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We analyze an anisotropic classical Heisenberg model with infinite range couplings. Below an
ergodicity threshold, the energy surface is disconnected in two components with positive and negative
magnetizations respectively. Above this threshold, in a fully chaotic regime, magnetization changes
sign in a stochastic way and its behavior can be fully characterized by an average magnetization
reversal time. We show that statistical mechanics predicts a phase–transition at an energy higher
than the ergodicity threshold. We assess the dynamical relevance of the latter for finite systems
through numerical simulations and analytical calculations. In particular, we derive an explicit
expression of the time scale for magnetic reversal. As for standard phase transitions, this time-scale
has a power law divergence at the ergodicity threshold.

PACS numbers: 05.45Pq, 05.45Mt, 03.67,Lx

In the standard Ising model with short range interac-
tions, below the critical temperature, reversing the or-
der parameter (magnetization) requires a time of order
O(exp(

√
N)), where N is the total number of spins. Bro-

ken ergodicity appears in the thermodynamic limit, due
to the exponential divergence of the reversing time [1].
Another type of broken ergodicity, not induced by the
thermodynamic limit, can be caused by disconnections
of the energy surface. Although it can generically ap-
pear only in low-dimensional phase-spaces, this effect
is uncommon at large N . However, it has been re-
cently observed [2] that, below a given specific energy, an
anisotropic classical Heisenberg model with all-to-all spin
coupling exhibits this type of broken ergodicity for all N .
Moreover, it is well known that, for systems with long-
range interactions [3], the escape time from metastable
states diverges like exp(N) [4–6]. Comparing with the
reversing time quoted above for the Ising model, ergod-
icity breaking due to the large N limit is stronger for
long-range interactions. Being related with the infinite
range nature of the interaction, the presence of a non-
ergodicity threshold [2] could appear, at a first glance, a
purely theoretical issue. Nevertheless, it could also have
an experimental relevance since all-to-all interacting sys-
tems can be realized using modern experimental tech-
niques [7]. Thus, it is important to find characteristic
signatures of this threshold.

In this Letter, we investigate the classical Hamiltonian
dynamics of an anisotropic Heisenberg model, for which
a finite number N of spins interact with all-to-all cou-
plings. The aim is to establish the main physical effects
associated with the non-ergodicity threshold with respect
to a phase-transition appearing at a higher energy. The
phase-transition is studied in the microcanonical ensem-
ble, applying a recently developed solution method of
mean-field Hamiltonians based on large-deviation the-
ory [8]. These two transitions remain distinct in the

thermodynamic limit. We focus on finite size systems,
because they allow a precise study of the interplay be-
tween dynamics and statistics. Moreover, it has been
remarked that, due to dynamical chaos, even systems
with a small number of degrees of freedom can acquire a
statistical behavior [9].

A first result presented in this Letter is that the fer-
romagnetic/paramagnetic transition can be dynamically
driven below the statistical phase-transition. This hap-
pens if the spin coupling strength is large enough to pro-
duce fully chaotic motion. This means that, for all finite
N , an observation time exists for which magnetization
vanishes in an energy region above the non-ergodicity
threshold, and thus below the statistical one. A further
result reported in this Letter is the derivation of an ex-
plicit expression for the time scale of magnetization re-
versal. At the ergodicity threshold, this reversal time
diverges as a power law, with a characteristic exponent
proportional to the number of spins N .

The Hamiltonian of the model is

H = B
N∑

i=1

Sz
i +

J

2

N∑
i=1

∑
j 6=i

(Sx
i Sx

j − Sy
i Sy

j ), (1)

where ~Si = (Sx
i , Sy

i , Sz
i ) is the spin vector with contin-

uous components, N is the number of spins, B is the
rescaled external magnetic field strength and J the all-to-
all coupling strength (the summation is extended over all
pairs). The equations of motion are derived in a standard
way from this Hamiltonian. The total energy E = H

and the spin moduli |~Si|2 = 1 are constants of the mo-
tion. Dynamics has been already studied in a similar
model [2]. It was found to be characterized by chaotic
motion (positive maximal Lyapunov exponent) for not
too small energy values and spin coupling constants. For
J = 0 the model is exactly integrable, while for generic
J and B there is a mixed phase space with prevalently
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chaotic motion for |E| <∼ JN .
We will first determine the statistical phase-transition

energy of the model in the microcanonical ensemble. The
Hamiltonian can be rewritten as

H = BNmz +
J

2
N2

(
m2

x −m2
y

)
, (2)

where ~m = (mx,my,mz) = 1/N
∑

i
~Si and we neglect

the term J/2
∑

i(S
y
i )2 − (Sx

i )2, which is unimportant as
far as the statistical properties , in the N →∞ limit, are
concerned. The most remarkable difference of Hamilto-
nian (2) with respect to (1) is that a new constant of the
motion appears: the modulus of the total angular mo-
mentum M2 = m2

x + m2
y + m2

z. In numerical simulations
we always find a vanishing Lyapunov exponent: hence,
we presume that model (2) becomes exactly integrable.
The dynamics of the global magnetization is indeed inte-
grable, but this does not obviously imply the integrability
of Hamiltonian (2). The entropy s as a function of the
order parameter ~m can be exactly calculated in the large
N limit, using large deviation techniques [8].

Remarking that in the negative energy range a non-
zero value of mx is ruled out by entropic considerations,
and expressing mz, using relation (2), as a function of my

and ε, we obtain the specific entropy as a function of my

and ε only. Then, imposing the vanishing of the second
derivative of s(my, ε) at my = 0 (a signal of the second
order phase-transition) we extract the specific transition
energy εstat. At the phase–transition the entropy as a
function of my changes from a single peaked function to
a double-peaked one. For large N the phase–transition
energy density is

εstat = − B2

JN
. (3)

This value is in good agreement with numerical results
obtained using the full Hamiltonian (1).

The non-ergodicity energy density εne for the Hamil-
tonian (1) can be obtained in the same way as Ref. [2].
Even in this case, it is possible to show [10, 11] that the
phase space of the system is topologically disconnected
below εne. From symmetry considerations both positive
and negative regions of my exist on the same energy sur-
face. Switching from a negative my value to a positive
one requires, for continuity, to pass through my = 0.
Hence, for all energy values above εne = min(ε|my = 0)
magnetization reversal is possible, while below this value
magnetization cannot change sign. Computing the min-
imum, we get [12],

εne =


−B for J ≤ B

−(B2

2J + J
2 ) for J > B.

(4)

The existence of εne does not represent a sufficient condi-
tion in order to demagnetize a sample for ε > εne. Regu-
lar structures indeed appear that prevent most of trajec-
tories to cross the my = 0 plane. The sufficient condition

FIG. 1: a) Probability distribution of my for ε = −0.9. The
maximal probability, Pmax, and P0 = P (my = 0) are indi-
cated by vertical arrows. b) Probability of keeping magne-
tization sign up to time t vs time. c) Magnetization my vs
time. In this figure all data refer to the N = 6, B = 1, J = 3
case.

can only be given by chaos, presumably in the same way
as chaos provides the way to break the last golden circle
in the standard map, thus allowing transition to global
stochasticity[13].

In the following, we will study the dynamics of the
full Hamiltonian (1), which, at variance with (2), is non–
integrable and displays chaotic motion. Moreover, we will
restrict ourselves to the case J > B/N for which εstat >
εne. The two thresholds εne and εstat define three energy
regions which show different dynamical and statistical
properties.
1) For ε < εne, the probability distribution of my, P (my),
obtained by a random sampling of constant energy sur-
face [14], shows two separate peaks, with P (my = 0) = 0,
so that my cannot change sign in time.
2) For εne < ε < εstat, the probability distribution is
double peaked around the most probable values of the
magnetization. These two peaks are not separated and
P (my = 0) 6= 0, see Fig. (1a). What actually happens
dynamically depends on the relative strength of the cou-
pling J with respect to B. For J large enough the be-
haviour of my(t) resembles a random telegraph noise [15],
(Fig. (1c)): magnetization switches randomly between its
two most probable values. The probability distribution
of magnetization reversal times follows a Poissonian law,
Pk(t) ∼ e−t/τ , see Fig. (1b), for any initial conditions.
Hence, we can characterize the behavior of the system
through an average magnetization reversal time τ . The
Poissonian distribution of the reversal times is a conse-
quence of strong chaos: the system looses its memory
due to sensitivity to initial conditions and the reversal
probability per unit time becomes time independent. On
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FIG. 2: Average magnetization reversal times τ obtained
dynamically (open symbols) and statistically (full symbols),
vs the energy scaling parameter χ = (ε − εne)/(εstat − εne)
for different N values and B = 0. The dynamical deter-
mination of τ has been obtained by iterating 104 randomly
chosen trajectories for each energy and computing the aver-
age reversal time explicitly. The statistical determination of
τ is obtained from formula (6), where Pmax/P0 is numeri-
cally determined for each energy density. The dashed line is
ln(Jτ/4) = −0.15− 0.85 ln χ, where the constants have been
obtained through a fitting. Inset : divergence of τ at χ = 0
for N = 5 and J = B = 1.

the contrary, for small J , we observe a quasi-integrable
behavior almost everywhere in the energy range: reversal
times strongly depend on initial conditions. Therefore we
will limit our considerations to the large J case.
3) Finally, for εstat ≤ ε ≤ 0, my quickly changes sign and
P (my) is peaked at my = 0.

For all energies in the range (εne, εstat), we find that
the reversal time τ grows exponentially with the num-
ber of spins for sufficiently large N . In the following
we give a theoretical justification of this dependence.
Indeed, we are even able to derive empirically an ex-
plicit formula for the dependence of τ on the parameter
χ = (ε− εne)/(εstat − εne)

τ ∼ χ−αN . (5)

Eq. (5) is valid above the non-ergodicity threshold
and not too close to the statistical border (observe that
χ varies in this range between 0 and 1). The comparison
of this formula with numerical results is shown in Fig.(2).
Let us remark that the reversal time diverges at εne, see
the inset of Fig.(2), as a power law, showing that this
energy threshold shares many peculiarities with standard
second order phase transitions. In the case B = 0, we
find α = 0.85, which is at variance with the value α = 1
obtained, for N → ∞, in the mean field approximation

(see below). This small discrepancy can be attributed to
a finite N effect. Extensions of these results to the B 6= 0
case show additional dependences of α on the parameters
B and J [16]. From Eq. (5) it is also clear that the infinite
time average of the magnetization is zero above the non-
ergodicity threshold and different from zero below, due
to the divergence of the reversal time. Nevertheless, this
is not what we obtain during a finite observational time
τobs. In Fig.(3) we show the time-averaged magnetization

〈my〉obs = (1/τobs)
∫ τobs

0

dt my(t)

vs the specific energy ε for N = 5 (Fig.3a) and N = 50
(Fig.3b) spins during a fixed observational time. While
in (a) 〈my〉obs is zero just above εne, in (b) it vanishes
at a value εobs located between εne and εstat. Indeed, if
τobs � τ , the magnetization has time to flip between the
two opposite states and, as a consequence, 〈my〉obs ' 0.
On the contrary, if τobs � τ the magnetization keeps its
sign and cannot vanish during τobs. Defining an effective
transition energy εobs from τobs = τ(εobs), one gets, in-
verting Eq. (5), the value indicated by the vertical arrow
in Fig. (3b). This is, a posteriori, a further demonstra-
tion of the validity of Eq. (5) for any N .

From a theoretical point of view, it is interesting to
note that, for any fixed N , and sufficiently large J , εobs →
εne when τobs → ∞. On the other side, in agreement
with statistical mechanics, for any finite τobs, εobs → εstat

when N → ∞. This implies that the limits τobs → ∞
and N →∞ do not commute.

Usually, for long-range interactions, the interaction
strength is rescaled in order to keep an extensive
energy[17]. In our case this can be done setting J = I/N .
With this choice of J as N → ∞, at fixed I, J becomes
much smaller than B, then Eq. (5) looses its validity and
the quasi–integrable regime sets in. The presence of the
non-ergodicity threshold is therefore hidden.

A justification of Eq. (5) can also be given in terms of
statistical properties. In Refs. [5, 6], on the basis of fluc-
tuation theory [4, 18], it has been argued that metastable
states relax to the most probable state on times that
are proportional to exp(N∆s) where N is the number of
degrees of freedom and ∆s is the specific entropic bar-
rier. In our case exp(N∆s) is nothing but Pmax/P0, see
Fig. (1a). Empirically, for B = 0, we find a very good
agreement with the reversal times setting

τ =
4
J

Pmax

P0
. (6)

While the Pmax/P0 factor in this formula has a the-
oretical justification, because it represents the probabil-
ity to cross the entropic barrier, the 1/J factor can be
heuristically associated with the typical time scale of the
system. A deeper theoretical justification of this formula
should be obtained in view of its success in describing
the numerical results for different N values, (Fig.(2)).
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FIG. 3: Time average of my over the observational time τobs

vs ε for different number of particles (a) N = 5, (b) N = 50,
with fixed J = B = 1. Each single point has been obtained
taking the time average over the time intervals τobs = 105 (a)
and τobs = 104 (b). Dashed curves indicate the equilibrium
value of my obtained from statistical mechanics. Vertical lines
represent the non-ergodicity and the statistical threshold re-
spectively. The arrow in (b) indicates the energy value εobs of
the dynamical transition due to the finite observational time.

In the mean field model [11] one has Pmax/P0 ∼ 1/(ε−
εne)N , which reproduces the main feature of Eq. (5) and
gives α = 1.

Summarizing, a simple spin model with anisotropic
and long-range couplings has been studied as a paradig-
matic example. We discuss the relevance of the ergodic-
ity breaking [1, 2] occurring for any finite N with respect

to the phase–transition. Two distinct energy thresholds
are addressed: the non-ergodicity threshold, εne, below
which phase space is disconnected and magnetization
cannot change sign in time, and the statistical threshold,
εstat, at which a second order phase–transition occurs in
the thermodynamic limit. The non-ergodicity threshold
does not disappear in the thermodynamic limit and re-
mains always distinct from the statistical threshold. In
the highly chaotic regime, between εne and εstat, the be-
havior of the system can be characterized by an average
magnetization reversal time τ . Numerical simulations
and statistical arguments allow us to give a characteriza-
tion of the reversal time above the non–ergodicity thresh-
old, pointing out a power law divergence at εne. This
behavior is likely to be valid beyond the toy model stud-
ied in this Letter and could be a characteristic signature
of the non–ergodicity threshold. The dynamical mag-
netization reversal times are also found to be in good
agreement with those obtained from simple fluctuation
theory arguments. The infinite-time average of the mag-
netization is zero above the non-ergodicity threshold, and
different from zero below. Therefore, the system, when
chaotic, dynamically demagnetizes well below the statis-
tical threshold. This is the reason why we could consider
the non–ergodicity threshold as a chaotic driven phase
transition.
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