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Abstract. The classical electrostatic problem of a point
chargeq between two semi-infinite conducting planes
intersecting at a given angleα is approached using methods
from dynamical system theory. In this way the standard
solution is recovered: the image method works if and only
if α = π/n with n a positive integer; the number of image
charges is 2n − 1 (n − 1 having the same charge of the
physical one,n with opposite charge) and they must be
disposed at the vertices of two regular polygons having
n-sides inscribed inside the circle of radius equal to the
distance between the physical charge and the intersection
point of the two planes.

Riassunto. In questo lavoro viene affrontato il problema
elettrostatico classico relativo ad una carica puntiforme tra
due semipiani conduttori intersecantesi con un certo angoloα

usando i metodo tipici della teoria dei sistemi dinamici. In
questo modo si riottene la soluzione usuale, ovveroè
possibile utilizzare il metodo delle cariche immagine se e
solo seα = π/n con n intero positivo. Il numero delle
cariche immaginèe 2n − 1 (di cui n − 1 aventi lo stesso
segno della carica fisica en segno opposto) e devono essere
disposte ai vertici di due poligoni regolari aventin lati
inscritti nel cerchio di raggio pari alla distanza tra la carica
fisica ed il punto di intersezione tra i due piani.

1. Introduction

The image charge method is a beautiful and powerful
mathematical trick which permits one to find exact so-
lutions of partial differential equations with appropriate
boundary conditions. One of the most well known fields
of application comes from electrostatics. Every gradu-
ate student in physics or mathematics knows how to
explicitly find out the potential generated by an infinite
grounded plane and a point chargeq, a distanced apart
[1] by simply adding a negative charge in the hidden re-
gion of the space at the same distanced from the plane.
Of course this solution only holds in the space where the
‘physical’ charge is located as can be easily observed.
In other words, image charges can only be eliminated
in the distant region where the potential is screened, in
such a way as to realize suitable boundary conditions.

The problem addressed here is a very simple
generalization of this: two intersecting semi-infinite
conducting earthed planes and a point charge. This is a
well known classical problem, see for instance [2]. In
this paper I will find the standard conditions of validity
of the image charge method mapping this problem to a
dynamical system and using results well known in this
field. I will then show that the image charge method can

be applied, and the solution easily found, if and only if
the planes intersect each other at an angleα = π/n,
n being an positive integer. It would be interesting
to show whether this new formulation is able to solve
the caseα 6= π/n where an analytical solution is still
lacking.

2. Formulation of the problem

Consider the simple electrostatic problem of two
conducting earthed planes intersecting at a given angle
α and a point chargeq at a given distancer0 from the
origin of the intersection and at angleθ0, as indicated in
figure 1. This problem is easily found to be a 2D one
and it is sufficient to consider the projection onto the
planez = 0 containing the point charge (plane in figure
1).

From the mathematical point of view, one should
solve the Poisson equation,

∇2φ = qδ(Er − Er0), (2.1)

with appropriate boundary conditions,

φ|01 = φ|02 = 0, (2.2)
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Figure 1. Conducting grounded planes 01 and 02 and
the point charge q having polar coordinates (r0, θ0) at
distance d1, d2 from the planes.

inside the physical regionS = {(r, θ)|r > 0; 0 < θ <
α}. It is well known that the potential inside the physical
region S can be obtained, without solving the Poisson
equation, by placing appropriate image charges in the
unphysical region,̃S = {(r, θ)|r > 0; α < θ < 2π}, in
such a way as to satisfy the boundary conditions (2.2).

For example in the case of figure 1, if one put a
chargeq1 = −q at a distanced1 from 01, below 01

and at a distancer0 from O, the potential due toq, q1

is found to be zero on the plane01. Adopting the
same line of reasoning one could makeφ = 0 on 02

by placing a chargeq2 = −q above02, at a distance
d2 from 02 and r0 from O. Problems arise since each
of these two image charges ‘perturbs’ the other plane,
namely q1 perturbs02 and q2 perturbs01. This can
in turn be adjusted by adding two other image charges
q3 = q4 = q using reflections around the planes01 and
02. The procedure can be iterated and one obtains, in
general, a series of image charges. The question which I
address is the following: when is it possible to obtain a
finite or infinite number of image charges lying only in
the unphysical region? In fact the method works only if
the image charges lie in the unphysical region and only
if they exactly balance themselves in order to realize the
boundary conditions (2.2).

For the time being, it is sufficient to consider 0<
α < π and the point charge inside the smallest
angle generated by the intersection of the two planes
01 and 02. The relevant variables are the polar
coordinates(r, θ) and the equation of the01, 02 planes
are respectivelyθ = 0 andθ = α. Let (r0, θ0) be the
coordinates of the physical point charge. Image charges
will then be located by subsequent reflections around
the planes01 and02, and better, around their extension
0′

1 and0′
2 (infinite planes).

Let us introduce the reflection operator around the
x-axis (0′

1 plane),

R0(r, θ) = (r̄, θ̄ ) = (r, 2π − θ) (2.3)

and the reflection around the extended straight line

θ = α (0′
2 plane):

Rα(r, θ) = (r̄, θ̄ ) = (r, 2(π + α) − θ mod− 2π). (2.4)

In equation (2.3) 0≤ θ̄ < 2π for any 0 ≤ θ < 2π

and the operation mod− 2π is not strictly necessary.
Anyway Rα=0 = R0 as one can easily check.

A ‘first generation’ of image charges will be obtained
starting from(r0, θ0) and reflecting byR0 and Rα in
sequence, that is

(r1, θ1) = R0(r0, θ0)

(r2, θ2) = Rα(r1, θ1) = RαR0(r0, θ0) (2.5)

(r3, θ3) = R0(r2, θ2) = R0RαR0(r0, θ0)

. . .

The sign of the image charge changes at each
reflection. The ‘second generation’ set of image charges
is obtained in the same way, exchangingRα with R0:

(r ′
1, θ

′
1) = Rα(r0, θ0)

(r ′
2, θ

′
2) = R0(r

′
1, θ

′
1) = R0Rα(r0, θ0) (2.6)

(r ′
2, θ

′
2) = Rα(r

′
2, θ

′
2) = RαR0Rα(r0, θ0)

. . . (2.7)

Since the reflection does not change the radiusr0, all the
image charges, if any, will be distributed on the circle
of radius r0. For this reason ther coordinate will be
omitted hereafter. First generation points (2.6) can be
arranged in the following way :

θ2n = (RαR0)
nθ0

θ2n+1 = (R0Rα)
nθ1

(2.8)

for any n ≥ 1, andθ1 = R0θ0. The same can be done
for second generation points (2.7):

θ ′
2n = (R0Rα)

nθ0

θ ′
2n+1 = (RαR0)

nθ ′
1

(2.9)

for any n ≥ 1, with θ ′
1 = Rαθ0. The image charges

method will work if and only if all these points will be
eliminated outside the physical region. The elements of
the two sets{θ2n}n≥1 and{θ ′

2n}n≥1 are image charges of
the same sign and value of the physical charge since
an even number of reflections is involved. They will
be called ‘positive’ charges. For the same reason the
elements of the sets{θ2n+1}n≥0 and{θ ′

2n+1}n≥0, involving
an odd number of reflections have opposite sign of the
physical charge and they will be called ‘negative’. It is
easy to show that the operatorTα = RαR0 is the shift
operator on the arc of a circle of angle 2α. It follows
that all the positive image charges of the first generation
set are separated one from each other by an angle 2α.
The same holds true for the sets, (2.8) and (2.9), of
image charges.

It is convenient to consider the set{θ2n}n≥1 as a
dynamical orbit on the plane,n being the time and
RαR0 the evolution operator in discrete time (one
period evolution operator). In this way the system can
be thought of as a dynamical system and its proper
theoretical formalism can be applied.



218 F Borgonovi

3. The irrational case

The irrational caseα = πν, with 0 < ν < 1 irrational
number, can be treated at once. In factTα becomes the
ergodic shift on the circle and it is easy to prove (see for
instance [3], chapter V) that the set of points{T n

α θ0}n≥1

has an infinite number of elements which are uniformly
distributed on the circle of radiusr0. There are then
an infinite amount of points inside the physical region
S and this excludes the possibility of using the image
method approach.

4. The rational case

Let then assumeα = πp/n with p, n prime integers,
p < n. The orbit{T n

α θ0}n≥1, from the dynamical point
of view, is a periodic orbit, and this means that one has
four sets of periodic orbits. I will show that this is not
the case and only two sets of periodic orbits need to be
taken into account.

The periodicity of one of these orbits can be stated
as:

(Rπp/nR0)
n = (R0Rπp/n)

n = 1. (4.1)

From condition (4.1) it follows that

θ2n = θ0

θ ′
2n = θ0.

(4.2)

Moreoverθ2i − θ2(i−1) = 2α andθ ′
2i − θ ′

2(i−1) = −2α,
∀i = 1, ..., n which means that they are the same orbit.
Furthermore the total angle covered by the orbit is
given by 2αn = 2(πp/n)n = 2pπ : this means that
p crossings of theθ = 0 half line have to be done in
order to close the orbit.

The same holds for the negative orbits. In fact the
negative elements of the first generation set can be
written as (α = pπ/n) :

R0θ0, (R0Rα)R0θ0, . . . , (R0Rα)
n−1R0θ0 (4.3)

which exactly coincide with those of the second
generation, conveniently rearranged:

(RαR0)
n−1Rαθ0, (RαR0)

n−2Rαθ0, . . . , Rαθ0. (4.4)

Even in the case of negative charges the points of the
orbit have the same interspace 2α = 2πp/n on the
circle, starting fromR0θ0 which is the symmetric, with
respect to thex-axis, of the physical charge.

4.1. The solvable case:α = π/n

Let us assumep = 1. In such a case only one crossing
of the θ = 0 line must be done. Consider then − 1
positive image charges. Since they are separated, on
the circle, by an angle 2α, none of them are inside the
physical regionS. The same holds for the negative
image charges, since the ‘starting’ point isθ1 (symmetric
with respect to thex-axis of the physical charge) which
satisfies 2π − α < θ1 < 2π .

This implicitly suggests the way to put the image
charges forα = π/n.

Figure 2. Distribution of the image charges for α = π/3.
Full circles have the same sign of the physical point
charge. Open circles have opposite charge. Dashed and
dotted lines are shown to indicate explicitly the way to
eliminate the image charges (in this case at the vertices
of two equilateral triangles).

(i) Draw the circle with the centre at the origin of the
conducting planes and radiusr0.

(ii) Start with the physical charge and draw a regular
polygon withn sides and a vertex at the point where
the physical charge is located. Put positive image
charges at the vertices of the polygon.

(iii) Consider the symmetric point, with respect to the
x-axis of the physical charge. Starting from this
vertex draw the regular polygon withn sides inside
the same circle. Put the negative charges at it’s
vertices.

In figure 2 the system of charges constructed in the way
indicated above is drawn forα = π/3. Full circles
indicate the positive charges, open circles the negative
ones. The equilateral triangles are shown by dotted
and dashed lines. The system in a certain way can
compensate itself, that is each point has a twin charge of
different sign in front of it with respect to the0′

1, 0
′
2

planes. This is clearly shown in figure 3 where the
symmetry around the two planes has been indicated by
dashed and dotted lines.

With increasingn the system becomes of course
more complicated. In figure 4 the set of thirteen image
charges necessary to solve the problem whenα = π/7
has been drawn.

4.2. The insolvable case:α = pπ/n

The last point concernsα = pπ/n with p, n prime
integers, 1 < p < n. I will prove that, in this
case, at least one point of the orbits{θ2i}i=1,...,n−1 or
{θ2i+1}i=1,,...,n (the point θ0 has been excluded) exists
inside the physical regionS. Defining the following
region:

S ′ = {(r, θ)|α < θ < 2α} (4.5)
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Figure 3. Image charges and symmetry lines around the
0′

2 plane (dotted) and 0′
1 (dashed), for the same case

as figure 2.

Figure 4. The same as figure 2 for α = π/7.

which is the symmetric with respect to the02 plane, of
the physical regionS, such that

RαS
′ = S. (4.6)

It is clear that applyingRα or R0 to one point of the
two orbits above, a point of the other orbit is obtained.
For instance, givenθ2i , one has :

Rαθ2i = Rα(RαR0)
iθ0

= R2
α(R0Rα)

i−1R0θ0

= (R0Rα)
i−1θ1 = θ2i−1.

(4.7)

Let us consider the positive orbit{θ2i}i=1,...,n−1. These
points cannot coincide withθ0 since this would imply
n = pm with m integer; but this is against the
hypothesis thatp andn are prime integers.

Then we are left with two possibilities : (i) at least
one point is insideS; (ii) none of them are inS.

In case (i) the theorem holds.
In case (ii) it has been shown that above thep

crossing of theθ = 0 line have to be done in order
to close the orbit. Moreover the points which cross this
line cannot be inS (case (i)) and, at the same time,
every point is separated from each other by a ‘distance’
of 2α. This means that thesep − 1 points (and notp
since the last crossing is necessary to return back toθ0)
should accumulate in the regionS ′. But then, due to
(4.6), there arep − 1 points of the second orbit which
lie in the regionS. Sincep > 1 this completely proves
the theorem.

In general, there exists positive image charges and
r negative image charges insideS, depending on the
initial position θ0, with s ≥ 0, r ≥ 0 ands + r = p − 1.
Sincep > 1 there is always at least one image charge
inside the physical region.

The casen = 1, even if excluded from the very
beginning (0 < α < π) is, naturally valid (the
two planes become only one plane) and the polygon
degenerates in a point.

What would happen ifπ < α < 2π? The
demonstration forα = νπ with 1 < ν < 2 irrational
number is of course still valid. The caseα = pπ/n
with n < p < 2n needs a little comment since, now,
S

⋂
S ′ 6= ∅. In this case it is sufficient to defineS ′ = S̃

(the unphysical space). Then one hasRαS
′ ⊂ S and

the demonstration follows along the lines indicated in
subsection 4.2.

Since the possibility to solve the problem using the
image charge method is related to the angleα between
the two conducting planes and not to the positionθ0 of
the physical charge, this result can be straightforwardly
generalized, via the superposition principle, to a generic
numberN of physical charges.
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