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ABSTRACT

We present a 1-d abstract model for classical and quantum chaotic scattering in which
the interacting dynamics is defined by the Standard Map. This model exhibits the
three characteristic regimes (ballistic, ohmic, localized) of quantum transport in dis-
ordered solids and can be therefore used to investigate transport fluctuations in the
framework of chaotic scattering.

1. Scattering phenomena in which transport takes place inside the interaction region
have a broad physical relevance. A well known example is electrical conduction in
solids at low temperature, that can be described as a quantum process of scattering
of electron waves by a conducting sample?). Other examples are disintegration or
ionization processes in which the decay of a metastable state is determined by some
sort of diffusion eventually leading into a continuum of free statesl®); typical among
these is the microwave jonization of highly excited hydrogen atoms!*.

Since classical transport in the absence of external random agents requires a
chaotic dynamics, problems involving ’diffusive scattering’ are naturally related to
chaotic scattering, where quantum coherence effects have been shown to produce
characteristic Ericson-like fluctuations of the scattering amplitudes®. In the case of
diffusive scattering however one more coherence effect has to be taken into account,
namely quantum localization.

The investigation of diffusive scattering within the theoretical framework of chaotic
scattering requires the formulation of appropriate models that must be amenable to
both classical and quantum analysis. There are many physically meaningful models
for classical chaotic transport and also for quantum transport in the presence of
localization, but most of them are not quite convenient for a direct comparison of
classical and quantum properties. For example, the quantum simulation of classical
models such as the Lorentz gas with an appropriately large number of scatterers
presents considerable computational problems; on the other hand, quantum tight-
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binding models of the Anderson type, though very well suited to the analysis of
localization effects, do not possess a well-defined classical limit.

Here we present a scattering model that, in spite of a rather abstract charac-
ter, displays the essential features of diffusive scattering. This model is a variant of
the renowned Kicked Rotator; it exhibits classical chaotic diffusion and quantum me-
chanical localization. The scattering matrix can be numerically computed with a good
accuracy , so that the transmission coefficient can be determined and its dependence
on various parameters analyzed. It turns out that this quantum model possesses the
three characteristic regimes of disordered conductors, i.e. the ballistic, chmic and lo-
calized regimes. We note in passing that the existence of the ’ohmic’ regime provides
an illustration of how a typical result of nonequilibrium statistical mechanics such as
the inverse dependence of the transmission coefficient on the length stems from the
quantum mechanics of a ’small’ quantum system, in spite of the well-known absence
of chaos in quantum dynamics.

2. Our classical model is a dynamical system on the cylinder parametrized by the
variables n,0, —oc0 <n <400, 0 <8 < 2r. The discrete time dynamics is defined
by :

fi=n+ksiné
0=0+7R for no<n<ng+1L (1)
0=20 -elsewhere

Inside the finite cylindrical slab defined by no < n < ny + L ( “interaction region”),
the map (1) is just the Standard Map with parameters k and 7. For k7 >> 1 the
corresponding dynamics is strongly chaotic and diffusion in the variable n occurs
according to the Fokker-Planck equation :

af D a*f
o n,t) = —2‘@(",75) (2)

where ¢ is time (number of iterates of the map) and the diffusion coefficient D is given
by :

D=pD,= ﬂ’—;— (3)

with 3 a numerical coefficient!®! that depends on K = kr; Dy is the so called quasi-
linear diffusion coefficient. i

Outside the interaction region, the free motion is uniform in n and takes place
along straight lines (generatrices) § = const.

A simple statistical description of the classical scattering process can be obtained
from the Fokker-Planck equation (2), by supplementing it with boundary conditions
at n = ng and n = no + L. For this it is necessary that k7 >> 1 and that L >> k;
these conditions define the classical diffusive regime because they ensure that orbits
dwell a long time inside the interaction region and that they experience a large number
of almost uncorrelated kicks.

The appropriate boundary conditions are given by the balance of outgoing and
incoming fluxes at the left and the right boundaries; outgoing fluxes can be estimated
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from f and its derivative f' and one gets!®!
D k ’
—ZfWﬂ=—;ﬂmﬂ+¢9

i ) |
D ot 1) =~ (o) — 2 ()

where D = (28 — 1)D, and <I> r are the incoming fluxes from the left and the right
respectively. The boundary value problem (2)(4) can be solved, and the solution ca.n

be used to express the outgoing fluxes @ L')H as functions of the incoming fluxes &'’ LR
in this way a “kinetic” solution of the scattering problem is obtained!®). In particular,
if <I>(£')R are constant in time , one gets

%) = naf) (5)
with the transmission coefficient 7 given by :
wD
"= 2D+l (6)

The chaotic transport is characterized by this law (at large L > k). We call this
transport “Ohmic” on account of the inverse dependence of 7 on L.

3. The quantization of the model is straghtforwardly achieved. The quantum discrete-
time dynamics is defined by the unitary propagator:

U =10, (7)
with Up = e*<*? (5 = 1) and
~ M+L 2
T=Y e™Pas<n+( + Y )n><nl (8)
n=ng n<ng n>ng+L

where |n > are the eigenstates of the quantized momentum #. In the n-representation,
the model describes the propagation of waves on the 1-d discrete lattice with sites
labelled by the integer eigenvalues n of 7.

The free dynamics is defined by Us and the “interaction” T is effective only inside
the finite “scatterer” no < n < ng+ L. Quasi-energy eigenstates |u’\ > are defined by
the eigenvalue equation :

Ulu? >= e |u* > (9)

Unperturbed quasi-energy eigenstates in the n-representation have the form of plane
waves : _

up(n) = (2m) /e (10)

where 6, are the roots of the equation :
A=kcosf (mod2m) (11)

For any qua51 energy A there are Ny = 2k/7 such roots, that define the “quasi-energy”
shell at quasi-energy .
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As is well known from the theory of the Quantum Kicked Rotator(” the phase
factors e='7/2 in eqn (8) have generically a pseudo-random character that can be held
responsible for the onset of localization. Qualitatively, our quantum model describes a
1-d lattice dynamics, with free waves (10) impinging on a finite “disordered” scatterer,
whence they are partly reflected and partly transmitted. This model therefore bears
some resemblance to well-known tight-binding models used in the theory of mesoscopic
fluctuations; but we wish to emphasize that unlike those models, the present one has
a well defined classical limit, and this fact allows for a direct comparison of quantum
and classical transport properties.

A complete description of the quantum scattering process is provided by the Scat-
tering Matrix S,g()), that determines the asymptotics of quasi-energy eigenfunctions
(9) at large distance from the scatterer, in the form:

Ny
uMn) ~ X_jlaa(A)ué:&(nH
T a2 S us(Nap () (12)

a,f=1

where |v,| = 1/|sin(f,)| is the density of states, an()\) are arbitrary complex ampli-
tudes, and the suffix in (resp. out) of a free plane wave means that that particular
wave does actually appear in the sum only if, in the considered region (either far to
the left or far to the right) it is incoming (resp. outgoing).

In order to compute the Scattering Matrix we adapted some standard methods of
Scattering Theory to the case of discrete-time dynamics . Our method is summarized
by the following eqs!®! :

Sap(X) = bap — [val*|wg|/*2m < (T — 1)u*[ul’ > (13)
[1 — PG ()T - 1)] u}® = up® (14)
G1(3) = lim (To - eirte)”! (15)

Since eqn (13) requires the values of u, only at sites inside the scatterer, the
Lippman-Schwinger equation (14) actually calls for inverting a matrix of rank L+1.

Computing G+(>\) is a crucial point. In order to do that, we had to substitute
for the potential V(8) = k cos(d) a smooth approximation 2garctan(é cos(d)) which
yields k cos(6) in the limit ¢ — 0,9 — 00,26q — k..

4. In our quantum computations we made a systematic use of “disorder av-
eraging” defined as follows. As remarked above, the scatterer can be assimilated
to a “sample” of a disordered solid : the finite string of pseudorandom numbers
T. = exp(—ik®r/2), no < k < no+ L plays a role similar to that of the random
potential in tight-binding models. If ny is changed a different string is obtained ,
which corresponds to a different realization of the (pseudo-) random potential, i.e.,
to a different sample. Thus averaging over different choices of ng is equivalent to
averaging over disorder in solid-state models.
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Figure 1

Average logarithm of the inverse transmission coefficient versus
the scaled length 2kL /7D of the sample.Quantum data from
averages over 50 — 100 different samples. Circles:

q=29,£ =1,2{qr = 10. Squares:¢ = 29,¢ = 0.1, 2¢¢qT = 10.
The dashed line is the classical theoretical prediction ,eqn.(11);
continuous line, classical numerical.

Our model possesses two characteristic lengths: the localization length ¢, which
in the semiclassical regime (k ~ 2q >> 1,7 << 1) is approximately equal to the
classical diffusion coefficient®), and the mean free paths X, which is roughly defined
by the number of states coupled by the “free” propagator ﬁo, so that ¥ ~ k. The
classical transmission coefficient (eqn. (6)) is a function of the scaled length L/x.

The quantum transmission coefficient is defined as the sum of the squared moduli
of all the S-matrix elements for transitions between free states with the same di-
rection of propagation. In Fig.1 we show the logarithm of 1/7 as a function of the
scaled length; quantum data are averaged over 50 — 100 realizations. Classical nu-
merical data are in excellent agreement with the theoretical law (6); quantum data
are shown for two different values of k that correspond to localization lengths ¢ = 26
and ¢ = 880. The maximum sample length in Fig.1 is L=410. The left-hand part of
Fig.1 corresponds to the ballistic regime, where the sample length is less than or on
the order of the mean free path. Moving to the right one approaches the localized
regime, marked by an exponential decrease of the transmission coefficient and by huge
fluctuations. The crossover between the ballistic and the localized regimes occur in
the range k < L < £. Since £ is proportional to k?, this range becomes broader, the
larger k (i.e. in the semiclassical region) : in this range the quantum transmission
coefficients follows more or less closely the classical “Ohmic” behaviour. We note
in passing that our model behaves differently from 1d and quasi-1d models of the
Anderson type, where the mean free path is proportional to the localization length.
The reason of this difference is that here the number of channels is not fixed but it is
proportional to the man free path.

Fluctuations of the S-matrix elements could be easily observed in our model on
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Figure 2

Phase shifts ¢ versus quasi-energy A at ¢ = 15,
§=1.5,26¢qT =10, L = 200

changing the quasi energy. Fig 2 shows phase shifts versus quasi-energy in a small
neighborhood of A = 0, of size approximately equal to the correlation length for the
same data. Following Refl®!, we computed the correlation function

Cap(w) = % (16)
Capl0) = ST(0)5upl) (a7)

where the bar denotes disorder averaging. Typical results are shown in Fig.3. In
the ballistic and close to ballistic cases, a Lorentzian fit proved very good over a
large interval in w; in other cases, relevant deviations were found only in the tails;
in a minority of cases, deviations of C,g from the Lorentzian form were observed
both at small and at large values of w. The Lorentzian form of C,g(w) is consistent
with some general predictions relying on semiclassical formulas for the Scattering
Matrix!®). According to that theory, the width of the Lorentzian curve should be
approximately equal to the classical rate of exponential decay (inverse time of escape
from the scatterer). This expectation was well confirmed in the case of Fig. 3 by a
direct numerical computation of classical decay rates!®.

These results indicate that the ballistic regime of our model fits well in the general
picture of chaotic Ericson-like fluctuations. More indications in this sense will be
provided by the analysis of the Scattering Matrix from the viewpoint of random
Matrix Theory, which is now in progress.
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Figure 3

Squared moduli of some normalized quasi-energy autocorrelations
of different S-matrix elements averaged over 100 different samples,
for A = 0 (band center) 2{g7 = 10,£ = 1.5,¢q = 15.

(a):L = 50,(b):L = 28. Full lines are Lorentz curves of width
corresponding to the average correlation length of 6 different

S —matrix elements.

In conclusion we have described a model for diffusive chaotic scattering that is
amenable to numerical simulation both in its classical and in its quantum mechanical
version. The results summarized above show that this model displays the essential
features of quantum transport in disordered conductors. Being endowed with a well
defined chaotic classical limit, it is therefore apt to the investigation of transport
fluctuations in the framework of chaotic scattering; we believe that, in spite of its
abstract character it can provide some general indications, as it was the case for the
Kicked Rotator of which it is a variant.
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