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Abstract. — We investigated the destruction of a two-frequency torus in a 4D volume-preserving
map and its influence on the solid-state properties of the related model. The hull functions
associated with this solid-state model exhibit a transition from a smooth surface to a devil
fragmentation with the increase of the chaos parameter. We also discuss the properties of the
phonon spectrum of excitations in this regime.

In the last decade many efforts have been devoted to a deeper comprehension of the
transition from commensurate to incommensurate structure in solid-state models. The model
which became well known in the description of this phenomenon is the discrete
Frenkel-Kontorova model. On the one side it is sufficiently simple, but on the other side it
contains many significant and nontrivial features about the commensurate-incommensurate
transitons in solid-state systems.

The study of this 1D solid-state model has close connections with the dynamical properties
of the Chirikov Standard Map [1] which can describe the transition from regular to global
chaotic motion in many physical models. However in the solid-state framework it was
established, in different ways [2-5], that the ground state of this model is never chaotic and it
corresponds, in the related dynamical system, to a KAM torus or to a cantorus, depending on
the chaos parameter k in the Chirikov Standard Map. This transition, which was first
investigated by Aubry and called transition by breaking of analyticity, leads to a drastic
change in the physical properties of the model. One of the main physical results of this
transition is the appearance of a gap in the spectrum of propagating waves. The appearance
of this phonon gap is strictly connected with the transition from the invariant KAM curve to a
cantorus in the corresponding dynamical system. However, to the best of our knowledge, up
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to now the main investigations were carried out for the 1D system corresponding to one
winding number in the dynamical model.

In this paper we investigated another type of solid-state model consisting of two
one-dimensional coupled solid-state chains which, from the dynamical point of view,
correspond to a trajectory with two fixed winding numbers.

This model is particularly interesting since in this case the invariant set is given by
two-dimensional tori instead of 1D invariant KAM curves. Due to this topological difference
this invariant set does not prevent the global chaos but permits unbounded Arnol'd diffusion.
The situation is qualitatively different from the case of one winding number, therefore one
expects here a distinct kind of transition for the solid-state model. Another support to this
expectation is given by the recent results for a 4D volume-preserving map which showed the
absence of universality in the destruction of a two-frequency invariant torus [6,7].
Oppositely to the strategy of [8] we investigate the destruction (with the change of the
parameter) of one torus with fixed winding numbers, while in [8] the authors analysed the set
of undestroyed tori in phase space for fixed values of the parameters.

From the solid-state point of view our model consists of two infinite arrays of harmonic
oscillators (two different kinds of atoms) embedded in a periodic potential which also gives a
coupling between the two chains. Another interpretation for such a model is the description
of the interaction between particles with spins. In fact the cosine structure of the interaction
term can be interpreted as the spin interaction between fermion particles with different spins
depending on spin angles. If we let ;" , u;~ be the positions of the oscillators along the two
chains, we may write the potential energy as follows:

Viut,u" =2 —;:(ui* — P+ %(ui‘ —u;_ 1) — K(1 — cosu; )1 — cosu;*). (1)

By looking for the equilibrium configurations, one obtains the infinite set of coupled
equations

a—i}é— =0= -7+ 2u; —u,_,—ksinu;” (1 —cosu;” ),
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. =0=—u', +2u" —u", —ksinu; (1 —cosu;").

As in the 1D Frenkel-Kontorova case we make the identification
07 =u;" (mod (2n)), P51 =uUS1— U, 3)

and we obtain the 4D volume-preserving symplectic map:

4

P =pF —ksin(0f )1 —cos(07)), Oy =pY+ 07,

Piv1=p; —ksin(07 )1 —cos(0)), 071 =piv1t0 ,
where now the index ¢ plays the role of time. This map is a generalization of the well-known
2D area-preserving map called Chirikov Standard Map. As remarked before, due to Arnol'd
diffusion the global spread in phase space can take place before the break-up of the last KAM
torus. Moreover, it is not at all clear which type of torus will be the most robust in place of the
golden-mean torus of the 1D model. In fact this system possesses three natural frequencies
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which are the period (2z) of the periodic potential, and the densities of the two chains

* *
Uy +1 — Ug

N— x® xn

According to some general beliefs [6,9], to assure strong irrationality among them, we
choose the KAM torus whose two winding numbers are the incommensurate pair

(0", w )= (@ % x~1) = (0.56984025..., 0.754877...),

where x is the real root of the equation (spiral mean): z® — 2z — 1=0.
In practice we study the periodic approximants to the KAM torus ( Dy /Qus Pu /Qn), Wwhere
Pn, Gn Obey the recursion relation .

Fnan.—Z_*'Fn—li

with F—3=07 F—:Z:O’ F—l =1 and pn+ = Ly -2, pn_ =F11—1) qn=Fn-

From the dynamical point of view this corresponds to approximating an orbit with
irrational winding number with periodic orbits having longer and longer period. From the
solid-state point of view one can visualize two situations. First, we can consider the qn
oscillators (u ™) disposed along the chain of length L * = 2zp,’. In the same way the g,
oscillators (v ) should be disposed along the other chain of length L ~ = 27p, which is of
course different from L *. The system can be thought of as two concentric rings with a
periodic potential acting along the radius. On the other hand, we may safely rescale the
length L ~ by considering a potential with a different period in the % ~ chain (e.g., of period
2zpy [Da)-

One of the main features of the 1D FK model was the Transition by Breaking of the
Analyticity (TBA). This means that the positions along the chain could be parametrized by a
«hull function» f such that '

u; = f((il + «)(mod 27)),

where [ is the unperturbed distance between two oscillators and « is an initial phase. That
function shows an analytical character for a perturbation strength less than some value k,;
while it becomes an infinite sum of step functions for & > k.. For the same value of the
parameter the KAM torus corresponding to that winding number undergoes a transition to a
cantorus [10].

Many other characteristics accomplish this transition, for example the appearance of a
phonon gap. We remind that such a name is devoted to the smallest allowable frequency of
the linearized motion. The presence of a gap in the spectrum of the linearized motion can be
associated with the existence of a cantorus in the related dynamical model, or, in general,
with the presence of uniform hyperbolicity [11].

To find the equilibrium position, we use the gradient method[12]. This means to
transform the system (2) into a set of coupled differential equations depending on a fictitious
time 7 (integration time):

du™ v
ds auf .

The integration procedure was acted on until the equilibrium configuration was obtained
(lu * || < 107 or less). To do that, one has to use a good starting configuration. We started
from k=0 and we slowly increase k by ¢k, each time using the previously obtained
configuration. Basing on the analogy with the case of one winding number, we suppose that
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this method gives the ground state of the solid-state model. Perhaps, the rigorous proof of
that can be obtained on the basis of the same strategy as in[2-4].

From the equilibrium positions we obtained the «hull functions» f;* (at least formally, we
do not know if they really correspond to a well-defined mathematical object), such that

= =f*, (@ mod(2r), u)  mod(2n)), )

where « * are the unperturbed equilibrium positions (i.e. for k& = 0). From the equilibrium
positions we can also investigate the spectrum of the linearized motion.

In our numerical simulations we analysed the two main properties of the model: the hull
functions and the spectrum of excitations near the ground state. The hull functions are here
dependent on two phases: the unperturbed positions 67 * = % * mod (2x) (see (5)). For small
coupling constant & these functions form a smooth surface in the cube [0, 2)® as is shown in
fig. 1a)-c). However, with the increase of the perturbation the invariant torus is destroyed
leaving place to a 2D invariant Cantor set. This transition is reflected in the hull function as
the destruction of the smooth surface in many disconnected two-dimensional pieces (devil’s
fragmentation): fig. 2a)-c). It is interesting to note that this surface is formed by one line in
the infinite volume of u =, %+, %%~ and only after taking modulus 2 this line forms a smooth
surface or a devil’s fragmentation. This transition also leads to a change of the spectrum of
excitations near the ground state. For small coupling constant the invariant torus is smooth
and this permits the propagation of small-frequency phonons. On the other side, above the
transition the cantor structure of the invariant set leads to the appearance of a gap in the
phonon spectrum (see fig. 3). In this picture we present the smallest phonon frequency as a
function of the perturbation strength for different rational approximants to the spiral mean.
While for small & the phonon gap is going to zero, with the increase of the approximant it
remains the same for high values of k. IFrom that picture we roughly estimate the transition

3.6

Fig. 1. - Hull function f* in the undercritical regime £ = 0.1 (below the critical point). The periodic
approximants for the spiral mean rotation numbers are w* = 351/616 and ™ = 465/616; a), b) and c)
show different orientations.
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Fig. 2. ~ The same as fig. 1 for k = 1 (above the critical point).

to occur at k& = k. = 0.2. This behaviour is in agreement with the KAM theory which provides
the existence of an invariant torus for a sufficiently small perturbation.

The phonon spectrum of excitations is presented in fig. 4 as a function of the wave number.
For small £ it is going linearly to zero, while above the eritical point k. it does not go to zero.
The other interesting feature of such a spectrum consists in its flat step structure which looks
like the devil’s staircase one. The existence of flat steps for small values of the wave number
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Fig. 3. - Phonon gap as a function of the strength & for different rational approximants (triangles are for
q, = 114, circles for g, = 200, crosses for g, = 616).

Fig. 4. — Phonon spectrum, for small wave numbers, for two different & values and rotation numbers:
w* =351/616 and w~ =465/616. The upper curve is for k =0.6, while the lower one is for
k=02
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7 qualitatively corresponds to the presence of quasi-particle excitations with a very big
mass.

We also used Green’s residue method [13] to identify the transition between a smooth
invariant torus and a 2D cantorus. This method gives approximately the same parameter
value for the transition. However, we were not able to apply it for the analysis of the
renormalization group dynamics at the critical point due to a very large CPU time required
for that.

In this letter we investigated the destruction of a two-frequency torus and the influence of
this transition on the solid-state properties of two 1D interacting chains in a periodic
potential. We found the existence of a critical value of the perturbation strength above which
a two-dimensional invariant Cantor set is formed instead of a smooth 2D invariant surface.
The hull functions above the transition remind a devil’s fragmentation and they are formed
by small separate surfaces. It will be interesting to analyse the fractal properties of this
fragmentation. The transition to devil’s fragmentation is accomplished by the presence of a
gap in the phonon spectrum of the excitations. The spectrum of excitations, above the critical
point, shows a devil’s staircase character. The existence of flat steps in the phonon spectrum
can lead to a sharp change of the properties of the ground state. Indeed, the degeneracy in
phonon spectrum makes the theorem KAM unapplicable and due to that even negligibly small
nonlinearity in phonon excitations can give chaotic exchange between modes. Such
phenomenon of degenerate weak chaos is well known for few degrees of freedom [14] and it
will be interesting to analyse its properties in the case of many freedoms.
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