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Enhancement of magnetic anisotropy barrier in long range interacting spin systems
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Magnetic materials are usually characterized by anisotropy energy barriers which dictate the time
scale of the magnetization decay and consequently the magnetic stability of the sample. Here we
present a unified description, which includes coherent rotation and nucleation, for the magnetization
decay in generic anisotropic spin systems. In particular, we show that, in presence of long range
exchange interaction, the anisotropy energy barrier grows as the volume of the particle for on site
anisotropy, while it grows even faster than the volume for exchange anisotropy, with an anisotropy
energy barrier proportional to V 2−α/d, where V is the particle volume, α ≤ d is the range of
interaction and d is the embedding dimension. These results shows a relevant enhancement of the
anisotropy energy barrier w.r.t. the short range case, where the anisotropy energy barrier grows as
the particle cross sectional area for large particle size or large particle aspect ratio.

PACS numbers: 05.20.-y,05.10.-a, 75.10.Hk, 75.60.Jk

A truly comprehensive understanding of magnetism at
the nanoscale is still lacking. From a theoretical point of
view the problem of magnetization decay in nanosystems
is difficult to treat: nanoscopic systems are too big to
be solved by brute force calculation and too small to
be tackled by statistical mechanics at the equilibrium.
Indeed, the problem of magnetization decay is a typical
example of out of equilibrium phenomenon, which is the
decay out of a metastable state.

On the other hand, magnetism at the nanoscale has
also important consequences in the technology of mem-
ory and information processing devices. The quest for
improving magneto-storage density calls for the realiza-
tion of smaller and smaller magnetic units. Significant
improvements in experimental techniques allowed inves-
tigations of magnetic properties in nanoparticles and
nanowires[1]. In particular, recently, there has been great
interest in Single Chain Magnets (SCM) [2–4], which are
possible candidates for nanoscopic memory units. In the
experiment reported in [5] a 1–d chain of Co atoms, on
average 80 atoms long, shows ferromagnetic behavior at
low but finite temperature, even if a ferromagnetic phase
transition is theoretically forbidden [6]. The theoret-
ical microscopic models suggested [2, 3, 7] focused on
short range interaction with on–site anisotropy. Never-
theless in many realistic situations one needs to go be-
yond nearest neighbor coupling, taking into account the
long range nature of the interaction defined by a two–
body spin interaction constant decaying at large distance
with a power law exponent α not larger than the embed-
ding spatial dimension d[8]. It is the case, for instance,
of the dipolar interaction in 3–d systems, or of the so–
called RKKY (Ruderman-Kittel-Kasuya-Yosida) interac-
tion, which decays as the inverse of the distance between
spins. In particular, the latter might be responsible for
the ferromagnetic behavior of Diluted Magnetic Semicon-
ductors (DMS) [9] and Diluted Magnetic Oxides (DMO)
[10], promising materials for the realization of spintronics
devices.

One of the first attempts to understand magnetic de-
cay times in nanoparticles is due to Neél[11] and Brown
[12], who considered that all the spins in a magnetic par-
ticle move coherently, so that they can be considered as
a single spin and described magnetization decay as due
to thermal activation over a single energy barrier. In
Brown’s theory this time, τ , is shown to follow an Arrhe-
nius Law (AL) :

τ ∝ eβ∆E (1)

where β = 1/kBT is the inverse temperature and ∆E is
the anisotropic energy barrier proportional to the par-
ticle volume. A step forward Brown’s theory has been
realized by Braun [13]. In his theoretical approach a suf-
ficiently elongated system of short range interacting spins
have been shown to reverse their magnetic moment (thus
producing an average magnetization decay) through a
process called nucleation, energetically convenient with
respect to coherent rotation. In this mechanism, accom-
plished by the formation of a soliton-antisoliton domain
wall, the magnetic anisotropic energy to be overcome
turns out to be proportional to the cross sectional area

of the particle and not to its volume. Studies of dif-
ferent mechanisms of magnetic decay have been the ob-
jective of intense investigation[14] until recently, where
also 3–d spherical samples with short range interactions
are shown to produce nucleation for sufficiently large
radius[15]. Thus, for short range interaction, Brown’s
theory, and a consequent AL with a volume dependent
exponent is valid only for very small particles, while in
general, for large or elongated particles, the exponent is
given by the cross sectional area of the particle. A smaller
exponent means smaller decay times for the same tem-
perature. The size and shape dependence of the magnetic
anisotropy barrier, and consequently of the decay times,
have been also confirmed experimentally[16].
The main goal of this paper is to extend the the-

ory of magnetic decay beyond nearest-neighbor interac-
tion, focusing on realistic long range interacting systems.
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In order to estimate the dependence of magnetic decay
times on temperature, we propose a different point of
view, which turns out to be independent of the decay
mechanism and related to the recently found Topological
Non-connectivity Threshold (TNT) in anisotropic spin
systems [17]. Given a generic anisotropic spin system,
with an easy axis of magnetization, (the direction n̂easy

of the magnetization in the ground state), with energy

H(~S1, . . . , ~SN ) = E, it was proven that below a suitable
threshold, Etnt, given by the minimal energy attainable
under the constraint of zero magnetization along the easy
axis:

Etnt = Min(H(...~Si...) | m = (1/N)
∑

k

~Sk · n̂easy = 0),

(2)
the constant energy surface is disconnected in two por-
tions, characterized by a different sign of the magneti-
zation. From hereafter with magnetization we mean the
magnetization along the easy axis. It was also demon-
strated that in case of long range interaction among the
spins[18], the disconnected energy portion determined by
the TNT, remains finite, when the number of particles
becomes infinite. While for isolated systems, the mag-
netization cannot reverse its sign below Etnt, when the
system is put in contact with a heat bath, we have found
that ∆Etnt = Etnt − Emin, represents an effective en-
ergy barrier for magnetic decay and that the decay time
depends exponentially on such energy barrier:

τ = τ0 eβ(Etnt−Emin) = τ0 eβ∆Etnt , (3)

where, τ0 is a factor, dependent on temperature too, and
Emin is the ground state energy. Note that with magnetic
decay we mean the decay in time of the magnetization
averaged over an ansemble of identical systems. While
Eq.(3) was confirmed in simple toy models with all-to-
all interaction among the spins [19], here our aim is to
generalize such result to realistic spin systems.
It is possible to give an heuristic justification of Eq. (3).

The decay of the ensemble average magnetization is de-
termined by the magnetic reversal (magnetization re-
versing its sign) of each system. Note that magnetic
decay times and magnetic reversal times are propor-
tional to each other. Magnetic reversal occurs through
fluctuations of the magnetization around its equilibrium
value. The probability of a fluctuation of the magne-
tization along the easy axis is determined by the free
energy barrier through the Arrhenius factor: e−β∆F ,
with ∆F = ∆E − kBT∆S, and where the second term
represents the entropic barrier. Since the entropic bar-
rier is usually negligible at low temperature, the acces-
sible spin configurations can be determined minimizing
the energy only. In order to reverse its sign, the value
of the magnetization has to go, say, from m = 1 to
m = 0. Since for m = 1 the system is in its mini-
mal energy, it is clear that ∆Etnt represents the mini-
mal energy barrier found by the system while reversing
its magnetization. The magnetic reversal time can be

also obtained from the knowledge of the probability dis-
tribution of the magnetization at a given temperature,
PT (m). Indeed we have eβ∆F = PT (mmax)/PT (mmin),
where PT (mmax,min) stands for the maximum/minimum
of the probability distribution. In order to obtain an ap-
proximate expression for PT (m) at low temperature we
consider the following : at low temperature it is usually
inconvenient for the magnetization to visit high entropy
regions, so that magnetic reversal occurs though a co-
herent motion of the spins, such as coherent rotation or
nucleation. In this case it is possible to neglect the en-
tropic term and to approximate the energy of the system
as a function of the magnetization only: E = E(m). We
can thus write PT (m) ∝ e−βE(m), and from this we re-
gain Eq.(3):

τ =
PT (mmax)

PT (mmin)
≃

e−βE(mmax)

e−βE(mmin)
≃ eβ∆Etnt (4)

Let us now focus on realistic spin systems with
isotropic long–range exchange interaction and on–site
anisotropy, described by the following Hamiltonian:

H = −J
∑

i>j

~Si
~Sj

rαi,j
−D

∑

i

(Sz
i )

2 (5)

where, ~Si are the spin vectors with unit length, α de-
termines the range of the interaction among the spins,
J is the exchange coupling and D is the on–site energy
anisotropy. Even if in the Hamiltonian (5) the exchange
interaction is isotropic and the anisotropy is given by the
on site energy term, we will also comment later, on the
case of exchange anisotropy.
Here, we focus on the case α = 1 because it is related

to the RKKY interaction which is an effective interaction
among magnetic impurities mediated by mobile carriers.
In the RKKY interaction the coupling between spins is
given by: JRKKY = (2kFR cos(2kFR)− sin(2kFR))/R4,
where kF is the Fermi wavevector and R the distance
among spins. In the limit of small density of carriers,
kFR → 0 and the RKKY interaction is always ferromag-
netic, decaying as 1/R. At large distance the RKKY
coupling oscillates in sign but sometimes a cutoff, re-
lated to the carriers localization length has been intro-
duced [21, 22] so that such oscillatory behavior can be
neglected.
The energy Etnt can be computed numerically using a

minimizing constrained algorithm. We can also estimate
analytically Etnt for a generic range of the interaction α.
To this purpose let us consider two configurations with
m = 0: i) the first one with all the spins aligned per-
pendicular to the easy axis. The energy difference of this
configuration from the minimal energy is DN , which is
the energy barrier due to coherent rotation of all spins;
ii) a configuration, labeled ↑↓, consisting ot two neigh-
bors identical blocks with opposite magnetization along
the easy axis. This configuration roughly corresponds to
what is called nucleation configuration in literature. The
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energy difference of this configuration from the minimal
energy in the case α ≤ d, is given by[18]:

∆E↑↓ = JCα,dN
2−α/d (6)

where Cα,d is a constant, and in the case considered here
C1,1 ≃ 4 ln 2.
Following similar reasoning as in [18], it can be shown

that the energy of these two configurations is a good ap-
proximation of Etnt, so that we can write

∆Etnt ≡ Etnt − Emin ≈ Min(DN,∆E↑↓), (7)

Eq. (7), valid wheneverDN is not close to ∆E↑↓, gives an
estimation of the anisotropic energy barrier, which can
be used in Eq. (3) to get magnetic decay times. Note that
in case of nucleation ( DN > ∆E↑↓) , a single spin-flip
should be added, so that, τ0 ∝ eDβ [3].

0 2 4 6 8 10
β

10
0

10
2

10
4

10
6

10
8

τ

N=20
N=40
N=100

-1 -0.5 0 0.5 1
m

10
-3

10
-2

10
-1

10
0

P
T
(m

)

0 2 4 6 8 10
β

10
2

10
4

10
6

10
8

τ

N=20 
N=40 
N=100 
N=200 

-1 -0.5 0 0.5 1
m

10
-6

10
-4

10
-2

10
0

P
T
(m

)

a)

b)

c)

d)

FIG. 1: In panels (a,b), magnetic decay times, τ vs the in-
verse temperature, β, are shown. In panels (c,d), the proba-
bility distribution at fixed temperature of the magnetization,
PT (m), is plotted vs m. In the panel (a) characterized by
coherent rotation we have J = 1 and D = 0.05 , while in the
lower (b) (nucleation) J = 1/16 and D = 0.5. Different sym-
bols refer to numerical results for different number of spins N ,
as indicated in the legend. Full lines in (a-b) are the theoret-
ical predictions exp(β∆Etnt). Specifically for coherent rota-
tion, (a), we have ∆Etnt = DN , while for nucleation, (b), we
have ∆Etnt = ∆E↑↓ +D (see text for explanations). Vertical
dashed lines in (a-b) refer to the inverse statistical temper-
ature βstat = 1/kBTstat. In (c) the probability distribution
of the magnetization PT (m) is shown for β = 6 (squares),
β = 9 (circles) and N = 20. In (d), PT (m) is shown for the
same parameters of (b), β = 8 (squares), β = 11 (circles) and
N = 20. In (c-d) symbols represent numerical data, while
curves analytical results.

We analyzed the magnetic decay time in the canoni-
cal ensemble, using a modified Monte Carlo simulation
[14, 20]. As initial condition we choose all spins aligned
along the easy axis, and from the exponential decay of

the ensemble average magnetization, 〈m(t)〉 ∝ e−t/τ , we
computed the magnetic decay time, τ . Let us consider
first the 1–d case: results for magnetic decay times are
shown in Fig. 1a) for coherent rotation (D ≪ 4J ln 2) and
in Fig. 1b) for nucleation (D ≫ 4J ln 2) where the lat-
ter inequivalences have been obtained comparing Eq. (6)
and (7). The good agreement with the theoretical pre-
diction (shown by the straight lines in Fig. 1 a) clearly
indicates that Brown’s theory of coherent rotation with
an anisotropy barrier proportional to the particle volume
(DN here) is still at work for long range interacting sys-
tems. In Fig. 1b), the case of nucleation is shown. Sam-
ples with different number of particles experience differ-
ent anisotropy energy barriers. As one can see the nu-
merical results indicated by symbols well agree with the
theoretical prediction given by Eq. (7), shown as lines.
Note that for high temperature (small β values) symbols
with different number of spins lye upon the same curve,
that turns out to be independent from N .

We can now estimate PT (m) at low temperature, fol-
lowing the considerations given above. Let us compute
E(m) for coherent rotation and nucleation. When the
reversal of the magnetization occurs through coherent

rotation we have ~Si
~Sj = 1, and Sz

i = 〈Sz〉 = m so
that E(m) = −J/2

∑
1/rαi,j − DNm2. Since the first

term is independent of m, for coherent rotation we have:

PT (m) ∝ eβDNm2

. In case of nucleation the possible con-
figurations which the system can visit can be obtained
assuming that magnetic reversal occurs by first reversing
one of the edge spins, then its nearest neighbor, and then
the spin immediately after until all spins are reversed. If
we have k spins on the left pointing upwards and N − k
spin pointing downwards, we can write the energy of this
configuration as E(k) = Emin(k) + Emin(N − k) + V ,
where V is the interaction energy between the two blocks

and Emin(k) = −J/2
∑k

i=1

∑k
j 6=i 1/r

α
i,j −Dk is the min-

imal energy for a system of k spins. Collecting all to-
gether, we have Emin(N) = Emin(k)+Emin(N −k)−V ,
so that V = Emin(k) + Emin(N − k) − Emin(N), and
E(m) = 2Emin(N(1 − m)/2) + 2Emin(N(1 + m)/2) −
Emin(N). From the knowledge of E(m) we obtain
PT (m) ∝ e−βE(m) which remarkably agrees very well
(apart close to m = ±1) with numerical results in the
coherent rotation regime, Fig. 1c) , and in the nucleation
regime as well, Fig. 1 d).

Another important point here is in which temperature
range the AL with the exponent given by Eq. (7) holds.
In the cases of coherent rotation and nucleation, see also
Ref.[12], we might expect that the AL is valid only when
kBT ≪ ∆Etnt. Clearly this gives an upper bound for
the temperature for which Eq. (3) is valid. Moreover it
should be T ≪ Tstat, where the latter is the temperature
at which the barrier at m = 0 in the free energy van-
ishes (and that coincides with the temperature at which
a phase transition occurs in the thermodynamic limit).
It is very interesting that, computing Tstat by means of a
standard mean field approach, one gets a very nice esti-
mate of the validity range of the AL (see dashed vertical



4

lines in Figs. 1a,b) and 2a,b)).
The exponential dependence of the magnetic decay

time on the number of spins, shows the possibility of sta-
ble ferromagnetic behavior for nanoscopic single chain
magnets with RKKY interactions. Indeed a chain with
only 105 spins, with an exchange coupling of J ≈ 60 K
and an on-site anisotropy of D = 3 K is enough to have
a ferromagnetic behavior below 500 K !
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FIG. 2: Decay time τ vs the inverse temperature β for a 2–
d square lattice with α = 1. for J = 1 and D = 0.025 (a)
(coherent rotation); (b) for J = 1/40 and D = 1/2 (nucle-
ation). Symbols refer to numerical data, while full lines are
the analytical prediction Eq. (7). Vertical dashed lines repre-
sent the inverse statistical temperature βstat = 1/Tstat. Note
that in case of coherent rotation (a), the anisotropy energy is
proportional to DN , while in the case of nucleation (b), the

anisotropy energy is proportional to N3/2. Lattice dimensions
have been indicated in the legend

Our results can be extended to higher dimensions.
Since ∆E↑↓ ∝ N2−α/d, from Eq. (7) we have DN <
∆E↑↓, for large N and α < d. This implies that the
anisotropic energy barrier grows as the volume of the par-
ticle, V (with V ∝ N), in all dimensions, as the particle
volume becomes large enough. In the critical case α = d,
both terms grows like N , and again we have a volume de-
pendent energy barrier. This is confirmed by our simula-
tions for a 2–d system, see Fig. 2a). Note that Eq. (7) also

implies that for small particles we can have an anisotropy
energy barrier which grows faster than the volume of the
particle, see Fig. 2b). Indeed in that case we have an
anisotropy energy barrier growing as N3/2 ∝ V 3/2. An-
other interesting consequence of Eq. (7) is that in the
case of a long range exchange anisotropy without on–site
anisotropy (D = 0) we have ∆Etnt ∝ V 2−α/d, and thus
faster than the volume for any particle size. For instance
for the relevant case α = 1, we have that the anisotropy
energy barrier grows as V 3/2 for 2–d systems and as V 5/2

for 3–d systems.

Finally we stress that the validity of Eq. (3) and of our
method to approximate PT (m) at low temperature, have
been tested for a wide range of values of α (even for short
range interactions) and it will be reported elsewhere [23].

In conclusion we propose a general method to deter-
mine anisotropic energy barrier in spin systems. The
barrier, which determines magnetic decay times, can be
computed from the disconnected energy portion in the
corresponding isolated systems. Our analysis shows that
adding a small on site anisotropy to an isotropic long
range exchange interaction induces a magnetic decay
time which depends exponentially on the volume of the
particle, for large enough particle size. We also pointed
out that for long range interaction and in presence of ex-
change anisotropy, the anisotropic energy barrier grows
faster than the volume of the particle. This remarkably
contrast with the behavior of short range interacting sys-
tems, where the energy barrier is proportional to the
cross-sectional particle area, rather than to its volume,
for large enough particle size or aspect ratio. Finally
we pointed out that the predicted enhancement of the
anisotropic magnetic barrier can induce stable ferromag-
netic behavior in finite size systems, in particular the pos-
sibility to have stable ferromagnetism at room temper-
ature in nanomagnets with RKKY interaction has been
discussed.
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