function ofk for T ­ 1. The dashed and
full lines indicate, respectively, the quasilinear diffusion
(kT . 1) and the slow diffusion (kT , 1).

The apparently strange dependence ofD on k, in
the “slow” diffusive casekT , 1 was found in similar
discontinuous maps, e.g., the saw-tooth map [3] [fsud ­
uy2p], or the Stadium map [4]. In Ref. [3] a theoretical

explanation of the exponent5y2 was given in terms of a
Markovian model of transport based on the partition of
phase space into resonances.

Let us now consider the quantized version of map (1).
According to a well-known procedure [1] the quantum dy-
namics can be studied by iterating the quantum evolution
operator over one periodUT , starting from an initial state
c0sud

csT d ­ UT c0 ­ e2i h̄Tn̂2y2e2ikV sudy h̄c0 . (3)

In (3), as usual,n̂ ­ 2ih̄≠y≠u and V sud ­ j cosuj.
Quantum dynamics depends on both parameterskyh̄ and
Th̄ separately. These parameters can be renormalized by
letting kyh̄ ! k and T h̄ ! T (which is the same as to
put h̄ ­ 1). The semiclassical limit is then recovered by
performing simultaneously the limitsk ! ` and T ! 0
keepingkT ­ const.

The most studied example of quantization of twist maps
like (1) is the KRM [1], whereV sud ­ cosu. Never-
theless the regimekT , 1, different from the casekT .

1, k ¿ 1, was not the object of intense investigations.
At least numerically, one can observe two different

regimes, distinguished by the so-called Shuryak border
k ­ T [9]. For k . T the quantum steady state is ex-
ponentially localized over a numberls .

p
kyT of mo-

mentum states [10,11]. This number has been interpreted
[10], in a realistic way, as the number of quantized mo-
mentum states contained in the main classical resonance
[see Fig. 1(a)] the size of which is

p
kyT [2]. For k , T

the width of the principal resonance is smaller than the
distance among quantized momentum levels, and no kind

FIG. 2. Diffusion rate for the discontinuous map as a function
of k and T ­ 1. Open and full circles indicate, respectively,
the “quasilinear” and the slow diffusion. The dashed line
represents the quasilinear approximationD ­ Dql ­ 0.5k2

which holds fork . 1. The full line is the best fitD ­ 0.4k5y2

obtained from full circles.
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of semiclassical excitation process, based on the over-
lapping of resonances, is possible. In the following, the
analysis will then be restricted to the casek . T only.

Before studying the discontinuous case, let us recall
a few important facts related to the evolution operator
(3). Because of the discontinuity in the first derivative
of the potentialV sud, the matrix elements ofUT in
the momentum basis decay according to a power law
away from the principal diagonal:jUn,n1sj . 1ys2. This
case was investigated [12] for band random matrices:
it was found to be typically characterized by power-
law localized eigenstates around their centersn0, jfnj .
jn 2 n0j

22.
The following question is then important: Is it possible

to connect quantum localization lengths and classical
diffusion rates, as in the case of the KRM? If so, what
is the critical border necessary to start the classical-like
diffusion process? Moreover, what is the role played by
classical invariant structures, such as cantori, in quantum
dynamics?

To answer the last question, let me recall the pioneer-
ing works [13,14] where quantum propagation of wave
packets through the classical cantori was first investigated.
Other important results can be found in [15] where it was
proposed that cantori could act, in quantum mechanics, as
total barriers to the motion if the flux exchanged through
turnstiles is less than̄h. One can then reasonably assume
that, in the deep quantum regime, the system will not be
able to “see” the holes in the cantori that behave as clas-
sical invariant tori.

A more refined analysis requires the introduction of
some kind of measure of the quantum distribution width.
Since in this model localization is presumably not ex-
ponential, a unique scale of localization is not properly
defined. For instance, while in the case of exponential
localization the usual measures of localization, e.g., in-
verse participation ratio, variance, entropy [11], coincide,
for power-law localized distributions the dependence on
the parameters can be different if different definitions are
adopted. Then we choose the variance as a measure of
the distribution extension (degree of localization):

ls ­

"X
n

n2jcnstdj2
#1y2

, (4)

which has a proper semiclassical limit. Since this is, in
general, an oscillatory function of the iteration time, a
further average in time is necessary in order to get time-
independent results.

Numerical data are presented in Fig. 3 wherels has
been plotted as a function of

p
kyT . Excluding oscilla-

tions, data follow, fork , kcr , the dotted line
p

kyT , as
for KRM. Indeed, as one can see comparing Figs. 1(a)
and 1(b) the principal resonance and the quasiprincipal
resonance have roughly the same size. This is a mani-
festation of the regularity imposed by quantum mechan-
ics, or, in other words, of the discrete nature of the

quantum phase space. This means that classical discon-
tinuous structures behave exactly as continuous ones.

On the other side, since the classical discontinuous
system is diffusive, the number of occupied quantum
states should increase on going into the semiclassical
region. Following known arguments for the dynamical
localization, one can expect the localization length to be
given by the number of states inside a quasiprincipal
resonance (

p
kyT ), as soon as it equals numerically the

classical diffusion coefficient. In this way the critical
value kcr can be obtained by equating the following
expressions:

ls .
q

kyT . D ­ D0k5y2
p

T (5)

that gives the valuekcr ­ 1y
p

D0T .
It is important to notice that the “quasi-integrable”

value ls .
p

kyT can survive well above the threshold
k ­ 1 that is the value necessary to start the classical-
like diffusion process for the KRM whenkT . 1. Also,
this kind of localization is not connected with any
classical-like diffusive process, resulting instead from a
quasiperiodic motion. The absence of diffusive quantum
motion, in the regionT , k , kcr can be ascribed to
a “dynamical” diffusion ratels less than the size of
the quasiprincipal resonancels .

p
kyT . For instance,

numerical simulation indicates a localization lengthls .
80 6 10 .

p
kyT for k ­ 10 ¿ 1, T ­ 1y1000, while

D . 0.4k5y2
p

T ­ 4. In other words, in the region
dominated by slow diffusion, the threshold for classical-
like diffusion isk . kcr ­ 1y

p
D0T and notk . 1.

These theoretical predictions are confirmed by the
numerical data presented in Fig. 3, which closely follow

FIG. 3. Localization lengthls as a function of
p

kyT for fixed
T ­ 0.01. Lines are the theoretical predictions: dotted line
(ls ­

p
kyT); full line (ls ­ D); dashed line is the quasilinear

borderkqlT ­ 1.
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FIG. 4. Quantum stationary distribution fork ­ 50, andT ­
0.01. The map has been iterated106 times. The final
distribution is obtained by averaging over the last105 kicks.
The initial state iscn ­ dn,0. (a) Log-log scale. The linen24

has been drawn to guide the eye. (b) Log scale.

the curve (full line)ls ­ D for kcr , k , kql. Herekql

stands for the border of validity of quasilinear diffusion:
kql ­ 1yT . This confirms and extends the validity of
the dynamical localization theory even in the presence
of slow diffusion and algebraic decay. This last point
can be directly observed in Fig. 4(a) where the quantum
steady state distributionPsnd is shown together with the
corresponding linen24.

The dynamical localization mechanism is not connected
with this power-law decay. Indeed the same algebraic
decay can be found for anyk, in the regionk , kcr as
well for k . kql (at least in the tails of the distribution
[5]). In more details, on semiclassically approaching the
borderkql, the quantum distribution shows big peaks of
probability for high momentum values that indicate that
new regions of the classical phase space are now quantally
accessible. It is exactly the presence of such peaks that
causes the large increase ofls. The presence of bumps
of probability far from the initial staten0 ­ 0 is shown in
Fig. 4(b).

In conclusion, a discontinuous map which is a simple
generalization of the Chirikov standard map has been
studied. Differently from the latter, the dynamics is
slowly diffusive even when the motion described by the
CSM is prevalently regular. In this region the quan-
tum analysis reveals quite unexpected features. Above
the Shuryak borderk . T , two different scaling laws for
the localization length are found. The first,ls .

p
kyT ,

marked by the presence of classical cantori acting as to-
tal barriers to quantum motion, is a region of quantum
integrability. The second is a region characterized by
dynamical localization (ls . D) thus indicating the ex-

istence of this phenomenon even in the case of slow dif-
fusion. At the critical pointkcr , separating these regimes,
quantum dynamics starts to follow the classical excitation
process. Differently from the KRM, for whichkcr . 1,
one finds herekcr . 1y

p
T .

During the completion of this Letter I became aware
of another related work [16] where a regime of quantum
integrability is found, for the Stadium billiard, in the
region delimited by the inequalitiesEe . 1 and

p
E e2 ,

1, whereE is the energy of the particle ande ø 1 is the
ratio between the straight line and the circle radius [4].
The billiard dynamics is well described [5] in terms of the
map (1) via the substitutionsk ­ 2e

p
E, T ­

p
2yE. It

is then easy to verify that the quantum-integrable regime
found in Ref. [16]E21 , e , E21y4 coincides with the
regime dominated by classical cantoriT , k , 1y

p
T .

This may be a first indication that not only the classical,
but also the quantum dynamics of the Stadium, can be
described in terms of maps: This will be the subject of a
future work [5].

The author is thankful to G. Casati, I. Guarneri, and
D. L. Shepelyansky for useful discussions.
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