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Dynamical fidelity of a solid-state quantum computation
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In this paper we analyze the dynamics in a spin model of quantum computer. Main attention is paid to the
dynamical fidelity(associated with dynamical errorsf an algorithm that allows to create an entangled state
for remote qubits. We show that in the regime of selective resonant excitations of qubits there is no danger of
quantum chaos. Moreover, in this regime a modified perturbation theory gives an adequate description of the
dynamics of the system. Our approach allows us to explicitly describe all peculiarities of the evolution of the
system under time-dependent pulses corresponding to a quantum protocol. Specifically, we analyze, both
analytically and numerically, how the fidelity decreases in dependence on the model parameters.
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[. INTRODUCTION time-dependent electromagnetic pulses providing a specific
quantum protocol.

Many suggestions for an experimental realization of Another point that should be mentioned in the context of
guantum computers are related to two-level systeqobits. quantum chaos is that typical statements about chaos refer to
One of the serious problems in this field is a destructivestationary eigenstates and spectrum statistics. However,
influence of different kinds of errors that may be dangerougjuantum computation is essentially a time-dependent prob-
for the stability of quantum computation protocols. In thelem. Moreover, the time of computation is restricted by the
first line, one should refer to finite temperature effects andength of a quantum protocol. Therefore, even if stationary
interaction of qubits with an environmelt]. However, even Hamiltonians for single pulses reveal chaotic properties, it is
in the case when these features can be neglected, errors cstill not clear to what extent stationary chaos influences the
be generated by the dynamics itself. This “dynamical noise”evolution of a system subjected to a finite number of pulses.
cannot be avoided since the interaction between qubits and In contrast with our previous studi¢8], in this paper we
with external fields are both necessary for the implementainvestigate the time evolution of a 1/2 spin quantum com-
tion of any quantum protocol. However, the interqubit inter- puter system subjected to a series of pulses. Specifically, we
action may cause the errors. Therefore, it is important ta@onsider a quantum protocol that allows to create an en-
know to what extent the interaction effects may be dangeroutangled state for remote qubits. For this, we explore the
for quantum computation. model in the so-calledelectiveregime, using both analytical

As is known from the theory of interacting particles, a and numerical approaches. Our analytical treatment shows
two-body interaction between particles may result in the onthat in this regime there is no fingerprint of quantum chaos.
set of chaos and thermalization, even if the system unde¥lioreover, we show that a kind of perturbative approach pro-
consideration consists of a relatively small number of parvides a complete description of the evolution of our system.
ticles (see, for example, the revieW&-4| and references We concentrate our efforts on the introduced quaritiy
therein. In application to quantum computers, quantumnamical fidelity. This quantity characterizes the performance
chaos may play a destructive role since it increases the sysf quantum computation associated with thgnamicaler-
tem sensitivity to external perturbations. Simple estimatesors. Dynamical fidelity differs from the fidelity that is
obtained for systems a@f interacting spins show that with an widely used nowadays in different applications to quantum
increase ofL the chaos border decreases, and even a smatomputation and quantum chaos, see, for instance,[REf.
interaction between spins may result in chaotic properties obecause we do not add any random variation in the Hamil-
eigenstates and spectrum statistics. On this ground, it wasnian. Our study demonstrates an excellent agreement of
claimed[5] that quantum chaos for a large number of qubitsanalytical predictions with numerical data.
cannot be avoided, and the idea of a quantum computation The structure of the paper is as follows. In Sec. Il we
meets serious problems. discuss our model and specify the region of parameters for

Recent studiefb] of a realistic 1/2 spin model of a quan- which our study is performed. In Sec. Ill we explore the
tum computer show that, in the presence of a magnetic fielgossibility of quantum chaos in the selective regime, and
gradient, the chaos border is independerit,and that quan- analytically show that chaos cannot occur in this case. We
tum chaos arises in extreme situations only, which are noprovide all details concerning the quantum protocol in Sec.
interesting from the practical viewpoint. One should stresdV, and demonstrate how perturbation theory can be applied
that a nonzero gradient magnetic field is necessary in th® obtain an adequate description of the fidelity in depen-
model[6] for a selective excitation of different qubits under dence on the system parameters. Here, we also present nu-
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zA , B B(t)=[bPcog vpt+ ¢,), —bPsin(vyt+¢,),BAX)]. (1)

As mentioned above, he&(x) is the constant magnetic
s field oriented in the positive direction, with a positivex

: gradient(therefore,a>0 in the expression for the Larmor
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merical data and compare them with the predictions based on
the perturbative approach. Section V summarizes our results. 2

where the “pulse function® ,(t) equals 1 only during the
Il. SPIN MODEL OF A QUANTUM COMPUTER pth pulse, fort,<t<t,,, otherwise it is zero. The quanti-

Our model is represented by a one-dimensional chaln of 1€S Jk.n Stand for the Ising interaction between two qubits ,
identical 1/2 spins placed in an external magnetic field, se@’x are the frequencies of spin precession in Bfienagnetic
Fig. 1. field, Q, is the Rabi frequency of theth pulse, I¥*

It was first proposed in Ref8] (see also Ref§9-11)) as = (1/2)a”* with 0¥ as the Pauli matrices, argf =1
a simple model for solid-state quantum computation. Some=il};.
physical constraints are necessary in order to let it operate in For a specifigpth pulse, it is convenient to represent the
a quantum computation regime. To provide a selective resasamiltonian(2) in the coordinate system that rotates with the
nant excitation of spins, we assume that the time independefriequencyv, . Therefore, for the tim¢,<t<t,, of the pth
partB*=B?(x) of the magnetic field is nonuniform along the pulse our model can be reduced to thationary Hamil-
spin chain. The nonzero gradient of the magnetic field protonian
vides different Larmor frequencies for different spins. The
angle 6 between the direction of the chain and thexis
satisfies the condition, cés-1/y/3. In this case the dipole- HP)= —kZO (&dk+ a'ﬁ‘ﬁ"()_zzk Jenlidn, 9
dipole interaction is suppressed, and the main interaction be- - "

tween nuclear spins is due to the Isinglike interaction med'Where§k=(wk— ve), a=,c080,, and B=Q,sing, .

E;:Zdnt;i/ict?e?sgr?s%g\léll\l/llg)o nﬁzlnti?n";o; l'gtl:,:ijoglt?te nuclear We start our considerations with the simplified case of the
|?1 order to realize uar?tum ates anF:j im Iem.ent 0 eraljamiltonian(S) for a single pulse, by choosing,=0. We
tions, it is necessary tg apply se?ective pulsespto single spinalso assume a constant interaction between nearest neighbors
The latter can be distinguished, for instance, by imposing %l;m?tgr:}gn%)'nt:l;]eésk'lgﬁé)fomd we puiQ,=0. Then the
constant-gradient magnetic field that results in the Larmor
frequenciesw, = yB*(x) = wq+ak, wherey is the spin gy- L-1 L_2 L1
romagnetic ratio and, is the position of theth spin. If the HP) = — 1Z-2] 1212 — 0 X=H.+V
distance between the neighboring nuclear spin&xs-0.2 kgo ulk kgo Kkt kZO ko

L-1

nm, and the frequency difference between themAis (4)
=a/27=1 kHz, then the corresponding gradient of the mag-
netic field can be estimated as followsdB?%/dx| In z representation the Hamiltonian matrix of sizé B

=Af/(yl2m)Ax~1.2x10* T/m. Here we used the gyro- diagonal forQ=0. ForQ+0, nonzero off-diagonal matrix
magnetic ratio for a protony/27~4.3x 10’ Hz/T. Such a elements are simpli,,=H,,= —Q/2 with n#k. The ma-
magnetic field gradient is experimentally achievable, see, fotrix is very sparse, and it has a specific structure in the basis
example, Refs[12,13. reordered according to an increase of the nunsb@he lat-

In our model the spin chain is also subjected to a transter is written in the binary representation,s
versal circular polarized magnetic field. Thus, the expression=i; _q,i| _2, ..., (Withig=0 or 1, depending on whether
for the total magnetic field has the forf,10,11, the single-particle state of théh qubit is the ground state or
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the excited one The parametef) thus is responsible for a random, although the number of components with large am-
nondiagonal coupling, and we hereafter define it as a “perplitudes can be extremely largsee details in Ref6]).
turbation.” It is relatively easy to estimaté ; in the regime of selec-

In our previous studiel6] we have analyzed the so-called tive excitation. Let us consider an eigenstate idf,
nonselectiveregime that is defined by the condition®,  |1,0,0,0,1,0...,0,0,1,0, as a collection of O's and 1’s that
> dw>J. This inequality provides the simplest way to pre- correspond to-1/2 and 1/2 spin values. Since the perturba-
pare a homogeneous superposition bf2ates needed for tion V is a sum ofL terms, each of them flipping one single
the implementation of both Shor and Grover algorithms. Ouispin, one getdM;=L.
analytical and numerical treatment of the mo¢®| in this In order to estimateAE);, let us first consider the action
regime has shown that a constant gradient magnetic fieldf V on thekth spin, and for each spin compute the relative
(with nonzero value ofa) strongly reduces the effects of energy difference between the final and the initial energy.
quantum chaos. Namely, the chaos border turns out to b@ne can find that if théth spin has the value 1/2, there are
independent on the numbkrof qubits. As a result, for non- four possible configurations of neighbor spins coupled by the
selective excitation quantum chaos can be practically neperturbation
glected(see details in Ref6]).

Below we consider another important regime cabetec- |...0,10...)—]...0,00...),
tive excitation In this regime each pulse acts selectively on a |..1,11...)—|...1,00...),
chosen qubit, resulting in a resonant transition. During the @
qguantum protocol, many such resonant transitions take place [...1,10...)—]...1,00...),
for differentp pulses, with different values of,= wy. The ..0,11..)—...0,01.. ).

region of parameters for the selective excitation is specified

by the following conditiong 10J: If the kth spin has the value-1/2, there are also four pos-
5) sible different arrangements,

Q<I<a<wy.
The meaning of these conditions will be discussed in next -0,00..)=[...0,10...),
sections. [..1,01...)—]...1,11...),
(8)
Ill. ABSENCE OF QUANTUM CHAOS IN THE [...1,00..)—[...1,10...),
SELECTIVE EXCITATION REGIME |...0,01...)—|...0,11...),

Here, we consider the properties of the stationary Hamilyich are the inverse transitions of Eg). Correspondingly,

estimate the critical value of the interactidnabove which

one can expect random properties of eigenstates, one needs  |E{)—E{)|=|g+23],|&], k=1,...L—-2. (9)

to compare the typical value of the off-diagonal matrix ele-

ments (2/2) with the mean energy spacing for unper-  The analysis for the border spins can be performed in a simi-
turbed many-body states that are directly coupled by thes@r way, and one gets four possible configurations, with the
matrix elements. Therefore, the condition for the onset ofollowing energy changes:

chaos has the form

|EN-EY|=|&+d|, k=0L-1. (10
Q (AE)q . . . .
§> "~V (6) Summarizing the above findings, and setting, for instance,
f vp=wgp, One can conclude that\E); can be estimated as
Here (AE); is the maximal difference between the energies©!/lOWs:
EP) and ESY corresponding to a specific many-body state AE) — ") _ =) —
E);=Max(|Ey’— E =w _1— wyt+J. 11
|1) , and all other statef2) of H,, that have nonzero cou- (AB) ([Bo’~Bo'h=wL-1=wo (D
plings(1|V|2). CorrespondinglyM is the number of many-  Ag g result, the condition for the onset of quantum chaos

body stateg2) coupled byV to the statg1). A further av-  can be written in the form
erage over all statdd) should be then performed.

In fact, such a comparisofb) is just the perturbation Q (AE)f{ o _1—wetJd alL-1)+J
theory in the case of two-body interaction. Strictly speaking, §> M, = L = L (12
the above condition in a strong send®¢ ;) means that
exact eigenstates consist of many unperturbéd Q) states. or
Typically, the components of such compound states can be
treated as uncorrelated entries, thus resulting in a random
structure of excited many-body states. However, one should
note that in specific cases when the total Hamiltonian is in-
tegrable (or quasi-integrable the components of excited However, this critical value is outside the range of param-
states have strong correlations and cannot be considered eters required to be in the selective excitation regiea

2]
Q>ch:2a+ T (13
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[see inequality(6)]. Thus, we can conclude that quantum  Diagonal elements of Hamiltoniaf) are given by the
chaos for stationary states cannot appear in the selective egigenvalue€(’ of Ho, while nonzero off-diagonal elements
citation regime. Note that the analysis is done for a singleare constant and equal to€)/2. In order to have a resonant

pulse of a time-dependent perturbation. transition between two energy states, their energy difference
A has to be zero. However, for each state no more than one
IV. FIDELITY OF A QUANTUM PROTOCOL resonant transition should be allowed. So, we require the

. . . energy differences given by Eq®) and(10) to be different
_ The analytical results obtained above, show that, during g, 7ero, apart from the wanted transition. This leads to the
single electromagnetic pulse, the system can be described t?éfllowing set of equalitieg“fake transitions™:
perturbation theory. Indeed, if the matrix elements of pertur- '

bation are smaller than the energy spacing between directly K
coupled many-body states, exact eigenstates can be obtained J=a- when k=1,...L—3,
by perturbation theory. Thus, one can expect that for a series
of time-dependent pulses the system evolution can also be k
treated making use of a perturbative approach. J=a5 when k=1,...L-3,
In what follows, we study the system dynamics by apply- (16)
ing a specific set of pulse@uantum protocolin order to
create an entangled state for remote qubitth k=0 and J=ak when k=1,...L-2,
k=L—1) starting from the ground state,|p) k
=|0._1,...,0,0p) (we omit the subscripts below Our J=az when k=1,...L-2
main interest is in estimating the errors that appear due to
unwanted excitations of qubits. We show that these errors From Eqgs.(16) it is easy to see that the first “fake” tran-

can be well understood and estimated on the basis of thg;i;n, appears fod; = a/4, the second fod,=a/2, and so on

pertu_rbat_ion ‘h?OW developed for our time-dependenhp to the last one fod;=a(L —2). All these resonances can
Hamiltonian (2), in the parameter range where the prOtOCOIbe avoided if we choosa>4J (due to the resonance finite

holds. width the conditiona>4J is not sufficient.
] o . ) Transitions can be defined according to their energy dif-
A. Selective excitation regime and perturbation theory ferenceA, (1) resonant transitionsA =0 (2) near-resonant
Any protocol is a sequence of unitary transformations apiransitions A~J; (3) non-resonant transitions ~a.
plied to some initial state in order to obtain a final ideal state For a>4J, each state can undergo one resonant or near-
[#'). In this model of quantum computer the protocol is re-resonant transition only, and many nonresonant ones. The
alized by applying a number of specific rf pulses, so that wdatter can be neglected if we choose (). Under these con-
get a statéy') which is, in principle, different from the ideal ditions we can form couples of states, connected by resonant
state|¢'). The difference between the real sthé) and the ~ or near-resonant transitions, and we can rearrange the Hamil-
ideal statd ') can be characterized bydynamical fidelity ~ tonian matrix(4) by 2x2 block matrices representing all
, resonant and near-resonant transitions. In this way the dy-
F=I(¢ [y (14)  namical evolution of the system can be described as a two-
. . L state problem.
Note that, in our case, the dynamical fideliy does not Using this procedure, the entire sequence of pulses can be
expllpltly_depenq on a perturbatlon_ parameter ac_ided n _th%valuated. Note that special attention has to be paid to an
Hamiltonian (2) in order to get a distorted evolution, as iS 5qgitional phase shift that arises between any two pulses, due
typically assumed in the study of quantum chaos. Indeed, thg, the change of frame. We remind that the transformation
real final state is determined by the total Hamiltoniah between the rotating and the laboratory frame is given by the
expression

~ P ~ ty
|'/’r>:U(T)|1//o>Ep[[1 Texp{—ift H(t)dt)|‘//o>,
" (15) |¢(t)>Lab:eXF<int; |§)|¢(U>Rot- (17)

whereT=t, is the total time to entangle spin@,(T) is the . L . )
unitary operator given by the sequence of pulses in the pro- Indeed, let us consider an initial basis statg at timet

tocol, andT is the usual time-ordered product. Therefore, itzo’ and find the probability for a resonar €0) or near-

is not possible to identify a single perturbation parameter thadgfsfonant (éw_‘]?; tragsnmg to tth(Ea statﬁt)g W'.th the energy f
is responsible for a “wrong” evolution of the system. imerencet, = £p, . Herek, andty, are the eigenenergies o

The selective excitation regime is characterized by thi\_‘he time-independent part of the Hamiltonig®), written in

action of pulses that are resonant with a transition betwee € Iab_oratory frame.

two energy states which differ for the stdtg or down of Setting

one spin only. A close inspection of the time independent

Hamiltonian(4), defines the region of parameters where the W(t)= 2 ca(t)|n), (18)
selective excitation of single spins can be performed. n
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andc,(0)=0, after the application of a pulse for a time B. Quantum protocol
one gets, in the laboratory frame, Let us briefly sketch the algorithm and the particular pro-
tocol that was developed in Refl10]. Starting from the

Ci(ATI2)—Epr ground state ¢,)=|0...0) and applying a number of spe-
€ ' cific pulses, we would like to generate the following en-
tangled state:

Cm(7)=Cm(0)

A [N\T
+|Xsm 7

AT
(of6) 7

Co(7)=Cim(0)  Leinf A7) |eranm- e, (19 o 2
P m \ 2 ’ |'y=—=(]0...0)+]10....02). (23
V2
wherex = Q%+ AZ. This algorithm could serve, for instance, as the first step for
As we can see, the parametedetermined as a more general teleportation protocol, and for an implemen-

tation of conditional quantum logic operations.
The algorithm can be realized in the following wépr
(20) details see Ref.10)):

10,....0—(|0,....0+|1,0,...,9)

02 T
€= ———sir? E\/Qer A2

T Q2+ A2

characterizes the probability of resonant and near-resonant —(l]0,...,0+]1,1,0...,0)
transitions. In particular, the probability of unwanted near-
resonant transitions goes like and it can be reduced by —(|0,...,0+[1,1,1,0...,0)
assumingl> (). Combining all the above expression, we get .
the condition(5). (0.....0+[10.10...,0)
Correspondingly, the probability for a nonresonant transi- —...—(]0,...,0+]1,0,...,D). (29
tion (neglecting terms of the order L1/ and assuming . ) )
>()) is given by the parametey [11], Physmally, the above algorithm can be dong by apply_mg
suitable rf pulses that are resonant to the desired transitions.
Y The latter are originated from induced Rabi oscillations be-
= (21) tween the resonant states.
432 To flip the kth spin we have to choose the frequencypf

the rf pulse according to the relation,=E;—E,, where

We would like to stress that even if the ideal state hadl): |2) are the states involved in the transition &g E,
been constructed taking into account resonant transitiond® the eigenenergies of the time-independent part of Hamil-

only, our dynamical fidelity is a measure of dynamical errorsionian (2). For instance, for the first pulse we put,
ol, and we have to apply it for a time

that are due to near-resonant and nonresonant transitions. — |El10,...0 ™ Ejo,.... o - )
Let us now briefly discuss the perturbative approach thafr= 7/2(} to get equal superposition of the states involved in
is based on recent studies published in R&f]. The main the transition. Fo_r other pulses we require that the fl_rst state
idea is that for eaclpth pulse the unperturbed basis can be(/0.--..0) remains the sameapart from an additional
rearranged in such a way that the Hamiltonian matrix is repPhasé, while the second state flips theh spin. In other
resented by 2 block matrices, as described above. This isWords, the probability of unwanted states is due to nonreso-
what we call unperturbedHamiltonian for a specifigth nant transitions of both states of the nght-hand side of Eq.
pulse. One should note that thisperturbedHamiltonian is ~ (24), and to near-resonant ones of the first state only. Spe-
Q dependent. Let us now define bythe Q dependent part qﬂcally_, the statg0,...,00 undergoes near-resonant transi-
that is responsible for nonresonant transition and not delions withA=2J for each pulse, except the first one which is
scribed by the % 2 block matrices. Then it is easy to obtain '€Sonant, and the fourth for which=4J. Also, at each

the unperturbed eigenstatés?), and the unperturbed eigen- PuUlse the staté0,...,0 get an additional phase, see Egs.
P 0 by diag%nalizirfgqgach of the>22 blocks indge- (19). We took them into account in the definition of the ideal

values, P
pendenilg/ state, see details in Sec. IV C.
After this step, one can compute tperturbedeigenstates conStIrri]bCl?ti::nn;hf?osrfIr?gg\r/jei)c()ﬁlgittlot?alrﬂi%ig]nes V;ree hmuct:’,lar er
by taking into account the first-order terms only, " 9
than the ones due to nonresonant transitions. Our algorithm
consists of 2 —2 separate pulses, therefore, some modifica-

0 0 : .
<¢q|V| ¢qr> tions are necessary in order to be able to control small un-
0

—1,,0 0
|t =) + 2;4 0 0 |‘/’q'>' (22 wanted probability. For the product of probabilities this im-
AR plies 2 e<1 and 2. <1, or
Note that this perturbative approach is supposed to be Q 2 O 2
valid when Eqs(16) are not satisfied, and when the errors TV a<Vi (25

due to near-resonant transitions are much larger than the er-
rors due to nonresonant ones; 7. for L>1.
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0 25 JS'OL 75 J1 FIG. 3. The dependence-IF as a function of the gradient of a
J magnetic field is shown fok. =6 spins,{1=0.118, and]=1. As

one can see, fon<<4J the fidelity is not as good as fa>4J.
FIG. 2. The dependence-1F is shown as a function of the

Ising couplingJ for L =6 spins,(1=0.118, anda=100. Full line  found for very large variations of the interaction strength
represents the numerical data for the dynamical fiddlitsefined High peaks for -F, clearly seen in Fig. ®), occur for
by Eq.(14), and obtained from direct numerical computation of the thoseJ values given by Eqg16), where quantum algorithm
system evolution(a) Full circles stand for perturbative calculations, fails. Thus, one should avoid these situations in a quantum
and full curve corresponds to numerical resu(ts. The same nu- com.putatio’n
merical results as ifa), but for a larger range aof. The theoretical As for thé minima in Fig. 2a) for which the dynamical

i i E@2) is al h ina). L )
expression as given by E(B2) is also shown i@ fidelity is close to one, they occur whe=0, or, when

Before discussing our numerical results we would like to Q
stress that in contrast to what is mainly considered in the J= E\/4k2—1,
literature, the time for our dynamical fidelity is not an inde-
pendent variable. Indeed, the length of the protocol is deter- ) . . .
mined by the total number of qubits, Specifically, 2. — 2 wherek is an !nteger number. This relation corresponds to
pulses are necessary in order to create the entangled state, (8§ 27k condition[10,11,14.

that the protocol timeT is proportional to the number of L€t us now explore the dependence of the dynamical fi-
qubits. delity on the parametea which is proportional to the gradi-

ent of the external magnetic fieldy=yAx[dB*(x)/dx],
whereAx is the distance between neighboring quiitsiow,
we shall refer to the parametaras the magnetic field gra-

Quite unexpectedly, the dynamical fidelit¥4) increases dienf. Numerical data for the dependence of E on a are
with an increase of the Ising coupliny as soon ag<a/4.  presented in Fig. 3. One can see that the dynamical fidelity is
Indeed, the probability of unwanted near-resonant transitiongetting better for large enough valuesaofwe already men-
is proportional toe~ (/J)? [see Eq(20), whereA ~J for tioned that fora<4J a problem may arise in the protocol
near-resonant transitiohsTherefore, the larger is), the  due to “fake” transitions. On the other side, in the regime
smaller is the probability of near-resonant transitions, and th@>4J the dynamical fidelity reaches an asymptotic value
larger is the dynamical fidelit¥. that depends od and () only, see Fig. 3.

In Fig. 2 we show how the dynamical fidelityt4) de- It is also important to understand the dependence of the
pends on the interqubit interactiah For convenience, the dynamical fidelity on the Rabi frequendy. The data mani-
function 1-F is shown here and below, instead Bf Nu-  fest two specific properties demonstrated in Fig. 4. The first
merical data have been obtained in two different ways. Fulbne is a global decrease of the dynamical fidelity with an
curve corresponds to exact computation of the timeincrease of). The second peculiarity is due to strong oscil-

dependent Hamiltoniaf2). Data in Fig. 2a) are compared |ations that occur foe=0, namely, for thos€) values cor-
with those obtained from the perturbative approach eXresponding to the 2k conditions,
plained above.

C. Dynamical fidelity: Theory and numerical data

Apart from very strong pealsee Fig. 2b)] for which the 2]
dynamical fidelity vanishes, one can say that the global ten- Q= (26)
dency is an improvement of the dynamical fidelity for larger 4k°-1

values ofJ. However, strong oscillations occur reflecting a
resonant nature of the dynamics of our system. Perfect agree- For these&), values, near-resonant transitions vanish, and
ment between perturbative results and numerical data igonresonant transitions remain only. Thus, the dynamical fi-
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. . . FIG. 5. The dynamical fidelity as a function of the numheof
FIG. 4. The difference + F as a function of the Rabi frequency spins, for different] values and)=0.118,a=100. Numerical data

g. fo: L=6 §p|r|1$,.J:Il,t. andgzlloo. Ful;)tcgrvz ;S thethresulttofb (triangles for J=1.945, circles forJ=5.01, and squares fol
Irect numerical simulation, circles are obtained from the perturba-_ 9.99) are compared with the results from the perturbation theory
tive approach described in the text. Arrows show few resonant val

Ues of() given by Eq.(26). {crosses Also shown are the best linear fildot-dashed lings

. ) . ) o and using Eq(14), we have
delity has maxima that provides, in principle, the best con-

dition for a guantum computation. F=|cb ch+ci*ch|?. (27)
Nevertheless, let us consider the valuedothat corre-

spond to maxima in Fig. 4. This we do in order to make an In Eq. (27) the ideal coefficients are given by

estimate in the worst possible condition for quantum compu-

tation. A brief analysis of the fidelity for the specific values S Y R S

Q=0Q, will be sketched in the last subsection. As one can Co= Ee 0= Ee o

see, for values of) different from(),, the “average” dy-

namical fidelity increases when the Rabi frequency de- 11 P

creases. This is due to the fact that the probability to generate ch=—ei= —j Pexp( —i > Ey(tysr—to) |,
unwanted state&ue to both nonresonant and near-resonant \/§ \/5 p=1 P :
transitiong, is proportional to (2/A)2. Therefore, the (29
smaller(} is, the more reliable is the algorithm. Note that the ) . )
agreement with the perturbative approach is excellent. ~ WhereT is the total protocol time ang=2L —2 is the num-

However, we cannot choose an extremely small value oP€r of pulsesE, andE, are the eigenenergies of the time-
Q since it implies a large time duration of the pulse ( independent part of Hamiltoniai). Specifically,E,, are the
~/Q). Note that the total time for a quantum protocol elgenenergles_of the |nterm§d|ate states, as given b{2#y.
should be kept well below the decoherence tiftie latter ~and tp.1—t, is the duration of thep pulse [ty,;—t,
can be quite large for nuclear spifis5]). Taking that into = 7/(2Q) if p=1 andt,,;—t,=a/Q if p#1].
account, an optimal choice is to choose the largest possible In the same way, we define
value,Q=Q,=2J//15<J, and large enough value af(in o -
order to significantly suppress the nonresonant transjtions co=po€'’0, ci=p.e',

o ) with the above definitions the fidelity becomes
D. Fidelity: Dependence on the number of qubits
Finally, we studied the dependence of the dynamical fi-
delity on the numbeL of spins in the chain. As was noted
before, for a chosen protocol its length is proportional to , ,
Numerical data clearly manifest a linear decrease of the dywhereA 6= 65— 6, andA 6;= 67— 6, .

1
F=S[pg+pi+2popicosAbo—Ab)],  (29)

namical fidelity with the number of qubits, see Fig. 5. The ideal state is defined by resonant transitions only, as
Let us give now a brief analytical derivation of the depen-explained in Sec. IV A, and Eq$28) are easily obtained
dence of fidelity on the number of qubits. from Egs.(19).
Given the real and the ideal final state, On the other side, the real state differs from the ideal one
because of the errors due to nonresonant and near-resonant
ry— r i\ i transitions. In particular, the coefficienf differs from the
) Zk Gl 19)=Col0...0+10...09 coefficientc) because of errors due to non-resonant transi-
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tions only, whilec}, differs from ¢}, because of errors due to 10° . . .
both nonresonant and near-resonant transitions. \\
Since we neglect nonresonant transitiong<(1) we can 100 | N O Numerical
putci=c}. 0N -——-m,
Differently, near-resonant transitions will act af only, » \h
giving a change in both its modulus and phase. 07 F N E
The change of phase, in one pulse, for a near-resonant \Q\
transition, can be obtained from Edq49), g 10° Q 1
AN
. At NT AT - \\G
= — _— _— 0 E i
a=arctan-—tan - 5 \\0
N
therefore, for 2 —3 pulses(since during the first pulse no 10° \\ 5
near-resonant transitions ocgwve have N
-6 1 L 1 \
AbGy=(2L—3)a. (30 1007 10” 10° 10’ 10°

Accordingly, we can define in a different way the ideal
state, changing the phase af— cyexfdi(2L—3)«], in order P X X X X
slopes for the fidelity, as a function of the interactihrobtained for

to haveA 6,=0. a i
Let us notice that any phase shift between the stated ~ 0118 anda=100.

[0....0) and|10....02 can be eliminated by applying two
additional pulses.

FIG. 6. Comparison between theoretical and numerical linear

ability of near-resonant transitions becomes large, and the
conditionPe<1 is not valid anymore.

From Egs.(19) we can also evaluate the error on the Finally, let us stress that the phase correction is far from
T . :
modulus of the coefficient,. The probability for the state being trivial. Indeed, a different behavior of fidelity on the

|rr?i.n.ég>bt;/) t?:';i%;:gp;t'gget(ég?zg)nvr:r:;eig \;’ge; tﬁzter'number of qubits is found without such phase correction.

; 1 ~ Also note that, even under therR conditions given by
end of the_ protocol, we ha\/1«£0|2= 5(1__ 6)(2L 2, Eq. (26), for which e=0 (so that there are no errors in modu-
Assuming (2. —3)e<1, we can write lus caused by near-resonant transitiorss phase error per-
sists, so that, in order to improve fidelity, the same phase
1—(2L—-3) g} correction is necessary.

1
Po~ E

In this way Eq.(29) becomes E. Optimal algorithm

Choosing() values as given by E@26), one gets that the

€ probability for near-resonant transition is zere=0. So,
FNl_(ZL_S)E' (3D only nonresonant transitions lead to unwanted states. In Fig.
7 we show the fidelity as a function of the number of sgins
Sincee~02/4J2, we get for 0,=0.1216. These data should be compared with the
analogous ones indicated by triangles in Fig. 5.
3072 02 As one can see, despite the closeness of these(lwo
F~| 1+ 52) a2 L, (32 values(less than 3% of differengethe fidelity increases in

two order of magnitudésee different scales on tlyeaxis). It

is clear that such preferrdd values should be chosen in any

practical implementation of the algorithm. However, due to

the high instability of such resonant values, see Fig. 4, a

detailed analysis can only be done within a more general
02 study under the presence of small variations in parameters

=— (33 such as(},J,a. This study is currently in progress.

which implies a linear decrease of the dynamical fidelity
with an increase of the number of qubils, The slope is
given by the parameter

L . . V. CONCLUSIONS
Of course, the above derivation is valid far from the

“fake” transitions, Eq.(16), and under the conditions Eqs. = We have studied the model of a quantum computer con-
(5) and(25). sisting of a one-dimensional chain of 1/2 spifgubits,
Slopes in Fig. 5 have been obtained by a standard linegylaced in a time-dependent electromagnetic field. The latter
fit and then compared with the theoretical ongg, see Fig. is given by a sequence of rf pulses, corresponding to a cho-
6. sen quantum protocol that allows to generate an entangled
As one can see, the agreement is very good except fatate for remote qubits from the initial ground state. Main
small values of the Ising interactiod={), where the prob- attention is paid to the analysis of the dynamical fidelity,
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1 * ; ' T ' mented by time-dependent pulses. Analytical treatment of
RN the stationary Hamiltonian which describes the evolution of
3 the system during a single pulse has revealed that in the
selective regime the quantum chaos cannot appear. More-
® over, in this regime a perturbation theory can be applied to
I % 1  all quantities of interest.
Our detailed study of the dynamical fidelity manifests ex-
~ cellent agreement between numerical data and the predic-
=~ r N ] tions obtained in the perturbative approach. In particular, we
0.99994 | ™ ] have found how to choose the parameters in order to get the
AN best dynamical fidelity for the creation of the remote en-
- » . tangled state. Specific attention has been paid to the depen-
¥ dence of the dynamical fidelity on the numbeiof qubits.
We show, both analytically and numerically, that the dynami-
! i cal fidelity decreases linearly with an increaseLpfand we
give an analytical estimate for the slope of this dependence.
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