
PHYSICAL REVIEW B 67, 094425 ~2003!
Single-spin measurement and decoherence in magnetic-resonance force microscopy
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We consider a simple version of a cyclic adiabatic inversion~CAI! technique in magnetic-resonance force
microscopy~MRFM!. We study the problem: What component of the spin is measured in the CAI MRFM? We
show that the nondestructive detection of the cantilever vibrations provides a measurement of the spin com-
ponent along the effective magnetic field. This result is based on numerical simulations of the Hamiltonian
dynamics~the Schro¨dinger equation! and the numerical solution of the master equation.
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I. INTRODUCTION

Magnetic-resonance force microscopy~MRFM! is striv-
ing for its ultimate goal: single-spin detection.1–3 The most
promising approach to single-spin detection is, probably,
clic adiabatic inversion~CAI!.1 In this approach, the mag
netic moment of the sample changes its direction adiab
cally following the effective magnetic field. The CAI of th
spin may act as an ‘‘external force’’ driving the resona
vibrations of the cantilever or it may affect the frequency
the cantilever vibrations driven by another source@e.g., the
modern ‘‘OSCAR’’ ~oscillating cantilever-driven adiabati
reversal! technique3#.

The fundamental question which arises in MRFM sing
spin measurement is the following: What component of
spin is measured by this technique? Indeed, in a simple
ometry, the cantilever tip oscillating along thez axis interacts
with the z component of the spin and, consequently, is
pected to measure the spinz component. From the other sid
adiabatic inversion assumes that the approximate integra
motion is the spin component along the effective magn
field which rotates in thex-z plane. Thus, one might expec
that the cantilever measures the spin component along
effective magnetic field in the rotating reference frame.

In this work, we consider the macroscopic cantilever its
as the measuring device interacting with an environment.
assume that the influence of an additional~e.g., optical! de-
vice that detects the cantilever vibrations is small. This c
responds to the current MRFM technique. In Sec. II,
discuss the quantum dynamics of the quasiclassical can
ver which describes the generation of Schro¨dinger cat states
associated with two possible projections of the spin. In S
III, we include the interaction of the cantilever with an env
ronment inherent to any measurement processes. The
leads to the decoherence of the two possible cantile
trajectories.

II. HAMILTONIAN DYNAMICS

We consider the simple setup shown in Fig. 1.
The ferromagnetic particle with a magnetic momentmW is

mounted on the cantilever tip. The permanent magnetic fi
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B0 points in the positivez direction. A rotating rf field in the
x-y plane,BW 1;exp„i @vt2w(t)#…, is resonant with the spin
precession around thez axis. The frequency modulation o
BW 1 causes the CAI of the spin. Under resonant conditio
when the period of the cantilever vibrations matches the
riod of the CAI, the amplitude of the cantilever vibrations
expected to increase providing the detection of the spin.

The quantum Hamiltonian of the system in the rotati
frame~ in terms of dimensionless parameters! can be written
as

H5~pz
21z2!/21ẇ~t!Sz2eSx22hzSz . ~1!

Here

pz5Pz /Pq , z5Z/Zq , ~2!

SW is the electron-spin operator,e5gB1 /vc , ẇ5dw/dt, h
5gF/2Fq , Pz and Z are the operators of the effective mo
mentum and coordinate of the cantilever tip,g5gmB /\ is
the spin gyromagnetic ratio~absolute value!, vc is the can-
tilever frequency, andF is the magnetic force between th
ferromagnetic particle and the spin when the cantilever tip
at the originz50. The origin is chosen at the equilibrium
position of the cantilever with no spin;t5vct is a dimen-
sionless time. The units of the coordinate, momentum,
force are given by

Zq5~\vc /kc!
1/2, Pq5\/Zq , Fq5kcZq , ~3!

wherekc is the cantilever spring constant. Note that we tre
the electron spin of a paramagnetic atom whose directio
opposite to the direction of the atomic magnetic moment.
assume in Eq.~1! that the transverse magnetic field points
the negativex direction of the rotating frame.

With respect to actual ‘‘reading’’ devices, we consider
realistic scenario for the MRFM technique which involv
nondestructive measurements of the amplitude, freque
and phase of the cantilever vibrations, for example, by us
a fiber-optic interferometer operating in the infrared regio
We assume that the optical detection of cantilever vibrati
does not influence significantly the cantilever-spin dynam
©2003 The American Physical Society25-1
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~In practice, this means that the disturbance caused by
optical radiation is smaller than the thermal noise of the c
tilever.!

In this section, we do not consider the interaction with t
environment which provides the measurement itself.~See
also Ref. 4.! Thus, we use the Schro¨dinger equation

i Ċ5HC ~4!

for computer simulations of the cantilever-spin dynamics.
the z-Sz representation, the wave functionC is a spinor. It
contains two componentsC(z,1/2,t) and C(z,21/2,t),
which correspond to the two possible values ofSz . Using the
expansion over the eigenfunctionsun of the oscillator Hamil-
tonian (pz

21z2)/2 we write these two components of th
cantilever-spin wave function in the form

C~z,1/2,t!5 (
n50

`

An~t!un ,

C~z,21/2,t!5 (
n50

`

Bn~t!un , ~5!

and derive equations for the amplitudes,An andBn ,

iȦn5~n11/21ẇ/2!An2~h/A2!~AnAn211An11An11!

2~e/2!Bn ,

iḂn5~n21/21ẇ/2!Bn1~h/A2!~AnBn211An11Bn11!

2~e/2!An . ~6!

The initial conditions describe the quasiclassical state
the cantilever tip and a spin which points in the positivez
direction,

An~0!5~an/An! !exp~2uau2/2!, Bn~0!50, ~7!

a5@^z~0!&1 i ^pz~0!&#/A2.

In our computer simulations we used the following para
eter values:

FIG. 1. MRFM setup.
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h50.3, e5400, ẇ5260001300t whent<20 ~8!

and ẇ51000 sin~t220! whent.20.

The value h50.3 can be achieved in current MRFM
experiments.1–3 The parameters for the transverse magne
field have been chosen to satisfy two conditions.~i! the con-
dition of the CAI, uw ü!e2 and ~ii ! the effective magnetic
field produced by the cantilever vibrations on the spin
small in comparison with the amplitude of therf field:
2hu^z&u!e. We consider the results of the computer simu
tions reliable if they do not change with an increase in
number of basic functionsun .

To describe the quasiclassical cantilever, we took the
tial average energŷE(0)&5uau2@1. The number of basic
functions un , needed to provide reliable results, increas
with the average energy. So, we cannot takeuau too large. As
we study the driven oscillations of the cantilever, our resu
do not show a significant dependence on the initial con
tions.

The main results of our simulations are the following. T
wave function of the cantilever-spin system, which is in
tially a product of the cantilever and spin parts, quickly b
comes entangled. The probability distribution to find the ca
tilever at the pointz at timet,

P~z,t!5uC~z,1/2,t!u21uC~z,21/2,t!u2 ~9!

splits into two peaks, ‘‘big’’ and ‘‘small’’ peaks.~See Fig. 2.!
When the peaks are separated, the wave function of
cantilever-spin system can be represented as a sum of
spinors,

C~z,s,t!5C (1)~z,s,t!1C (2)~z,s,t!, ~10!

where the upper indices ‘‘1’’ and ‘‘2’’ refer to the big and th
small peaks, correspondingly. It was found with the accur
to 1% that both spinor wave functions,C (k)(z,s,t) (k
51,2), can be represented as a product of the cantilever
spin functions,

C (k)~z,s,t!5R(k)~z,t!x (k)~s,t!, ~11!

wherex (1)(s,t) describes the spin that points in the directi
of the external effective field,@e,0,2ẇ(t)#, and x (2)(s,t)
describes the spin that points in the opposite direction. T
ratio of the probabilities for the big and the small peak
determined by the initial angle between the external effec
magnetic field and the spin,

E uR(2)~z,t!u2dzY E uR(1)~z,t!u2dz5tan2~Q/2!, ~12!

whereQ is the initial direction of the external effective mag
netic field@ tanQ52e/ẇ(0)51/15#. If the initial conditions
describe a spin that points, for example, in the positivex
direction@An(0)5Bn(0)#, our simulations reveal two peak
with approximately equal amplitudes. Thus, the Hamilton
dynamics clearly indicates that the quasiclassical cantile
will measure the spin component along the effective m
netic field. Certainly, in the frame of the Hamiltonian a
5-2
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FIG. 2. The probability distributionP(z,t) for the cantilever position in the logarithmic scale for nine different times as indicated in
legend. The values of parameters aree5400 andh50.3. The initial conditions arêz(0)&5220, ^pz(0)&50 ~which corresponds to
a5210A2).
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proach, we cannot describe the measurement itself: the
herence between the two cantilever peaks does not disap
In other words, the Schro¨dinger equation describes the ma
roscopic Schro¨dinger cat state of the cantilever without e
fects of decoherence.

III. MASTER EQUATION

In the preceding section, we have presented indicati
that the cantilever ‘‘measures’’ the spin component along
direction of the effective magnetic field. In this section w
describe the measurement process. During the measure
process, the coherence between the two cantilever traje
ries disappears. It means that the reduced density matr
the cantilever-spin system becomes a statistical mixture
resenting two possible trajectories of the system. The m
question we are going to answer is the following: Does
cantilever, which interacts with the environment, measure
spin component along the effective magnetic field?

To answer this question, we studied the dynamics of
cantilever-spin system using the master equation. Our
pose is not just to simulate the expected experiment
rather to present a qualitative verification of the conclus
obtained in the preceding section. Thus, we consider the
plest ‘‘ohmic’’ model of the environment in the high
temperature approximation.5 In this approximation the envi
ronment is described as an ensemble of harmonic oscilla
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The number of oscillators per unit frequency is proportion
to the frequency in the region below the chosen ‘‘cutof
frequencyV and kBT@\V. The master equation for th
density matrixr in the high-temperature approximation is

]rss8~z,z8,t!

]t
5F i

2S ]2

]z2 2
]2

]z82D 2
i

2
~z22z82!2

b

2
~z2z8!

3S ]

]z
2

]

]z8
D 2Db~z2z8!222ih

3~z8s82zs!1 i ẇ~s82s!Grss8~z,z8,t!

2 i
e

2
@rss̄8~z,z8,t!2r s̄s8~z,z8,t!#. ~13!

Here,s,s8561/2, s̄52s, s̄852s8, D5kBT/\vc , andb
51/Q, whereQ is the quality factor of the cantilever. Again
we use the expansion over the eigenfunctionsun ,

rs,s8~z,z8,t!5(
n,m

An,m
s,s8~t!un~z!um* ~z8!. ~14!

Next, we solve numerically the system of equations for

amplitudesAn,m
s,s8(t),
5-3
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Ȧn,m
s,s8~t!5@ i ẇ~t!~s82s!1b/22~n1m11!Db2 i ~n2m!# An,m

s,s8~t!2 ihs8A2mAn,m21
s,s8 ~t!2 ihs8A2m12An,m11

s,s8 ~t!

1 ihsA2nAn21,m
s,s8 ~t!1 ihsA2n12An11,m

s,s8 ~t!1DbAm~n11!An11,m21
s,s8 ~t!1DbAn~m11!An21,m11

s,s8 ~t!

1~D11/2!bA~n11!~m11!An11,m11
s,s8 ~t!1~D21/2!bAnmAn21,m21

s,s8 ~t!2~D21/2!
b

2
An~n21!An22,m

s,s8 ~t!

2~D11/2!
b

2
A~n11!~n12!An12,m

s,s8 ~t!2~D21/2!
b

2
Am~m21!An,m22

s,s8 ~t!

2~D11/2!
b

2
A~m12!~m11!An,m12

s,s8 ~t!2 i
e

2
@An,m

s,2s8~t!2An,m
2s,s8~t!#. ~15!
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Below we describe the results of our computer simu
tions for the values of parameters in Eq.~8!. First, setting
b5D50 we obtain the density matrixrs,s8(z,z8,t) that ex-
actly corresponds to the wave functionC(z,s,t) derived
from the Schro¨dinger equation.

The initial density matrix is represented as a product
the cantilever and spin parts,

rs,s8~z,z8,0!5C~z,1/2,0!C* ~z8,1/2,0!S 1 0

0 0D . ~16!

The wave functionC(z, 1/2, 0) describes the quasiclassic
state of the cantilever,

C~z,0!5 (
n50

`

An~0!un~z!. ~17!

The valuesAn(0) are given in Eq.~7!. The initial values

An,m
s,s8(0) in Eq. ~15! can be easily found from Eq.~16!.
For t.0, the density matrix describes the entangled s

that cannot be represented as a product of the cantilever
spin parts. The initial peak ofrs,s8(z,z8,t) splits into two
peaks that are centered along the diagonalz5z8, and two
peaks centered atzÞz8, off the diagonal. The density matri
can be represented approximately as a sum of the four te
corresponding to the four peaks,

rs,s8~z,z8,t!5rs,s8
(1)

1rs,s8
(2)

1rs,s8
(3)

1rs,s8
(4) , ~18!

where we omit variables,z,z8,t. The matricesr (1) andr (2)

describe the ‘‘big’’ and ‘‘small’’ diagonal peaks;r (3) andr (4)

describe the peaks centered atzÞz8.
As an illustration, we show in Fig. 3 the quantity,

ur1/2,1/2~z,z8,t!1r21/2,21/2~z,z8,t!u. ~19!

We have found that with accuracy to 1% the density ma
rs,s8

(1) (z,z8,t) can be represented as a product of the coo
nate and spin parts,

rs,s8
(1)

~z,z8,t!5R̂(1)~z,z8,t!x̂s,s8
(1)

~t!, ~20!

wherex̂s,s8
(1) (t) describes the spin that points in the directi

of the external effective magnetic field@e,0,2ẇ(t)#. A simi-
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lar expression is valid forrs,s8
(2) (z,z8,t); but in this case,

x̂s,s8
(2) (t) describes a spin which points in the opposite dire

tion.
First, we note that in order to describe the measurem

process~the decoherence!, we have to consider an ensemb

FIG. 3. Three-dimensional plot of lnur1/2,1/2(z,z8,t)
1r21/2,21/2(z,z8,t)u, in the logarithmic scale.The values of param
eters aree5400, h50.3, b5D50. The initial conditions are
^z(0)&524, ^pz(0)&50.
5-4
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of quasiclassical cantilevers with the same initial conditio
At the same time, we are considering driven oscillations
the cantilever. So, the result of our simulations qualitativ
does not depend on the initial conditions of the cantilev
Second, as we already mentioned, we are going to ve
qualitatively the conclusion derived in the preceding sect
rather than simulate the expected experiment. Thus,
choose the values of parameters which help us to sav
computational time. Namely, we choose a relatively sm
~but still quasiclassical! value for the initial energy of
the cantilever, and a relatively small value for the therm
parameter D ~without violating the high-temperatur
approximation which requiresD@1). The small initial
energy of the cantilever allows us to reduce the numbe
basis functionsun(z). A relatively small value ofD allows
us to observe four well-separated peaks at relatively sm
values of time,t.

The initial uncertainty of the cantilever position isdz
51/A2. Due to thermal diffusion, the uncertainty of the ca

FIG. 4. The contours for lnur1/2,1/2(z,z8,t)
1r21/2,21/2(z,z8,t)u. The values of parameters aree5400, b
50.001, and D510. The initial conditions arê z(0)&524,
^pz(0)&50.
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tilever position increases with time. Thus, we have two
fects: ~i! the increase of the amplitude of the driven canti
ver vibrations~similar to the Hamiltonian dynamics! and~ii !
the increase of the uncertainty of the cantilever position d
to thermal diffusion. If the second effect dominates, the t
positions of the diagonal peaks~i.e., peaks centered on th
line z5z8) become indistinguishable. In this case, one c
not provide a spin measurement with two possible outcom

We have found that peaks centered on the diagonal re
the main properties described by the Hamiltonian dynam
The density matrixrs,s8

(k) (z,z8,t) for k51,2 can be approxi-
mately represented as a product of the cantilever and
parts. The spin part of the matrix describes the spin t
points in the direction of the external effective magnetic fie
(k51) or in the opposite direction (k52).

Next, we discuss the two peaks centered atzÞz8. As an
illustration, Figs. 4 and 5 show the contours of the quantit

ur1/2,1/2~z,z8,t!1r21/2,21/2~z,z8,t!u

and

FIG. 5. The same as in Fig. 4, but for lnur1/2,21/2(z,z8,t)
1r21/2,1/2(z,z8,t)u.
5-5
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ur1/2,21/2~z,z8,t!1r21/2,1/2~z,z8,t!u

given in logarithmic scale. One can see the peaks centere
zÞz8 as well as atz5z8. The peaks centered atzÞz8 de-
scribe the coherence between the two cantilever positi
The amplitude of these peaks quickly decreases due to
decoherence. Thus, the master equation explicitly descr
the process of measurement. The coherence between
cantilever trajectories~the macroscopic Schro¨dinger cat
states! quickly disappears. As a result, the cantilever w
‘‘choose’’ one of two possible trajectories. Corresponding
~depending on the cantilever trajectory! the spin will point in
the direction of the effective magnetic field or in the oppos
direction.

IV. CONCLUSION

We have studied the quantum dynamics of the cantilev
spin system in a simple version of the CAI MRFM. In th
version, the spin experiences a CAI under the action of
external phase-modulated rf magnetic field. If the freque
of CAI matches the cantilever frequency, the amplitude
the cantilever vibrations increases allowing single-spin
tection. We have studied the problem: Which componen
the spin is measured by the cantilever? We argue that
will measure the component of the spin along the direct
of the effective magnetic field providing nondestructive d
. B

y
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tection of the cantilever vibrations. This result was first d
rived using computer simulations of the Hamiltonian dyna
ics ~the Schro¨dinger equation!. Then, it was confirmed by the
numerical solution of the master equation. We have con
ered the case when the amplitude of the driven cantile
vibrations was greater than the thermal noise. In this ca
the phase of the driven vibrations depends on the spin c
ponent along the direction of the external effective magne
field. Thus, detecting the phase of the cantilever vibratio
one can measure the spin component along the effec
magnetic field.

We should mention that the direct relation between
cantilever trajectory and the direction of the spin has be
verified for a transient process in the CAI MRFM. Our com
puter capabilities do not allow us to check this relation
the stationary cantilever vibrations att@Q. Also, we com-
pletely ignored the direct interaction between the spin a
the environment. We are now investigating this interactio
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