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Abstract. - We study the properties of eigenfunctions and quasi-energies in the kicked Harper 
model. The analysis of eigenfunctions clearly shows the transition from localized to delocalized 
states in the parameter region K < L. In the delocalized phase numerical evidence is given for 
the simultaneous presence of pure point, singular continuous and absolutely continuous 
spectrum. 

In this letter we study the spectral and eigenfunction properties of the kicked Harper 
model (KHM) [l]. This model has recently attracted a great deal of attention (see references 
in[l]). One of the reasons for such interest is due to the fact that this model lies on the 
intersection between the field of quantum chaos and the physics of incommensurate systems. 
Indeed, in the study of quantum chaotic systems the effect of quantum localization of 
classically chaotic diffusive excitation has been established[2]. On the other hand, in the 
quasi-crystal domain the typical situation is characterized by a multifractal spectrum of 
eigenenergies[3]. A physical example of such a system is represented by the Harper 
equation which describes electrons in a 2d lattice in the presence of a magnetic field [4,51. 
However, differently from the Harper model (HM), which is integrable in the classical h i t ,  
the classical dynamics of KHM is chaotic. This puts an interesting question about the relation 
between the quantum localization of chaos and the properties of motion in incommensurate 
potentials. This question was firstly addressed in [6] where it was found that localization can 
be destroyed leading to unlimited excitation over unperturbed levels. Further studies 
showed that the spectrum is generally characterized by multifractal properties [7,8] and 
anomalous diffusion along the lattice. 

The interesting property of this anomalous diffusion has been established in [9]. There it 
was found that while the width of the distribution over the unperturbed levels grows in time 
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without any bound, the probability to stay near the initial state does not decay to zero. Since 
without perturbation the quasi-energies are homogeneously distributed in the interval 
[0,2x], the situation seems to be quite different from the usual solid-state picture where a 
mobility edge separates the absolutely continuous spectrum (a.c.s.) from the pure point one 
(p.p.s.). For a better understanding of this interesting phenomenon we carried out a detailed 
analysis on both the quasi-energy eigenspectrum and the eigenfunctions. 

The KHM is described by the unitary evolution operator 

where 6 = - i(a/aO) and p is the quasi-momentum. The parameter L characterizes the free 
rotation while K represents the strength of the kick potential. Quasi-energy eigenvalues A 
and eigenfunctions + A  are given by 

(2) 

The parameter h/2x characterizes the incommensurate structure of the model itself. In our 
study we mainly concentrate on an irrational h/2x with golden tail in the continuous fraction 
expansion. For concreteness we choose A = 2n/(6 + p )  and p = (fi + 1)/2. 

The phase diagram which describes the dynamical properties of KHM can be represented 
in four different regions in the (K,L)-plane, see for instance fig. 11 in[l]. The most 
interesting region in such a plane corresponds to K S L where a transition from localization 
to unbounded excitation takes place. 

To investigate the properties of KHM we approximate the irrational value of h/2x  with its 
best rational approximants obtained from the continuous fraction expansion. This is a 
standard procedure in the study of incommensurate systems, see for instance [l]. Properties 
of irrational systems are then supposed to be recovered in the limit q + a, p / q  being the 
rational approximant to h/2x. The evolution operator is then described by a finite matrix of 

OL, K + h  = exp -  AI + A  . 

Fig. 1. Fig. 2. 

Fig. 1. - Localized eigenstate with maximum inverse participation ratio for K = 1, L = 7 and 
h/2x  = 23311775. 
Fig. 2. - Delocalized eigenstate with maximum inverse participation ratio for K = 4, L = 7 and 
h / 2 x  = 23311775. 
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Fig. 3. 

Fig. 3. - Inverse participation ratio E as a function of the quasi-energy A for K = 1, L = 7 and three 
different approximants: a) h/2n = 55/419, b)  h/2n = 144/1097, e) h/2x = 233/1775. 

Fig. 4. - Scaled inverse participation ratio E/q as a function of the quasi-energy A for K = 4, L = 7 and 
three different approximants: a) h / 2 x  = 55/419, b)  h/2n = 144/1097, e) h/2n = 233/1775. 

size q [lo]. This kind of approximation is equivalent to consider the KHM on a torus instead of 
a cylinder. 

By diagonalizing this matrix, we analysed the properties of the eigenspectrum and the 
eigenfunctions. To reduce the computational difficulties we studied only symmetric 
eigenstates ( # A  (n )  = # A  ( - n)). Two typical eigenstates in the localized and delocalized 
regions of the phase diagram are represented in fig. 1 and 2. It is interesting to note that 
both eigenstates correspond to the region K < L of the (K, L)-plane where the HM [ll] has 
only localized states. To analyse the properties of the eigenstates we characterized them by 
their inverse participation ratio E = I # n  I 4 .  We also checked that other types of 
eigenstates length measure, like the entropy [12] or the mean width defined as An = 
= (((n - (n))2))1'2, gave the same results. 

The behaviour of the inverse participation ratio for different approximants and for 
different values of K corresponding to the localized and delocalized regions of the (K, L)-plane 
is shown in fig. 3 and 4. Figure 3 gives clear evidence that all eigenstates are localized. The 
increase of the rational approximant q in four times does not change the overall structure of 
the €(A) distribution. This gives another confirmation of the p.p. character of the spectrum in 
this region. It is interesting to note the presence of gaps in the spectrum and the apparent 
crossover of different €(A) branches. Probably these branches are related to the folding of 
some effective Hermitian Hamiltonian H d  on the quasi-energy interval [0,2xI, so that the 
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unitary operator (1) can be represented as UL, = exp [ - iaHee]. Then the branches can 
appear for sufficiently large values of a. 

Another situation, correspondent to K = 4, is presented in fig. 4. These pictures, for 
different approximants q, definitely demonstrate evidence for the existence of a.c.s. at those 
parameters values. Indeed there are finite intervals in A in which E grows linearly with the 
size q of the matrix. This means that the corresponding eigenstate cannot be normalizable in 
the limit q-* m. We then show evidence for unnormalized states in a finite region of 
spectrum, i.e. an a.c.s. That is particularly stressed by using the resealed variable E/q (see 
fig. 4). Another interesting feature is that the lower bound of the distribution corresponds to 
those E values unchanged under the increase of q. This means that there are localized states 
with an inverse participation ratio independent of the matrix size q. Such states are 
associated with the p.p. part of the quasi-energy spectrum. It is also important to remark 
that there are sharp variations (about 50 times) of 5 in relatively short A intervals of 
approximate size 0.05. 

Even if we do not have a physical interpretation for this sharp variation in the €(A) 
distribution, from the mathematical point of view they should correspond to a singular 
continuous spectrum (s.c.s.) with multifractal quasi-energies and eigenfunctions, super- 
imposed both with a p.p.s. (lower bound in fig.4) and with an a.c.s. (finite intervals of 
spectrum scaling as the size of the matrix: see fig.4). At the same time from this 
consideration it is impossible to state whether these three components are dense in the 
spectrum or located in different non-overlapped intervals of A. 

We also investigated the statistical distribution of inverse participation ratios P(E) in the 
localized phase as well as in the mixed one (we use here the terminology introduced in [l]). 
Two examples, corresponding to fig. 3c) and 4c), are shown in fig. 5. In the localized regime 
(fig. 5a)) the distribution is very narrow and the sharp peaks correspond to an accumulation 
of eigenfunctions with approximately the same value of E.  On the contrary the mixed phase is 
characterized by a broad distribution in E which shows an almost constant plateau in the tail. 
The narrow peak for small E corresponds to the p.p. part of the spectrum with exponentially 
localized eigenstates. The formation of the plateau without gaps gives one more indication of 
the presence of multifractal spectrum with different length scales for eigenfunctions. 
Computations were performed here by varying randomly the quasi-momentum p in the 
interval [O,x] and for different approximants. This was done to exclude the possibility of 
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Fig. 5. - Probability distribution of the inverse participation ratios for L = 7 in the under critical case 
K = 1 (a)); and in the overcritical case K = 4 (b)) (semilog histogram). Quasi-momentum /3 has been 
taken randomly in the interval [O,zI. Different approlrimants to h/2z are chosen: dotted line h/2z = 
= 34/259, dashed line h / 2 r  = 55/419, full line h/2n = 144/1097. In a) dashed and full histograms are 
superimposed showing the asymptotic distribution. In b)  the right cut-off is moving linearly with q 
(a.c.s.1. 
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Fig. 6. - Average inverse participation ratio ( E )  aa a function of the matrix size q, for L = 7 and 
different K values: K = 1 (open squares), K = 2 (open circles), K = 2.5 (triangles), K = 3 (full squares), 
K = 4 (full circles). 

finite-size edge effects and to prove the persistence of peaks and the broadening of the taiJ in 
the limit q 4 00. 

Another kind of information about the multifractal structure of the eigenstates can be 
extracted from the analysis of the momenta of the distribution P(E) and their dependence on 
the approximant q. For the ffit moment ( E )  the dependence on q is presented in fig. 6 for a 
fixed L value. This picture clearly indicates the existence of transition between localized and 
multifractal spectrum. Indeed, for K S 2, the average (E) does not grow with q, while for 
K > 2 an approximate power law growth with q is found: (5) - qa l .  The values of a 1  for 
different K values are given in table I. In the localized phase the values of a 1  are very small, 
thus indicating the exponential decay of eigenfunctions (see fig. 1). On the other hand, for 
K > 2 the exponent a 1  changes with K and this marks the presence of multifractal structure. 
Another confirmation of this structure is the difference between a 1  and a I 1 ,  where a 1 1  is 
defined as (E') - q Z u I I  (see table I). Even if the errors associated with the determined a 1  
values are small, a direct inspection of fig. 6 definitely shows that log ( ( E ) )  cannot be fitted by 
a straight line for K = 3 and K = 4. This is probably due to the fact that the asymptotic 
regime has not been reached for these q values. Indeed the results of fig. 4 clearly indicate 
that there are states for which ( E )  scales as q. An interesting point would be the local analysis 
of the spectnun based upon the definition of a local scaling exponent q from { ( A )  - q q ( A ) .  This 
work is still in progress and it will be reported in a future paper. 

TABLE I. - First and second momentum growth exponents a8 afunction of the parameter for L = 7 .  
Each exponent has been derived by t h  usual best-fit procedure, for rational approximnts of h/2r  u p  
to 233/1775. T h  exponents are defined by(€) - qal and ( E 2 )  - qeaI1.  

K QI a I1 

1 
2 
2.5 
3 
4 

0.02(1) 
0.05(1) 
0.32(1) 
0.66(2) 
0.75(3) 

0.02(1) 
0.05( 1) 
0.48(3) 
0.77(6) 
0.86(5) 
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In conclusion, we have analysed the properties of eigenfunctions in KHM. This analysis 
confirms the existence of a transition [91, in the region K c L, from a p.p.s. to a mixed 
spectrum both characterized by gaps. Below this transition all eigenstates are exponentially 
localized, while above the transition different types of states have been found. Some of them 
are exponentially localized and correspond to p.p.s. A second part of these states corresponds 
to the S.C. part of the spectrum with an inverse participation ratio 5 growing as a power law of 
the rational approximant q. The exponent defining such growth is less than 1. We also found a 
third kind of states characterized by a linear dependence of 5 on q (see fig.4). This fact 
indicates the possible existence of an ax. part of spectrum itself for K c L. At the same time 
the sharp variation of t; as a function of A supports the presence of mixing between S.C.S. and 
p.p.s. We finally remark that, differently from the HM, where the p.p.s., S.C.S. and a m .  are 
obtained for different parameter values, here all these regimes seem to be realized for just 
one value of the parameters. One of the reasons for this rich situation is the possibility of 
folding of some effective Hamiltonian with mobility edges over the quasi-energy interval 
[0 ,2x] .  Indeed, in this case, the unitary operator U = exp [ - iuHeE] can have a mixing of all 
three kinds of spectrum for large values of a. However, the stability of such kind of spectrum 
under a small perturbation remains an open question. 
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