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The Hamiltonian conservative system of two interacting particles has been considered both in classical and
guantum description. The quantum model has been realized using a symmetrized two-particle basis reordered
in the unperturbed energy. The main attention is paid to the structure of chaotic eigenfufigEi®sand to
the local spectral density of statdsDOS). A remarkable correspondence has been found for the shapes of
EF's and the LDOS in the energy representation to their classical counterparts. Comparison with the band
random matrix theory predictions has revealed quite significant differences, which are due to the dynamical
nature of the model. On the other hand, a partial agreement is found by inserting randachinegsn the
dynamical model for two-body matrix elements. This shows that, at least for small number of particles, care
must be taken when classical correlations are neglected. The question of quantum localization in the energy
space is discussed for both the dynamical and random md&4d1863-651X98)05005-3

PACS numbds): 05.45+b

[. INTRODUCTION cally chaotic two-interacting spin system with a finite Hilbert
space. Our purpose is analyzing the structure of eigenstates
Quantization of classically chaotic systems has been adand of the LDOS, and comparing it with expectations based
dressed, from the very beginning, to both conservative an@n previous random matrix studies and with their classical
time-dependent systems. In the latter case the important pheounterparts.
nomenon of dynamical localization was discovered, connect- First of all we find that, when written in the eigenbasis of
ing a classical quantity, the diffusion rate, to the quanturfwo noninteracting particles, reordered in the unperturbed
localization length of the correspondent equilibrium distribu-€nergy, the Hamiltonian matrix has an overall banded struc-
tion [1]. Instead, in the case of conservative systems, importure. About the shape of eigenfunctions and the LDOS, we
tant steps have been taken in establishing some distinctiiéhd that our quantum results, on the average, follow the
features that mark a quantum chaotic system from an intédehavior of similar quantities computed from WBRM only
grable one: let us mention, for instance, the non-Wignerapproximately at best. Nevertheless, they follow remarkably
Dyson statistics of neighboring level spacings, or the Scar\l\le” the behavior of their classical analogs that we actually
ring of eigenfunctions along some classical periodic orbitscompute in the present paper.
However, the possibility of quantum localization effects in  On the other hand, the correspondence with random ma-
such systems has been scarcely explored until recently, whdfix theories(RMT's) is restored on artificially randomizing
a clue in this direction was four{(f:i by investigating a par- our Hamiltonian. The lesson we draw from this result is that,

ticular class of random models: the Wigner banded randondlthough RMT quite well reproduces fluctuation properties
matrices(WBRM) ensemble. of spectra of real chaotic Hamiltonians, some correlations are
For such an ensemble, whose introduction dates back t@issing in their structure, which are essential in giving the
Wigner himself[3], it is possible to obtain a series of results correct semiclassical behavior when detailed questions about
that allow for a definition of quantum localization within the the structure of eigenfunctions are asked. It is of course pos-
classical energy surface. These results, when extended giple that a better correspondence with RMT will be restored
Hamiltonian systems, would impose severe quantum limitawith systems with a larger number of particles; for the time
tions on the behavior of classical ergodic systems. The imbeing, however, our results appear to indicate that caution is
portant result is that room is left for quantum localization ne€eded in carrying over results from RMT to Hamiltonians
and this can be obtained directly from the knowledge of thehat have a smooth, well-defined classical limit.
local spectral density of statdbDOS) and eigenfunctions

(EF’s). Quite surprisingly, both quantities have well-defined Il. MODEL
classical limits(see Ref[2]) that, generally speaking, have _ ) ) )
received scarce attention before now. The model has been proposed and widely investigated in

On the other hand, in order to acquire physical relevancd4]- Here we review few fundamental facts about its classical
it is clear that such results should be extended to real physgnd quantum behavior. It describes two coupled rotators,
cal systems, where the origin of randomness is purely dywith angular momenturh andM with the following Hamil-
namical. This we do, in this paper, by considering a classitonian:
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H=A(L,+M,)+BLM,. (1) H=p;+py+yL?—piyM?—p3cosq, cosd,.  (4)

It may be used to describe the interaction of quasispins in
nuclear phyf,ics or pseudospins in s?lid—state SYStems. The analysis of the surfaces of section reveals a large
ChoosingA™~ as the unit of time anAB "~ as the unit of  ,mper of regular trajectories covering invariant tori when
angular momentum, it can be written Bs=Hqy+V vyhere L2,M? are both very small or very lardd]. To simplify the
HO:LZJFZMZ and2V=LXMX. The constants of motion areé aplem we sel.=M. In such a case the most interesting
H:E'_ L*, andM*~. ) 5. situation occurs when €L <10 where, depending on the

Fixing the values ot.“ andM* it can also be showfd]  energy valueE, regular and chaotic regions coexist. Typi-
that the total energy must be bounded: cally when|E| is close toE .= L2+ 1 trajectories are regu-

2 g2 (|24 24 lar while for E=0 islands of stability become very small and
B<Ena= (LT DM+ 1) @ chaotic motion dominates.
for LM>1. Quantization follows standard rules, and angular mo-

It is worth mentioning that in this form the dynamical Menta are quantized according to the relatidris=M

- > f— 2 i i
variablesL,M are not canonical. On the other hand, the .ﬁ I(I+1) wherel is an integer number. Therefore, for

usual Hamiltonian form, with the canonical variabtsp; , given| the Hamiltonian is a finite matrix, and the semiclas-

i=1,2 can be recovered by means of the following transfor-ls_'filol;]rgt';r'lst recovered in the limit—c and%—0 keeping
mation: .

In our approach the Hamiltonian is represented in the

L= /—ZLZ—plcosql, L,= /Lz—pzlsin s, :\r/]vg-fpc))zrirrrt]icles basi$l,,m,) where the matrix elements have

L,=p;, My=yM?—p3cosqy,

My= Mz—pgsinqz, Mz=p2- (3) <|;am£|H0||z:mz>:5mz,m£5IZ,I£ﬁ(|z+mz) (5)
keepingL? and M? as constant§5]. In these variables the
Hamiltonian reads and
ﬁ2
(1zm;|V[l;,m;)= zémz,m;ﬂ%,l;w(l T =1+ 1) (m+my)(m—m,+1) (6)
|
with |,,m, integers,—I<l,,m,<I. shell the set of states having the same value of unperturbed

The z component of the total angular momentdg=L,  energy.
+M, (which is the same as the unperturbed Hamiltonian Itis easy to prove that in the symmetrized basis each shell
H,) obeys the selection rulesJ,=0,+ 2%, so the subspace With Ho fixed and even has a degenera@sI+1
spanned by the states with odg/# can be separated from —|Hol/2%, and the dimension of the Hamiltonian matrix is
that with J,/% even (there are no matrix elements for the N=(I +1)? due to the relation
transition between them In what follows, we fix J,/% ol
=Hy/% even. As a result, the matrix describing the Hamil- [Hol
tonian has a dimensioN=2I%+2I+1. We have also to Ho =i (Hl_ﬁ
take into account the symmetry degeneracy with respect to

the exchange of particles. Below, we consider only symmetyye then reorder the Hamiltonian matrix according to the

ric states. , o o increasing unperturbed energies and we [cglithe resulting
Let us now explain how the Hamiltonian matrix is con- yyo-particles symmetrized ordered basis. As a result, the off-
structed. Once: is fixed, there are 2+ 1 single-particle lev-  giagonal matrix elements are symmetric with respect to the

=(1+1)2

els (—I.(=1+1], ... {=1[€0.{1], ... {(I=1[(I[. The  two main diagonalsi, ,=(n|H|n) andHy_,n_n-
ground state is represented by two particles in the lowest Diagonal matrix elements are constructed from the
single-particle level, which we label gs-1,—1]; it has an  unperturbed Hamiltoniahly; they are given by the eigenval-

unperturbed energ¥q,= —2l%. The first excited state is ues —2I#4,(—21+2)%,...,2k and are disposed along the
doubly degenerate and the two eigenstates having the sameéncipal diagonal starting from the lowest left corner. One
energy E;=(—21+2)% are (—I|,—1+2|+(=1+2,—1])/  should note that diagonal elements of the perturbafie@an-

V2 and(—1+1,—1+1|. The former state corresponds to oneish due to Eq(6). The global structure of the matrkt, , is
particle in the single-particle levél-1+2| and the other in  shown in Fig. 1. The nextto the principal ongdiagonals
the single-particle ground state-1|. The latter state, to two H, ,.; correspond to transitions inside eadl-shell while
particles in the single-particle levél-1+1|. We call theH,  the “arcs” connecting the two corners represent transitions
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FIG. 1. Structure of the Hamiltonian matrik, ., in the symme-
trized basis forl=11 (N=144) and J, even. Dots indicate off- 0_1 o5 o 05 ]
diagonal elements different from zero. The bandwidlils maximal ’ ’
at the center wherb=2l+1. A few differentH, shells are shown £

by the horizontal lines. FIG. 2. Density of states for the total Hamiltoniah,+V (a),

and for the unperturbed oné, (b), as a function of the rescaled
energye=E/E,for | =39 andL = 3.5. For comparison, the fitting
Gaussian(a) and the triangular curvéb) are given.

between neighboring shells havidd ,= = 2#. Such a glo-
bal structure of the Hamiltonian matrix is not a peculiarity of
this model but it corresponds to the so-called “shell model”
representation widely used in atomic and nuclear physics ) .
[6,7]. It was shown in Refd:8—10] that generic properties of turbed one hasl 1) ?ondegenerate_ states within a spec-
eigenfunctions in this basis can be directly related to singlelfum 20f radius R,~L“+1, which gives the density
particle operators, in particular, with the distribution of oc- ~ 1 ”Pplﬁ- ]
cupation numbers for single-particle states. Numencal data show that the density of stqtes _changes

The Hamiltonian matrix has a clear band structure, withffom a triangular shape for the unperturbed Hamiltorjizme
the bandwidthb ranging from 1 at the corners up bo=2l more statg is addg(kubtractebj at each neighbor Ieyel fo_r
+1 in the middle. However, this structure differs strongly Ho negative (positive] to the Gaussian form, which is
from that of standard Wigner band random matritsee, for known to .be generic for realistic finite sysj[ems like atoms
example,[2,11] and references therginMoreover, nonzero and nuclei; see, for example, Ref§,7]. In Fig. 2 the per-
off-diagonal matrix elements are positive and the mean ané/rbeéd and the unperturbed density are shown for a typical
variance of the distribution of these matrix elements depen§@se, together with the corresponding fitting curves.
on the classical parametef=#2l(1+1) only. To be more
precise, if one assumes a continuous distribution of the ma-
trix elements, it can be showfsee Appendix A that o
=(v?)—(v)?=(LI4)".

There are of course semiclassical corrections to this esti- The subject of this section is the analysis of the LDOS
mate, but the variation df in one order of magnitud@vail- (also known as “strength function” or “Green spectragdnd
able in our numerical studychanges the ratio®/(L/4)* by  of the structure of eigenfunctions, together with their classi-
less than 1%. In the same way the mean value can be sendal analogs. In the quantum description, all information is
classically estimated a&)=(wL/8)%. The agreement be- contained in the matrix constructed from the eigenfunctions
tween these simple semiclassical formulas and our numericat,(E,,) of the total HamiltonianH represented in the or-
data is shown in Appendix A. dered unperturbed two-particle bakis. Herey,(E,,) is the

The model is highly nonperturbative since the perturbanth component of the eigenfunction havirkgy, as eigen-
tion spreads the levels of the innkk, shell all over the value. This matrix is assumed to be reordered in eigenener-
allowed energy range; see Appendix B. As a result, the pergiesE,,.
turbed spectrum is broader than the unperturbed one; this is In the classical limit the unperturbed ener§y is not
an effect of the nonzero mean value of off-diagonal matrixconstant when théchaotig trajectory of the total Hamil-
elements. While the unperturbed spectrum has degeneraienianH fills the H=E= const surface. Indeed it fills a range
energy levels with spacing (therefore, with density of lev- of values that are distributed according to the ergodic mea-
els po~1/& and spectral radiuR®=2%1~2L), the per- sure on the constant energy surface, yielding a distribution

IIl. QUANTUM-CLASSICAL CORRESPONDENCE
FOR EF AND LDOS
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function W(Ey|E) [2]. This distribution can be easily nu- —~°2 —~02

merically calculated taking a sample of chaotic trajectories |_,_|E (0) |_,_|s (b)
U(t)=(Lx(t),Ly(t),Lz(t),Mx(t),W(t),Mz(t)) having the % =

same fixed values d andL?=M?. Following these trajec- o >0

tories, one can calculatiey(u(t))=L,(t) + M,(t) taken at
equal instants of time and find the distributionHd§ over the
energy band12] defined by sojourn times.

The quantum analog of this distribution is provided by the
relation

Wn(E):<|(/ln(Em)|2>ma (7)

where the averagé- - -) is taken over those eigenfunctions Hh 1000 n o 1000 n
that have an eigenvalug,, in a fixed small energy interval

around a given energl. Such an average has been done in FIG. 3. Typical eigenfunctions for the cate=3.5,1=39. (a)
order to smooth the fluctuations that affect individual eigen-The second excited stai,(E,) (corresponding to a classically
states; we would like to note that for our dynamical model,integrable region (b) Eigenfunction for the energi,, close to
unlike random matrix ensembles, there is no possibility ofzero(middle of the spectrum, corresponding to the chaotic region
ensemble averaging. The distributigw,(E) gives the aver-

age shape of eigenstates represented in the unperturbed two-  H(ug(t))=(L?—m?)cos At— ¢)cos At— &).

particles basign).

In order to obtain the quantum distributié(Ey|E) one
needs to switch to the unperturbed energy representation,
HEﬂ. Technically this can be realized by introducing small
energy binsAE and counting the correspondent probability
within them,

This means that the classical distribution léfis given by
P.(y) wherey= L2(1—xi)003wx2 cosmXs is a function of
the random variables 1<x;<1,i1=1,2,3.

IV. STRUCTURE OF EIGENFUNCTIONS

W(E|E)= >, Wy(E)8(Eq—ED). (8 The quantum model has been already studied in FSéf.
5 but previous studies have not addressed the structure of
eigenfunctions in the two-body particle basis. This represen-
tation is quite natural and corresponds to a well-known pro-
cedure in the physics of interacting particles.
In our dynamical model the structure of eigenfunctions
W(E|Eq) =2 (|¢n(Em)|2)nd(E—Ep), (9)  strongly depends on their energy because in the classical
m limit for low and high energies|€|=|E|/E 1) the mo-
&}on is regular while in the center of the energy band
n, such that the eigenvalud® belong to a small interval (Ie|~0) is chaotic. One can, therefore, expect that in the
' classical limit i ~L/I<1) the eigenstates corresponding to

around the given unperturbed enery. The presence of regular or chaotic regions are very different. This is, indeed,

degeneracy in this case prOVIc_Jes an obwous way of takln%Iearly seen in Fig. 3 where two eigenstates are plotted in the
the average. The corresponding classical function can bé

found by noticing that the trajectory does not fill the whole ;Jonrgeor]'fut;]beeg tgg;ﬁ;qrgicgng?;'z ;(ir ihle) S;ﬁéﬁf:grn:htgeeibztl;_
surfaceHy=E, but is restricted to an invariant manifold b 9 9

specified by the value afn. Giving equal weight to alm state chosen in the center of the energy band (). Com-

values corresponding to a given valuertf exactly matches paring these twdtypical) eigenstates, one can see that there
P 9 givel y . are strong correlations between components of the “regular”
the quantum averaging used in E§). Then the classical

LA ' . . __one[Fig. 3(@] while the “chaotic” eigenstate can be treated
distribution can be evaluated analytically, since the classical . .
oo o as random along the whole basig. We also would like to
unperturbed Hamiltoniahl is integrable. Indeed, the unper-

. 20 0 AP .~ note that the regular eigenstate has many “principal compo-
turbed solutioru(t) for L= M= andHo=0 is given explic nents” and that it looks more or less extended. This again

Similarly, we can define the distribution(E|E,). In the
guantum case this distribution is the LDOS defined by

where the average is now taken over a number of values

ity by indicates that the perturbation is quite strong and effectively
04\ T2 2 _ couples many unperturbed states.
L) =L =m7cos 2t-4), A much more accurate analysis of eigenfunctions is ob-
. tained by studying their localization lengths. Since the basis
0 _ 12_m2 _ 0 —
Ly =VLo=msinAt—¢), L (t)=m, is finite and eigenstates can be extended along it, here we use
0 — different measures of localization lengths, based on their en-
My(t)=yL*—m"cos 2t—¢), tropy H and participation ratid® see, e.g., Ref§13,14],
04\ — 1 2 ri2ai _ 04y — _
My()=VL —msin At—¢), My(t)=-m, (10 I4(E)=2.08ex—H}, Il E)=3/P,  (11)

where 0< ¢p<2m, 0<¢&<2mr, and |m|<L depend on the
initial conditions. Therefore, where
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We also note that due to the underlying symmetry of the
model the above quantitidg,,|,, are symmetric around
=0.

Even in the center of the spectrum, where eigenstates are
on average maximally extended, there are large fluctuations
in the value of localization lengths. This indicates that in the
classically chaotic region there are some eigenstates that can-
not be treated as completely random and delocalized over the
energy shell. A careful study shows that such eigenstates are

_'::3'1500 , (b)

1000 1000

500 500

0 ' 0 - : characterized by an extended background with some pro-
- 0 ! - 0 ! nounced peaksthe so-called “sparse eigenstatg¢s’Such
£ £ eigenstates may result in the absence of equilibrium and in
the lack of standard statistical description, see details in Ref.
o 800 o
— (c) | € 150 [9].

One can also see a clear regular structure in the depen-
dence ofl; andl;,, on the energy at the edges of the spec-
trum, which reflects the regular character of eigenstates.

The other two quantitiesy,l,, give information about
the “position” and “width” of eigenfunctions in the two-
particle basis, see Figs(e} and(d). In contrast td ; andl;p,
the “width” |, reveals a quite unexpected minimum at the
center of the spectrum. Additional numerical analysis shows

0 0 that this is a result of different “sparsity” of chaotic states
- ° ! - 0 ! depending on the energy. Namely, chaotic eigenstates are
b3 & more compact at the center of the energy band than far from

o ) _ it. In fact, the ratial , /I, i, can be used to extract any infor-

FIG. 4. Measures of localization lengths for eigenfunctions vsation about the sparsity of eigenstatese Ref[15]). In-
the rescaled energy for the case 3.5) =39. () Entropy localiza-  geeq two eigenstates with the same valug,af, can have
e o eomstan ™ very dierent values of, depending on wnether pincial

P (€54 ‘ ¢ componentgthose with relatively large values af,(E,,)]

N are clustering around some cenfsmall |,) or randomly

_ 2 2 scattered over the whole unperturbed balsiggel ).

H_nzl [¢n(E)*Infyn(E)] Additional information can be obtained from the depen-
dence of the centroids of eigenstates on the energy, see Fig.

4(d). Apart from fluctuations and excluding the regular part,
this dependence is linear, which means that, on average, cen-
N ters of eigenstates are located at the center of the energy shell

P= 2 lrn(E) | covered by the _clas_sical distribution(E|E,). 'I_'his_generic
n=1 feature of chaotic eigenstates has been studied in greater de-
tails in WBRM modelg2]. In particular, it was shown that

The normalizing coefficients 2.08 and 3 were chosen irthose eigenstates, which are completely extended in the
order thatl ;=1;,,= N in the limit case when all components whole energy shell, are characterized by maximal statistical
Un(E) are independent Gaussian random variables. Herproperties of quantum chaos. For example, in that case the

600
1000
400

500 |
200 ’

and

N=(I+1)? is the size of the two-particle basis. statistics of the energy spectrum follows the predictions of
Further information can be extracted from the centroidssandom matrix theory, such as the Wigner-Dyson form of the
n. of eigenstates and from their “widths”: distribution of spacings between neighboring energy levels.

On the other hand, localization of eigenstates within the en-
ergy shell leads to the so-called intermediate stati$ti&
ne(E)=2 n|yn(E)?, (which is intermediate between the Wigner-Dyson and the
" Poisson statistigs
12 Such a localization is reflected in the fluctuationsngf
|(E)={ D |4n(E)An—nu(E)]?} . (120  around the center of the shelinear dependence o&). In-
n deed, if eigenstates are localized, their centersre typi-
cally scattered within the energy shell leading to strong fluc-
In Fig. 4 we present numerical results for the above quantituations ofn; instead, this cannot happen if they fill the
ties as functions of the rescaled enekgy whole energy shell. It is important to stress that localization
First, we note that the entropy and inverse participatiorin the energy shell is different from that in the unperturbed
ratio localization lengths)y, and I, are approximately basis, as found from Eqsl1).
equal and show the same behavior, namely, the delocaliza- The result presented in Fig(@) shows that localization in
tion along the whole basis in the middle of the spectrum, andhe energy shell, if any, is quite weak. A more direct analysis
the localization at the spectrum eddeee Figs. )—(b)].  of the degree of localization in the energy shell is provided
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) ) ) ) FIG. 6. (a) The BS for am value corresponding to a shell edge
FIG. 5. (a) Shape of eigenfunctions in the energy representation,gicated as a dashed line in Fig. @) The BS in the middle of
(full line) and classical distributiohV(ey|€) (dashedl for the case Ho=0 shell.

L=3,5=39, obtained by averaging over the centrall eigen-

functions witheo =0 (b) the same plot in semilog scale. the expansion of unperturbetbasi$ states in the exact

eigenstates. While the structure represented in Fig) 6
{ pical, the form of the BS in Fig. @ is only observed
Bround some specific value of

To better understand the meaning of these pecaolieal-

by direct comparison of the average shape of eigenstates
energy representation to its classical analog. The results a
presented in Fig. 5 where quantum and classWéE,|E)
[_seEe/:EEq. (8)] are plotted versus the rescaled energy ues we have computed the localization lengtbmpare with
max-

One can see that the only important difference is a sort qu' (AD)]
a weak quantum tunneling in the classically forbidden region
(the tails of the classical distribution are sharper than the Lor(M) =3/ [4n(Em)]* (13
guantum ones Anyway, the good correspondence between m
guantum and classical distributions shows that for the chosen
parameters the model is in a deep semiclassical region andi some range oh. The data presented in Fig. 7 reveal a
globally, the eigenstates should be treated as ergodic(ones global periodic structure of BS's, from which one under-
the energy shell, not in the whole unperturbed basiBhis  stands that the peculiarity of BS's reflected in Fig. 6 results
means that the observed scattering of the centroids of eigeffom the degeneracyinside each shellof the unperturbed
stategsee Fig. 4d)] is, in fact, quite weak and does not lead spectrum. It is then convenient to consider in the following

to noticeable localization in the energy space. analysis, as a reference, the central shigh=0 only (set of
Interestingly, the size of these ergodic eigenfunctions id+1 BS). _
smaller than the total-energy band. The distributigis in Now we discuss the structure of the BS in energy space

fact restricted between the minimum and the maximum valwhich is, in fact, the LDOSEg. (9)]. According to results
ues that the functiokl,=L,+ M, can assume under the con- [11] obtained for WBRM, the shape of the LDOS typically
straintsE=L,+M,+L,M,, L2+L2+L2=M2+M2+M2 changes from the Breit-WigndBW) law to the semicircle
=L2. It can be easily proved, usingythe Lagrange )r,nultipliersWhe” an effective perturbation is increased. In particular, the
methods that foE=0, |Eq|<2(JL?+1—1), which in Fig. ~BW is expected when

<'€=0.398.
5 corresponds tdSuppN(eg|€)| < €=0.398 1\ Zm< pV<bl2m, (14)

wherepg is the density of the unperturbed spectrum &rid

Of special interest is the structure of LDOS, which is the effective bandwidth of the Hamiltonian matrix. The first
widely discussed in many applications in atomic, nuclearjnequality is related to the nonperturbative character of the
and solid-states physics. The importance of this quantity recoupling (which is always verified in this modeivhile the
lates to its physical meaning: it shows how an unperturbedast, rewritten as
state|n) “decays” into other states due to interaction. In
particular, the inverse width of the LDOS is associated with 2mpoV2=Tr<blpy,
the mean “lifetime” of a chosen basis state.

As was indicated above, the LDOS structure can be exsimply means that the spreading widtk of such distribu-
tracted from the matrix/,(E,,) by fixing an unperturbed tion has to be much smaller than the energy bandwidty.
state|n) and searching the dependencenonTherefore, we  If we formally apply the above conditions to our case, we get
can adopt the same procedure as we did above when analy@n units of e=E/E,) the following relations:b/py=1/L
ing the structure of eigenstates. In comparison with Fig. 3 wand 2mp,V2=(7/2)(L/4)3. With our data the second con-
show two such “matrix lines” corresponding to basis statesdition in Eq. (14) is strongly violated. In fact, the random
(BS’s), with closen values, taken from the center of matrix matrix argument leading to the above results rests on the
(see Fig. . In fact, the BS lines in this matrix correspond to assumption that the band in the Hamiltonian matrix be

V. LDOS STRUCTURE
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w(e | gy)
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FIG. 8. (@ Quantum LDOS distribution w(e|eg)
=W(E/Enad Eo/Emad (full line) and best-fitted Breit-Wigner dis-
tribution in the range specified aboveashed ling for the case.
=3.5]=39, obtained averaging ovér-1 values of BS for the

H, = 0! Hy=0 shell; (b) the same plot in semilog scale.

700 750 800 850 900 semicircle, for which strong localization turns out to be pos-
N sible[2]. This localization manifests itself in different aver-
) o ) age shapes of the EF and LDOS. Namely, the width of the
FIG. 7. Dependence of the inverse participation ratio ofittte  EF iy the energy representation is less than the width of the
BS of theH matrix as a function ofi. Here isL=3.5/=39. The | pOs: the latter defines, in fact, the width of the whole
Ho=0 shell is inside the two vertical dashed lines. energy shell.
Direct comparison of Fig. 5 and Fig. 9 in our dynamical
“full”; in our case, instead, we have a large sparsitpany ~ model shows a remarkable different energy range for the
vanishing matrix elements inside the band LDOS and EF distribution. As was discussed above, the en-
In Fig. 8 we show the structure of the LDOS for the BS €rgy width of eigenfunctions in the semiclassical region
corresponding to the center of the unperturbed spectrum, ifle energy representatipris much smaller than the width
comparison with the Breit-Wigner fit which is performed Of the spectrum because it is subject to an additional
within the interval (—b/2pq,b/2py). constraint. We can take into account this restriction and res-
One should stress that outside of the energy interval corc@le the distributionV(eo|e) in order to have the same en-
responding to the band size, the tails of the LDOS are knowi§rgy range as fow(e| €o): W, (€o|€) = €W(eo/ €| €/ €) where
to be highly nongeneri¢6,11,16,1 depending on specific e=2(JL?+1-1). The rescaled distributioW, is pre-
properties of the model. As one can see, inside this energgented in Fig. 10 together with the distributiorfe| €,). Af-
interval the shape of the LDOS can be roughly associateter such a rescaling both distributions coincide quite well,
with the BW form. On the other hand, outside, the tails de-which again indicates the absence of the localization.
cay very slowly compared to those given by the BW. Such a
form of the tails is also different from the case of the WBRM VI. RANDOM TWO-BODY INTERACTION
[6], where outside the band energy range the tails decay ex-
tremely fast(even faster than exponeniialn general, the
above results seem to indicate that the effective perturbatio
corresponds just to the condition when the BW approxima—/-a 5
tion starts to fail. W
Let us now compare the quantum and classical LDOS. In— 4
Fig. 8 we give an example of such distributions in the whole &
energy shell. They coincide with a high accuracy, apart from 3
the regions very close to the energy shell edgdsere quan-
tum tunneling is significant
This again means that the system is in a deep semiclass
cal regime. We remark that, in this model, going to the quan-
tum regime in the chaotic energy region calls for very small 1
matrices, for which fluctuations are extremely strong. ,
An important question is the relevance of the shape of 5|
eigenstates to that of the LDOS. As was shown in the model -1 0 { -1 0 1
of WBRM [17] in some range of parameteffor not very £ €
strong perturbationthe two shapes are very close to each FIG. 9. (a) The LDOS distributionw(e| €5): quantum(full line)
other, which is a manifestation of the ergodic structure ofand classicaldashed ling for the casel =3.5) =39, obtained by
eigenstates in the energy shell. On the other hand, with aaveraging over+ 1 values of BS foH,=0 shell;(b) the same plot
increase of perturbation the LDOS was found to tend to theén semilog scale.

In this section we modify our model of two interacting
Rarticles by assuming a completely random interaction that
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o (0) | & (b)
s s

-0.4
- o 1 0 1000 N 0 1000 N

g

) o . FIG. 11. Typical eigenstates for the cdse 3.5 andl =39 and
FIG. 10. (a) Classical LDOS distributiom(e, €g) (full line) and Gaussian random nonzero off-diagonal elemefasand (b) have
the rescaled classical distributio; (eo|€) for the caselL=3.5)  (ose eigenvalues in the middle of the spectrum, respectively,
=39; (b) the same plot in semilog scale. = E/E o= 1.48% 1073 and e= E/E = 2.295¢ 10 2 but very dif-
ferent inverse participation ratios;f /N=0.0027 for the first and
preserves some global properties of the original dynamicdl,/N=0.87 for the last, wher8l is the matrix sizg
model (1). Namely, the unperturbed patt, is taken to be
exactly the same as in the dynamical model. However, wapectrumE=0 where we can now find a relatively large
replace nonzero matrix elements of the dynamical modehumber of sharply localized eigenstatesith I, /N<0.1
with random and independent variables. Moreover, weawhereN is the matrix sizg see Fig. 14a). In the same Fig.
choose a Gaussian distribution of these random matrix elet2(d) one can also observe a much stronger scatter of the
ments with the same mean and variance as for the dynamiceéntroids of eigenstates transverse to the diagmuahpare
elements. In such a way we can reveal the influence of dywith Fig. 4(d) of the dynamical modé¢l The same features
namical correlations that are due to the specific form of théehave been found for basis states. These data indicate that
interaction V. Below we follow the same procedure de- fluctuations in the structure of eigenstates are much stronger
scribed in previous sections when studying eigenstates artélan in the dynamical model.
LDOS. Despite these fluctuations, the global structure of the EF
Numerical data for the “randomized” model show that seems to remain the same. This is marked once more by the
global spectral properties are the same as in the dynamicdistribution of eigenfunctions in the energy spéthe analog
model. Namely, the perturbed spectrum is enlarged with reef Fig. 5 is now shown in Fig. J3which has the same shape
spect to the unperturbed one and the density of states keeps in the dynamical model. However, the LDOS distribution
the same Gaussian shape with the same mean and varianéer the random model shows striking difference, see Fig. 14.
On the other hand, the analysis of eigenfunctions revealthdeed, it can be described, apart from the central peak, by
clear differences. Typical shapes of eigenstates and BS athe semicircle law3,11,3. Due to numerical problems, we
shown in Fig. 11. In comparison with the corresponding Fig.are not able to resolve the finite-size corrections close to the
3(b), one notes that extended states look chaotic, similar tenergy band, studied in RéflL6].
those found in the dynamical model. However, differently  This surprising result is quite significant in the light of
from the dynamical model, a few strongly localized statesapplication of random matrix models. Indeed, in Refs.
now appear even in the center of the energy band. A typicdl18,19,7 it was found that localization in the energy shell for
example of such an eigenstate is given in Figall the WBRM may occur only when the LDOS is characterized
To analyze the global characteristics of all eigenstates wey the semicircle law. Therefore, the important question is
have calculated different localization lengths andl;,, as  whether the semicircle law is a quantum feature or it can also
well as the widthl , and the centroids. according to Egs. occur in classical dynamical conservative systems. What we
(11) and (12). The data reported in Fig. 12 should be com-have found here is that the semicircle law has nothing to do
pared with those in Fig. 4 for the dynamical model. As ex-with the semiclassical limit in our model. It seems to be
pected, for the random model there are no correlations in thdictated by quantum randomness rather than by the pseudo-
energy dependence for large or small enefgy=€1), com-  randomness resulting from the classical chaos.
pared with Fig. 4. However, close to the edges of the energy By comparing the shapes of the LDOS and EF for the
spectrum, the eigenstates cannot be treated as chaotic sinemdom model, one can see that they are clearly different, in
the number of “principal components” in such eigenstates iscontrast to the dynamical model. As mentioned above, in
quite small(this is revealed by small values of localizations Ref. [2] such a difference was directly connected to the lo-
lengthsly,liy,1,). This is a result of the perturbative local- calization of eigenstates in the energy space. As a result of
ization that typically occurs for states close to the grounahis localization, the spectrum statistics differs from that pre-
state. In what follows, we exclude such states from our condicted by the RMT. In particular, for Wigner band random
sideration. matrices, the level spacing distribution was foy@dito de-
For chaotic eigenstates, the various measures of localizadate from the Wigner-Dyson dependence.
tion lengths give average values typically less than in the To check these predictions, we have calculated the level
dynamical case. This holds especially in the middle of thespacing distribution for both dynamical and random models
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— 1500 B s00 model manifests both regular and chaotic motion, depending
(b) : on the total energy: both at small and at large energies the

- motion is regular, while, at intermediate energies, chaotic
properties are very strong. The quantum analog of this model
can be assumed to describe two interacting spins. Our choice
was restricted to the subset of symmetric states, which cor-
responds to particles with integer spins.

This model has already been under investigation, both in
the classical and in the quantum descriptieee, for ex-
ample, Ref[4]). However, here we have used an approach
that seems much more instructive: in the quantum case, we
& 2 have represented the Hamiltonian matrix in the basis defined
by the two-body eigenstates of the noninteracting system,
reordered according to increasing total energy. Such a repre-
sentation corresponds to a well-known procedure in atomic
and nuclear physicq‘shell-basis representation; and
seems to be very useful in view of recent developments
[8,9].

In this representation the Hamiltonian matrix turns out to
be banded, with many zero elements inside the band. If pseu-
dorandomness of nonzero off-diagonal elements is assumed
(in the region of classical chagghen one can refer to some
modern developments of random matrix theory: in particular,
to the so-called Wigner band random matrix ensemble,
& & which is conjectured to be well suited to the description of
conservative systems with complex behavisee Ref.[2]
and references thergirHowever, the assumption of pseudo-
randomness of matrix elements is far from obvious: checking

for the part of the spectrum corresponding to chaotic eigenit Was in fact one of the major motivations of our work.
states. As we expected, for the dynamical model we have Random matrices in the WBRM ensemble are character-
observed a very good correspondence to the Wigner-Dysog€d Py @ sharp band inside which matrix elements are ran-
dependence. Surprisingly, we have found that the randor{OM, independent, and identically distributed, plus an addi-
model gives the same result. This means that the level spali®n@l principal  diagonal with increasing entries,
ing distribution is quite insensitive to the small number of orresponding to the unperturbed spectrum of the two-body
localized eigenstates. On the other hand, this result indicatdd@miltonian. o

that, in the case of realistic matrices, the degree of leve] COmpared to WBRM, our model has two peculiarities. In
repulsion is not so clearly affected by the difference in thethe first place there is no free parameter of interaction be-

shapes of the LDOS and EF, as it was in the case of WBRMween the particles, the only parameter that determines the
' relative strength of the interaction being the total energy of

the system. Second, our model has an highly degenerate un-
perturbed spectrum. Still, the main features of the model are
In this paper we have studied a dynamical model with twoexpected to be quite generic, because these peculiarities are
interacting particlegrotatorg. The classical version of this quite typical in such physical applications as complex atoms
and nuclei.
N In this paper we have analyzed two main issues, moti-
. _ (b) vated by recent r_esuItBZ,S,_Q]. First, we have studied the
(O) S 1 structure of the eigenfunctions and of the LDOS and have
g
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FIG. 12. Measures of localization lengths for eigenfunctions for
the Gaussian random cake- 3.5) = 39; compare with Fig. 5.

VIl. SUMMARY

- compared them to what is known for completely random
models, and for WBRM in particular. Second, we have
i looked for effects of dynamical localization; though we have
found no significant evidence for such effects, our analysis
_5 has brought into light a close connectiurmised in Ref.
2 [2]) between the LDOS, eigenfunctions, and certain classical
ot distributions, which can be easily found by solving the clas-
sical equations of motion.
0 W As expected, in the region of classical regular motion,
-1 0 { -1 0 { eigenstates have a regular structure themselves; still, classi-
£ £ : - . R
cal integrability does not result in strong localization, be-

FIG. 13. (a) The EF distribution for the Gaussian random casecause these eigenstates are typically quite extended over the
with L=3.5] =39, obtained by averaging ovet- 1 central eigen- basis of two-particle unperturbed states. In contrast, in the
functions;(b) the same asa) in semilog scale. region of classical chaos, the structure of eigenstates looks

W(eg, | &)
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very chaotic itself. Nevertheless, the size of such chaotidom interactions; in other words, we have checked the pseu-
eigenstates can be smaller than the size of the basis, thougbhrandomness assumption. We have found that the random
the eigenstates may be treated as randergodio ones on  matrix model and the dynamical one are very similar in what
the scale of their localization. concerns the global average properties of eigenstates. Never-
The dependence of the structure of eigenstates on ener@baess we have found that fluctuations of individual eigen-
reflects their regular or chaotic nature, as it is chaotic itself irstates are significantly stronger in the random model: in par-
the latter case; e.g., fluctuations of the number of principaficular, there are many more eigenstates that are significantly
components are stronger where classical chaos is strongdhOre localized in comparison to the average size of chaotic
which is the reason why a non-negligible fraction of eigen_elgenstates. In spite of this enhancement of the number of

states have a size significantly smaller than the basis Size.locahzed states, the level spacing distribution of the random

Generally speaking, the global properties of Chaoticmodel is still short of showing significant deviations from

eigenstates are quite similar to those found for WBRM, withrandom matrix t.h(.eory.. .

one remarkable exception. In fact, for the WBRM ensemble The most striking difference between Fhe dynamical and
the expansion of exact eigenstates over the unpertubed on random model has been detected in thg form .Of the
has a structure quite similar to the one observed on expand- OS. The LDOS of the random model drastically differs

ing unperturbed eigenstates on the basis of exact eigenstat iom t_halt Olf the q;t/rr]wammzldr?odell, as II;[ 'St ?r:ute cl?se '{/(\)/me
Instead, this symmetry is broken in our model, apparentl);emICIrce aw, with an additional peak at the center. ne

due to the degeneracy of the unperturbed spectrum: a featup%e origin of this peak is related to a spgcific feature of our
that is missing in WBRM model, the occurrence of the semicircle is somewhat surpris-

Expansion of unperturbed eigenstates on exact ones a9 because 'th('a general statistical propertles_ of the random
odel are similar to those of the dynamical one. For

rectly leads to the LDOS. In standard random matrix model BRM, the semicircle law appears when the perturbation
the latter is known to be of the BW type, with the half-width I(that is, the variance of the off-diagonal elem@iisstrong;

given by the Fermi golden rule. Instead, in our dynamica NN

model the LDOS is BW like only around the central peak; jtgMOreover, localization in the energy ghell was found to ap-
tails h h sl th ict the BWea only in the presence of the semicircle law. In contrast to
ails have a much slower decay than predicted by the he dynamical model, neither WBRM nor the random model

law. h lassical analdglthough the latter is much closer t
Dynamical localization effects are an extremely important ave a ciassical anaaglthough the fatter 1s much closer 1o

issue when investigating the quantum mechanics of chaotif realistic systems than WBRMtherefore one can ask the

systems. Our approach to this problem was based on Requestion of whether the semicircle law for the LDOS can

[2], where it was argued that, for the case of conservativ ppear at all in .quantum systems with a chaotic classicgl
systems, such effects are manifested by localization of eige |_mt|t. fj)_ur anagl_s![_s shov;/s th(?t greattc_art(; has E[O be taken '?
states within the so-called energy shell, which is the range of rending predictions of random matrix theory 1o Systems o

energies ergodically explored by classical motion. From thi§he Igtter (;Iass, at least if the systems themselves are in a
viewpoint, in order to detect localizatidif any), one has to quasiclassical regime. In that case the pseudorandomness as-

find the form of the classical energy shell, and then to Cc)m_sumption obliterates dynamical correlations to which the

pare it with the form of chaotic quantum eigenstates. LDOS, and similar quantities, are quite sensitive.
Following this approach, we have defined and numeri-

cally computed classical distributions that strikingly corre- ACKNOWLEDGMENTS

spond to the LDOS and to the average shape of eigenfunc-
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knowledge of the average shape of eigenstates gives analyli-
cal access to the distribution of occupation numbers of
single-particle statef8,9]. However, insofar as localization APPENDIX A
effects are concerned, the close agreement we have observed, s annendix we show that assuming a continuous dis-
between quantum and classical distributions indicates that ne

such effecp IS present in our m_o.del, V.Vh'(.:h 1S, I fact, in ayariance can be estimated semiclassically and good agree-
deep quasiclassical region. Additional indications of absenCﬁ1ent with numerical data is found. Let us start with Eg)
of significant localization effects is provided by the analysis¢. -+, \which we have ' ’

of the level-spacing distribution, which closely follows, in

the strongly chaotic case, the predictions of random matrix 2 M M

theory. - ﬁ_ i - ; P 12

ry . _ ()= 2 2 [+ —1+D)(+D)(j~1+1)]

Finally, we have studied a random matrix analog of our M® =1 =

dynamical model, which was constructed by leaving the un-

perturbed part of the Hamiltonian matrix unaltered and by

replacing all nonzero off-diagonal elements by Gaussian ran-

dom variables with the same mean and variance as in the

dynamical model. In this way we were able to check to whawhere, as usual?=7%2I(1+1). Integrals can be easily evalu-

extent quantum chaotic dynamics can be simulated by ramated and one has

ibution of off-diagonal nonzero elements, the average and

w2 1 I
zﬁzJ’ dx\/(xz—Iz)f_ldy\/(yz—lz), (A1)
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h212\2 [L2\2 FIG. 15. (a) Off diagonal nonzero matrix elements average as a
76 | T\6 /" (A3) function of classical and|=9 (circles, 1=19 (squares | =39
(crossey the line is the semiclassical expressiarL(8)?. (b) Off-
diagonal nonzero matrix elements variance as a function of classical
in such a way that L andl =9 (circles, | =19 (squarey | =39 (crosses the line is the
semiclassical expressioth f4)2.
L\* 1
02=<v2>—<v>22(z (A%) hesr1=7I(I=s+1?=?N(1+5)’=7].  (B2)

The agreement between E@82) and (A4) and numeri-
cal data is shown in Fig. 15.

APPENDIX B

It is instructive to estimate the splitting of the energy lev-
els within oneH, shell due to the perturbation, using degen-
erate perturbation theory. Let us consider, for instance,
shell with Hy=2#j>0 that has degeneracy=I1+1—j.

The distance between two neighboring perturbed levels
can be estimated as the difference between two neighboring
matrix elementgdue to the symmetry of the matjix

2

5 (B3)

hs+ 1s5+2~ hs,s+ 17

&here the approximation is taken fpe=s=0. This means
that the total splitting is of the order

Perturbed energy levels can be calculated by diagonalizing

the matrix:

=(s,2j—s|V|s',2j—5'). (B1)

ss’

This is a symmetric tridiagonal matrix with zero elements
along the principal diagonal, whose elements for amy2
are given by

5

(a)

w(e | &)

(b)

1

&

FIG. 14. (a) The LDOS distribution for the Gaussian random
case withL=3.5) =39, obtained by averaging ovés1 central
lines; (b) the same aa) in semilog scale.

AE~2plA2/2~h212~L2, (B4)

Lt
<

103

102

2|2

FIG. 16. Energy spectrum splittiyE due to the perturbation
V, as a function ofi?l? for 0.01<#%<2, <40, andL>1 (points.
Full line is the classical energy shellE=2(L%+1).
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Though this approximation is obtained fpr=0, corre-
sponding to the biggedt, shell, similar behavior is ex-
pected for other shells. The expressigB4) has been
checked numerically; see Fig. 16, where we pE=E,
—E, as a function of:|2 for different! and# (hereE, and

E, are the energy of the upper and lower split level within
one Hq shel) For comparison, in Fig. 16, the relatiakE
=2(1+%21?) is also shown, which, in the classical linfit
—0, |—», and forL>1 vyields the expression for the clas-
sical energy shellAE=2E,,=2(1+L?).
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