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We compare the properties of transmission across one-dimensional finite samples which are
associated with two types of quantum diffusion, one related to a classical chaotic dynamics, the
other to a multifractal energy spectrum. We numerically investigate models exhibiting one or both
of these features, and we find in all cases an inverse power-law dependence of the average transmission
on the sample length. Although in all the considered cases the quadratic spread of wave packets
increases linearly (or very close to linearly) in time for both types of dynamics, a proper Ohmic

dependence is always observed only in the case of quasiclassical diffusion.

The analysis of the

statistics of transmission fluctuations in the case of a fractal spectrum exposes some new features,
which mark further differences from ordinary diffusion, and enforce the conclusion that the two

types of transmission are intrinsically different.

I. INTRODUCTION

The onset of chaos in classical single-particle dynamics
is often accompanied by deterministic diffusion, which is
a type of stochastic motion which mimics to some extent
a random walk, even in the absence of external random
agents. Typical examples are the motion of a particle
elastically bouncing in an array of fixed scatterers and
the diffusive energy absorption occurring in nonlinear pe-
riodically driven systems. In both cases, characteristic
transport properties appear that can be more or less ac-
curately described by an equation of the Fokker-Planck
type. Whether similar transport properties persist on
the quantum level is an important question, which lies on
the borderline between quantum chaology and solid state
physics, and has received much attention on both sides.
A most remarkable result in this context is that chaotic
diffusion is inhibited by quantization. A classical one-
dimensional (1D) diffusion is quantally reproduced only
on a finite time scale, and is in the long run stopped by an
interference effect very similar to Anderson localization.
Equivalently, if the transmission of particles across a fi-
nite sample of a quasi-one-dimensional disordered solid
is considered, then the inverse dependence on the sam-
ple length characteristic of a classical diffusive transport
(Ohm’s law) is quantally observed only on length scales
which are small in comparison with the Anderson local-
ization length.

It was realized that, in the quasi-one-dimensional
case, an unbounded diffusive (or anomalously diffusive)
spreading of wave packets is often associated with a sin-
gular continuous spectrum of the Hamiltonian (or the
Floquet operator in the case of periodically driven sys-
tems). This sort of a spectrum, regarded as a mathe-
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matical curiosity a long time, appears quite frequently
in incommensurate structures, such as involved, e.g., in
quasicrystals and electron dynamics in crystals in mag-
netic fields; in such cases fractal singular spectra of zero
Lebesgue measure have been found. In the light of the
above findings, and insofar as the quasi-one-dimensional
case is concerned, a quantum “diffusive” regime, i.e., one
marked by a linear (or close to linear) increase in time
of the mean square displacement, can exist either due to
an underlying classical chaotic diffusion, developing on
small scales in which localization effects are not yet ap-
parent, or due to a fractal structure of the spectrum, no
scale limitations being necessary in the latter case.

Prototype systems for these two situations are the
kicked rotator model (KRM) and the Harper (HM)
model, respectively. Each of these two models exhibits
one type of quantum diffusion, but not the other; there-
fore, the two phenomena are in principle independent
of each other. Still, the question remains whether the
“fractal” unbounded diffusion may offer a quantum coun-
terpart for the classical unbounded propagation in cases
when both are present. A particular aspect of this ques-
tion is what kind of transmission properties are associ-
ated with the fractal diffusion and how they match with
the Ohmic transport typical of classical diffusion.

We have studied this question using the two men-
tioned models plus a third one, which in a sense inter-
polates between them. This is the kicked Harper model
(KHM), which displays at once a chaotic classical limit
marked by deterministic diffusion (which is missing in
the HM) and a “critical” quantum regime with a mul-
tifractal quasienergy spectrum (which is missing in the
KRM). We have compared the properties of quantum
transmission across finite samples which are observed in
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the three cases. The analogies and differences we have ob-
served supply useful indications for answering the ques-
tions raised before. For example, according to our results,
Ohm’s law seems to be rather exceptional inside the class
of quantum systems endowed with fractal quantum dif-
fusion. The fingerprint of this macroscopic law would be
then represented by the concurrent presence of a quasi-
classical diffusion.

Other differences emerge on analyzing transmission
fluctuations, and lead to the conclusion that the two
types of diffusion are marked by essentially different sta-
tistical properties, and are in no apparent relation to each
other.

The plan of the paper is the following: In Sec. II we
review the mathematical formalism which allows for a
general treatment of the kicked dynamics as a scattering
process. In Sec. III we present the old (Sec. III A) and
the new (Secs. III B and III C) results about the transport
properties respectively in the KRM, in the KHM, and in
the HM. The conclusive Sec. IV is devoted to the analysis
of the transmission fluctuations.

II. DISCRETE-TIME SCATTERING PROCESSES

We are interested in one-dimensional scattering pro-
cesses in which free particles impinge on a “sample” of a
finite length, whereby they are either reflected or trans-
mitted. The particle dynamics inside the sample will
have a nontrivial diffusive character, both in the clas-
sical and in the quantum cases. Such a situation can-
not, of course, occur in strictly one-dimensional, con-
servative Hamiltonian cases, but it can be realized with
relative ease if one considers a discrete-time dynamics
instead of a continuous-time one—an artifact which has
proven extremely useful in nonlinear dynamics. We shall
presently outline the general formalism needed to de-
scribe a discrete-time scattering process.

We consider the discrete time dynamics of a particle on
a line, with coordinate ¢ and momentum p. Throughout
this paper we shall use dimensionless variables. The clas-
sical dynamics of the particle is described by the iteration
of an area-preserving map, of the form

— 8S(p)

q9 = q— 8p

b p+ 8‘,;_" ifgo<d<gq +L, (2.1)
P elsewhere,

where the generating functions S,V will have different
forms, depending on the considered model. In all cases,
however, the function S will be even and periodic in
the momentum p, with period 2w. Outside the region
g < q < go + L the motion is uniform at constant
speed —S’(p) and momentum p. Thus Egs. (2.1) de-
fine a scattering problem, in which free particles coming
from infinity impinge on the scattering region, wherein
they undergo “collisions” described by the “potential”
V(q), until they reexit from either end. With appropri-
ate choices of the generating functions S, V, the dynamics
inside the sample will have a chaotic character, leading
to fast randomization in p and to diffusion in q.
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In this case, the scattering trajectories sensitively de-
pend on various parameters, including g¢, which defines
the position of the scatterer on the line; both transmis-
sion and reflection are affected in an unpredictable way
by small changes of go, because g, together with the in-
coming momentum, defines the initial conditions for the
chaotic map whose iteration defines the dynamics of the
particle inside the scatterer.

For this reason, we can generate statistical ensembles
by placing the scatterer at different positions; different
locations of the scatterer of length L will define different
statistical samples in the ensemble. This is in clear anal-
ogy with the problem of electronic transmission through
disordered solids. In that case different samples corre-
spond to different realizations of disorder.

The quantization of the dynamics (2.1) is obtained in
a standard way by iterating the quantum one-step prop-
agator
U:eiv(ﬁ)eﬁs(ﬁ), (2.2)
where we have introduced the adimensional Planck con-
stant A, and V(q) is taken # 0 only for g inside the scat-
tering region.

Due to periodicity in p, the Bloch theorem apphes and
the evolution (2.2) preserves the “quasiposition” & = g.
The value o of the quasiposition is a constant of the
motion; therefore its value can be arbitrarily fixed. The
quantum dynamics at fixed a can be studied, by using
the quantization rule
do = —iﬁ% + a,
defined on 2m-periodic wave functions. Quantized in this
way, the position assumes discrete values nk + o (n in-
teger); that is, the quantum motion at a given quasipo-
sition takes place on a discrete one-dimensional lattice.
We shall denote |n) the eigenstate corresponding to the
nth site of this lattice. The quantum evolution at fixed
a is given by a unitary operator U obtained by writing
do instead of § in Eq. (2.2). Whereas U acts in the space
of square-summable functions on the line, U, acts in the
space of square-summable functions on the lattice.

The unitary operator U, has eigenvalues
and A(mod2n#) is known as the quasienergy. The
quasienergy is obviously conserved under the evolution.

The quantum scattering theory stems, as usual, from a
comparison of the long-time asymptotics of the dynamics
generated by (2.2) with the free dynamics generated by
Uo = exp[iS(p)/k]. On mathematical grounds, U, is a
finite-rank perturbation of U,. This entails the ex1stence
of the Mgller wave operators Q:F = lim; 400 Ut U t and
thus ensures the well-posedness of the scattering prob-
lem. In order to find the scattering matrix it is convenient
to resort to time-independent scattering theory, and to
seek the scattering eigenfunctions of U corresponding to
a given value A of the quasienergy. The eigenfunctions of
the free dynamics corresponding to the same quasienergy
are

(2.3)

ix/h
e‘/,

(nlug”?y = (2m) "1/ 2eminPi/R (2.4)
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where p; (j = 1,...,Ny) are the roots of the equation
S(p;) = A (mod 27h).

In this way for each quasienergy A there are N, degen-
erate eigenfunctions; every one of them corresponds to
an open scattering channel at the given quasienergy. The
number N of such channels depends on the quasienergy
A and on the specific form of the function S.

The scattering dynamics can be visualized as fol-
lows: Plane waves, eigenfunctions of Uy, are scattered
by the sample, thus giving rise to reflected and trans-
mitted waves. The crucial feature of this process is that
quasienergy is conserved; that is, S(p) is changed by an
integer multiple of 2wA. The construction of the S ma-
trix follows standard rules of the scattering theory, via
the Lippmann-Schwinger equation

[1— G (e /M — 1)]u}? = ug?, (2.5)
relating free waves uo with true, distorted waves u,. In
the above formula G is the “free” Green function:

é+(/\) — eglgl_*_(eis‘/h _ ei)\/h—fre)—l.

(2.6)

By inverting the system (2.5) one obtains the distorted
waves u4 and the S matrix, whose elements are given by

Sik = 6k — 2m v |V 2 |ui |2V 7 = Dugd [u}*), (2.7)

where j,k = 1,..., Ny and |v;| = 1/|dS(p;)/dp| is the
density of states. Given the & matrix, the transmission
coefficient is obtained by summing the squared moduli of
the S-matrix elements related to transmission in a given
direction of propagation.

The S matrix is sample dependent because the ex-
plicit form of U, depends on the choice of the sam-
ple, that is, on qo, through the values of the function
A(q) = exp[iV (q)/k) at ¢ = nhi+a (go < ¢ < go+L). The
string of these ~ L/ values has a more or less disordered
character, depending on the choice of the function V' (g);
in any case, for any nontrivial choice of the latter, differ-
ent samples correspond to different strings, and different
strings correspond to different realizations of “disorder.”
There is a connection between the dependence of the S
matrix on the sample and its dependence on the quasipo-
sition «, because changing the latter by £ is equivalent
to shifting the sample by one site along the ¢ lattice.
This suggests that the above-described process of aver-
aging over disorder may be equivalent to averaging over
all possible values of the quasiposition. This is certainly
true when 27 /A is an irrational number and A(g) is a 27-
periodic function—a case that occupies a central position
in this paper. In that case, any quantity related to scat-
tering is also a 27-periodic function of a, and its average
over all samples at given o = o coincides with the aver-
age over all the values of o = ao+nAimod(27), which are
obtained from «q by iterating the shift & — aAmod(27).
Indeed, since this shift is ergodic for 27 /A irrational, such
“time averages” are independent of the starting point ag
and coincide with “phase averages,” i.e., averages over
Q.

III. TRANSPORT PROPERTIES
A. Kicked rotator

With the choice S(p) = bcosp, V(q) = Z¢* the map
(2.1) describing the dynamics inside the sample becomes
the standard map, which has been widely studied both
in its classical and in its quantum versions; the latter is
associated with a well-known dynamical model, known
as the KRM.

The quantum KRM is a paradigm of the quantum phe-
nomena associated with classical chaotic diffusion, and a
short review of its main properties will provide a proper
frame for the following discussion. At b7 > 1 the clas-
sical standard map is fully chaotic, and the g motion
is similar to a random walk, with a diffusion coefficient
D = B(b)b%/2 where B(b) is a known bounded function
of b.1 On length scales much bigger than b, the distri-
bution f(g,t) of a statistical ensemble of orbits is ade-
quately described by the diffusive approximation, which
assumes f(g,t) to satisfy the diffusion (Fokker-Planck)
equation.!™3

The properties of the quantum KRM (at a fixed quasi-
position) crucially depend on the arithmetic nature of .
If A is a rational multiple of 47, then the evolution oper-
ator (2.2) has an absolutely continuous spectral compo-
nent that produces a ballistic spread of wave packets on
the g lattice. If A is a “good” irrational number, accumu-
lated numerical evidence supports a pure-point spectrum,
and exponential localization of wave packets on the lat-
tice, with a localization length £ ~ b2 /A (the properties
of the KRM are reviewed in Ref. 4). Thus in all known
cases the long-time nature of the quantum propagation
is different from that of the classical motion; while the
latter is diffusive, the former is either ballistic or local-
ized. Since the correspondence principle entails that in
the limit # — 0 the classical diffusive motion must be
recovered, there must be a time scale tp(%) separating
the quasiclassical diffusive spread of wave packets from
the purely quantum regime (ballistic or localized). It is
known that tp ~ D/k, which is the time required to
diffuse over the localization length 2.

The scattering problem associated with the KRM was
investigated in detail in Ref. 5. In the classical case,
for b < L the diffusive approximation is valid, and the
numerically computed transmission coefficient T is in ex-
cellent agreement with the theoretical value:

1 1 2b
—=2--4+ 2T
T 2 ,8+‘er

(3.1)
which is found by solving the diffusion equation in the
sample of length L, subject to appropriate boundary
conditions.® On comparing (3.1) with the kinetic formula
T = £y/L involving the mean free path (MFP) £, we are
led to £y ~ b. Notice that T is a sample-independent
quantity.

In the quantum case, a detailed numerical analysis was
carried out for the strongly incommensurate case. For
any quasienergy A a transmission coefficient T'(\) was
computed following the procedure outlined in Sec. II.
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T(A) is a fluctuating, i.e., sample-dependent, quantity.
The main facts about the statistics of this quantity that
emerge from numerical computations are the following.

(1) (T(A))qo [the average of T'(A) over go] is but weakly
dependent on A, and is therefore close to the total trans-
mission [the average of T'(A\) over )], which is the quan-
tum counterpart for the classical transmission (3.1). It
is in fact a decreasing function of L which comes close to
(3.1) in a range of lengths £y < L < £, or, equivalently,
b < L < b%/h, which is called the “diffusive regime” (see
Fig. 1).

At larger lengths, (T'(\))g, exponentially decreases
with L, as exp(—2L/f); this is the localized, or “insu-
lator,” regime.

(2) In the diffusive regime, Var(7T'(\)) [the variance of
T'())] is roughly independent of length.®

Both (1) and (2) reproduce well-known aspects of elec-
tronic transmission through quasi-one-dimensional disor-
dered solids; in particular, the scale independence of the
magnitude of transmission fluctuations observed in the
diffusive regime is the celebrated phenomenon of univer-
sal conductance fluctuations (UCF’s).

B. Kicked Harper model

The KHM is obtained by choosing S(p) =
dcosp, V(q) = ccosq. It has been widely studied
by many authors™ % (for a review on the subject see
Ref. 15). It is classically chaotic and diffusive at d,c > 1,
and the statistical analysis outlined for the KRM is still
valid (with appropriate modifications).

The spectral properties of the quantum KHM at a fixed
quasiposition, like those of the quantum KRM, depend on
the arithmetic nature of A. If the latter is commensurate
with 27, then the spectrum is absolutely continuous, and
the propagation of wave packets is ballistic; a continuous
spectral component is also present for “not too incom-
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FIG. 1. Transmission versus the rescaled sample length (in
units of the mean free path) for the KRM. Solid symbols are
quantum data for br = 10, b = 58, A = 1. Each point is
obtained by averaging over an ensemble of 10%,10% different
samples. The quasienergy A is fixed. The solid line is the
classical theoretical prediction (3.1).
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mensurate” values of 4. However, even for strongly in-
commensurate values of A the spectral properties depend
in a highly nontrivial way on the value of the parameters
c,d. Whereas exponential localization is still present at
d > ¢, the motion is ballistic at ¢ > d; a phase portrait,
illustrating the type of motion in various regions of the
(c,d) plane, can be found in Ref. 12. These nontrivial
properties of the KHM are connected with its double pe-
riodicity (in ¢ and in p as well),!! a feature which the
KHM shares with the HM, which is the object of the
next section.

In particular, at ¢ = d the motion is always delocalized,
and wave packets spread according to a law {(Agq)2) ~ t7.
The exponent + is close to 1, but it appears to depend
on the value of ¢ = d. This behavior signals the presence
of a singular-continuous spectral component!®'” and in
fact a multifractal spectrum has been numerically found,
with a Hausdorff dimension close to 0.5.

We have investigated the question of how this (pos-
sibly anomalous) diffusion at ¢ = d is reflected in the
transmission properties of the scattering model. In
our numerical computations we have used the function
2 arctan[ecos(-)]/e with e << 1 as an approximation for
the function cos(-) appearing in the generating functions
S,V. The dependence of the classical transmission on
the sample length is shown by the dashed line in Fig. 2
and by the solid one in Fig. 3; as in the KRM, it follows
the law (3.1) with the appropriate parameters.

The behavior of the quantum (T'()))g, depends on
whether ) is chosen in the spectrum or not. In strongly
incommensurate cases, the quantum spectrum is singu-
lar, i.e., has zero Lebesgue measure, and (T()))q, is ex-
ponentially small at large L for almost all values of the
quasienergy A. Therefore, the total transmission, too,
is exponentially small at large L, at variance with the
classical behavior, which follows the law (3.1) instead.

—<Ln(T)>

25}

O n —_ 1 i L L
0 200 400

L

FIG. 2. Transmission versus the sample length for the
KHM and ¢ = d = 10, A/2mw = 144/1097. Solid and open
circles are relative to two quasienergies in the middle of two
different bands. The solid line is the best fit for open circles.
Each point is obtained by averaging over an ensemble of 102
different samples. The dashed line is the corresponding clas-
sical line from a kinetic equation like (3.1) with the classical
diffusion coefficient.
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FIG. 3. Transmission versus the rescaled sample length (in
units of the mean free path) for the KHM. Solid symbols are
quantum data for ¢ = d = 10, A = 2% /(6 + p), p the golden
mean. Each point is obtained by averaging over an ensemble
of 500 different samples. The quasienergy A is fixed. The
solid line is the classical theoretical prediction.

Thus, as in the KRM, the quasiclassical Ohmic behav-
ior appears only in a limited range of lengths, which is
larger, the smaller is #. In Fig. 3 the dependence of
(InT(A))g, on length is shown, for a strongly incommen-
surate case //2m = 1/(6+ p), where p is the golden ratio,
p = (\/5 + 1)/2, and for a value of A chosen at ran-
dom. After a relatively small interval in which a rough
agreement with the classical behavior is observed, the
transmission decays exponentially. On comparing Fig. 3
with Fig. 1 we see that the Ohmic region is here nar-
rower than for the KRM, though the ratio D/#ify, which
in the KRM defines the width of this region, is roughly
the same; moreover, fluctuations are definitely bigger.
In order to detect the influence of the quantum dif-
fusion associated with the singular spectrum we have
to take A in the spectrum. A convenient strategy for
locating the spectrum, and one commonly used in the
study of incommensurate systems, consists in approxi-
mating the actual, incommensurate system with a pe-
riodic one. From a continuous fraction expansion one
obtains a sequence of rational approximants p,/g, to
h/2m = 1/(6+p). The KHM with %/27 = p, /g, is then a
periodic approximation to the strongly incommensurate
KHM with /27 = 1/(6 + p). The spectrum of the in-
commensurate KHM is approximated by the spectrum of
the periodic KHM; the latter consists of bands separated
by gaps, and the bands are generated as follows. Due to
periodicity in g, the quasimomentum £ is also conserved,
besides the quasiposition a. At fixed 3, a the dynamics
is described by a unitary matrix of rank q,;'! as 3 is var-
ied at fixed «, the eigenphases of this matrix sweep the
bands in the spectrum of the evolution operator U,, for
the given a and for the given periodic approximation.
Due to absolute continuity of the spectrum, the long-
time dynamics of the periodic KHM is ballistic, (Aq)% ~
t2. Nevertheless, over fixed, finite scales of length and
time the incommensurate dynamics will be reproduced
by the periodic ones, the better the higher the chosen
approximant. This is illustrated in Fig. 4, where the
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FIG. 4. Energy growth in time for the KHM, for c = d = 10
and rational /27 approximant to 1/(6+p), p being the golden
mean. The solid line is for %/2mw = 55/419; dots are for
kh/2m = 144/1097. The quasiposition is fixed o = 0. For
the sake of comparison ¢ and t? lines are shown as dashed
lines.

dependence on time of (Aq)Z%(t) is shown for the infinite
KHM for two rational approximants; two lines showing
the ~ ¢ and the ~ 2 behavior are drawn for comparison.
(Aq)%(t) was computed as the expectation value of g2
over the wave function obtained at time t by iterating
the KHM propagator

{7 = elie/R) cos(da) g(id/h) cos(p)

with a = 0 on the initial state |0).

Therefore, in order to analyze the scattering in a fi-
nite sample, we have chosen a suitably high approximant,
and have located the spectrum by a combination of two
methods: first, by computing the bands by direct di-
agonalization of matrices, as mentioned above; second,
by analyzing the behavior of the transmission T'(A) as a
function of A\. An example of the results obtained with
this procedure is shown in Fig. 5, where a scan of T'(})
over a range of A encompassing one of the bands obtained
by diagonalization is shown.

=~ 0.4
= [ BAND
0.3}
0.2 ;
o1f
O» A/JY/N\K | : !
0.85 0.9 0.95
A
FIG. 5. Transmission coefficient as a function of

quasienergy for the KHM. Here ¢ = d = 10, k/2m = 5/38,
L = 120.
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Statistical ensembles were generated by varying « in
the interval (0, 27).

We have then studied the dependence of (—InT'(A))q
on length L for A in the center of a band; the result
is shown in Fig. 2. The long-time ballistic propagation
(entailing a length-independent transmission) is not yet
manifest in the inspected range of lengths, as confirmed
by the simulation of the infinite KHM. Open circles are
well fitted by the solid line of the equation

—(In(T))e = —1.47 + 1.14 In(kL),

giving once more a conductance inversely proportional
to a power of length with an exponent close to 1, which
could not be more precisely determined from our data.
Thus the diffusion (with an exponent also close to 1)
associated with the multifractal spectrum of the KHM
results in an Ohm-like dependence of transmission on L.

However, this quantum diffusive behavior of transmis-
sion is quite different from the classical diffusive behav-
ior, represented by the dashed line, and must therefore be
considered as a purely quantum effect. A quasiclassical
behavior is to be expected only in a region of very small
L (hardly detectable with the parameter values used for
Fig. 2), like in Fig. 1.

An obvious question is whether the difference between
the classical and the quantum transmission curves could
not be simply imputed to a difference between the clas-
sical and the quantum diffusion coefficients. Therefore
we have computed the quantum diffusion coefficient for
the case of Fig. 2 from a direct simulation of the infinite
KHM; the result was in fact different from the classical
coefficient (D, ~ D.1/3), but still, on substituting this
value in Eq. (3.1), we could not reproduce the quantum
curve. We have therefore to conclude that the quantum
transport associated with the multifractal spectrum is
intimately different from classical diffusive transport.

Finally, we emphasize that on choosing different
quasienergies in the spectrum different transmission
curves are obtained (compare for instance open and solid
circles in Fig. 2). Therefore, averaging over quasiener-
gies (for example, over the bands) destroys the Ohmic
dependence.

C. Harper model

In order to put the above results into a broader con-
text, we now describe some results about transmission
in the HM. This model does not belong in the class of
kicked models discussed in Sec. II and does not possess
a chaotic classical limit: Still, under appropriate con-
ditions it exhibits a multifractal spectrum and quantum
diffusion.

The Harper equation, also called almost Mathieu equa-
tion, is a 1D tight-binding equation

(Hndp)n = o1 + Yn_1 + Vo cos(Qna + B)¢n = Etpn,
(3.2)

where 1, is the wave function at site n, a is the lattice
size, (3 is a phase, F the energy, and V, the potential
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strength. Its diffusive properties have been studied by
a number of authors (for exhaustive reviews see Ref. 18
and Ref. 19).

The dynamical implications of these findings were
studied in Refs. 19, 20 by solving the time-dependent
Schroedinger equation

. O%n
ot

It was found that at the critical point Vo = 2 the spread-
ing of wave packets obeys Var(n) ~ tY with « very close
to 1, which means diffusive motion.

The behavior of transmission at the critical point has
been investigated by many authors. Sokoloff?! pointed
out that this model has, at the critical point, for Qa /27
a “strong” irrational number and E = 0 (which belongs
to the spectrum), very unusual transmission properties,
namely, wide fluctuations of the transmission coefficient
as a function of the length (up to three orders of magni-
tude for variations of the length of order 1%).

At the same time it was remarked'®:2? that the trans-
mission is an highly oscillatory function of the phase 8
too.

An average resistance was then introduced in Ref. 23
and used by many authors, essentially as a means for dis-
tinguishing localized states from extended ones,'924728
but, to the best of our knowledge, there were no claims
about its behavior as a function of length at the critical
point.

We have found that, if the average over the phase (3
is taken, an Ohmic dependence is observed. To calcu-
late the transmission coefficient we used the well-known
transfer matrix method (see, for instance, Ref. 21). As
in the previously considered models, the scattering prob-
lem is one for waves propagating on an infinite 1D lattice.
Free waves have the form exp(ikna) and the correspond-
ing dispersion law is E = 2cos(ka). The potential Vj is
different from zero only for n = 1,..., L—1. The reflection
and transmission coefficients are then found connecting
the right-hand wave function v, = e~ 4 ref*ne for
n > L with the left-hand wave function v,, = te~**"* for
n < 1. The transmission coefficient is given by T = |t|°.

We have fixed £ = 0 (which belongs to the spectrum
of the infinite HM because of symmetry), Qa/2m = p =
(V5 —1)/2, and V, = 2 (critical point). In Fig. 6 we
show the average (—In(T')) versus In(L). The best linear
fit is the dashed line, with slope 1.02+0.03 and intercept
0.5 + 0.4. Thus we have an average “Ohmic” law, with
oscillations superimposed, which are associated with the
rational approximants to the golden mean. In the same
Fig. 6 we also plot data related to three different ratio-
nal approximants (the 7th, 9th, and 13th) to the golden
mean. These data follow a continuous line up to a length
L ~ g (where p/q is the rational approximant); at larger
lengths they saturate; i.e., transmission becomes inde-
pendent of length, as expected of a pure periodic system.

As a function of B , T shows erratic fluctuations, and
the distribution of In(T") is well approximated by a log-
normal distribution (for L > 1000); see Fig. 7. The log-
normal distribution of the transmission coefficient is a
nontrivial occurrence, because the spectrum is singular

== (I?[h’l/’)n'
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—<In(T)>

15
In(L)

FIG. 6. Transmission versus length for the HM. Here
E =0,Vy =2, Qa/2® = p, p the golden mean. Each point is
obtained by averaging over an ensemble of 10° random phases
B. Circles, squares, and triangles are, respectively, for the 7th,

9th, and 13th approximants to the golden mean. The dashed
line is the best fit line with slope 1.02(3).

continuous and not pure point (the localized phase is
known to exhibit a lognormal transmission distribution).

Averaging over 3 the logarithm of T rather than T
itself was quite effective in significantly reducing fluctu-
ations. Huge fluctuations of (T')g are indeed observed
when the sample length is equal to a multiple of the de-
nominator of the rational approximants to Qa/2w; see,
for instance, the solid line in Fig. 8. This effect is par-
ticularly evident at small length, where only a few “res-
onances” are present.

On checking the stability of these results against
changes of the energy F and of the modulation Qa, two
relevant aspects emerge. On the one hand, no signifi-
cant changes appear if the energy is changed inside the
spectrum, but far from the band edges (this was done as
in Sec. IIIB). On the other hand, a different irrational
modulation (quadratic or transcendental numbers) yields
a different power law, as can be inferred from Table I. For
brevity we call such a dependence a “generalized Ohm'’s
law” and the corresponding exponent an “Ohmic expo-
nent” (OE).

The OE in the third column of Table I is obtained from
the best linear fit of (—In(T'))s vs In(L); the error in the

0.1¢
0.08

P(=In(T))

0.06
0.04
0.02

054‘|x‘ il L I r——
5 10 15

—In(T)

FIG. 7. Distribution of the transmission coefficient for the
HM, at fixed length L = 1000, by varying randomly £ in [0, ],
for E =0, Vo = 2, Qa/2nw = p. The solid line is the Gaussian
obtained from the standard best fitting procedure.

= 0257
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FIG. 8. [-averaged transmission coefficient (solid line
& = T) and its variance [dashed line { = Var(T')] as a func-
tion of the length L for the same data as Fig. 7. As vertical
lines are shown multiples of the rational approximants to p:
13,21, 34,55,... . Averaged values were computed by taking
5000 random S in the interval [0, ].

last digit is indicated in brackets, and the continuous
fraction expansion is given in the second column.

The degree of irrationality of Qa/2m, rather than its
absolute value, appears to determine the exponent of
the algebraic decay of the transmission. In fact two
different numbers only differing in the first terms of
their continued fraction expansion (the golden mean and
[100,1,1,1,...]) produce practically the same exponent.
The fact that in Table I the exponent 1 (or very close
to 1) occurs only for these two numbers raises the ques-
tion of whether such an exponent is connected to a noble
irrational modulation. Different choices of Qa, even in
the class of the irrational algebraic numbers, produces a
different OE.

The last point is crucial, because, as reported in
Ref. 29, the dynamical exponent ruling the spreading in
time of wave packets in the infinite Harper model is prac-
tically independent of Qa (provided it is sufficiently ir-
rational), and so appears to be the scaling properties of
the spectrum.3?

This means that the OE is not directly connected with
the spectral properties, and must therefore be determined
by the structure of the eigenfunctions. Scaling properties
for the latter have been found,?” which, however, do not
hold for generic irrational (e.g., transcendental) modu-
lation, and cannot therefore by themselves explain the
generalized Ohm’s law, which is observed even for such
numbers (bottom of Table I).

TABLE I. Generalized Ohm’s exponent for various irra-
tional modulations.

Qa/2nw Expansion OE
(v/5—-1)/2 1,1,1,1,...] 1.02(3)
(197 — +/5) /19402 [100,1,1,1,...] 1.00(5)
V21 (2,2,2,2,...] 1.35(4)
V3i-1 1,2,1,2,...] 1.15(8)
(vV3-1)/2 2,1,2,1,...] 1.15(3)
(v/37 - 4)/3 [1,2,3,1,2,3,...] 1.28(4)
e—2 1,2,1,1,4,...] 0.75(3)
-3 (7,15,1,292,1,...] 0.38(3)




52 FRACTAL VERSUS QUASICLASSICAL DIFFUSIVE. ..

IV. TRANSMISSION FLUCTUATIONS

In the previous sections we have studied the implica-
tions that a diffusive spread of wave packets, whether of a
quasiclassical origin or due to a fractal spectrum, has on
the average transmission. In this section we shall instead
analyze the fluctuations of the transmission.

In the theory of transmission through disordered solids,
the quantum diffusive regime is characterized by univer-
sal conductance fluctuations (UCF’s), i.e., by transmis-
sion fluctuations of scale-independent magnitude.31 48
On defining the dimensionless conductance as G = xT,
where X is the number of scattering channels, it was found
that

2
Var(G) =~ =
for a time-reversal-invariant transmission pro-
cess34:31,33,48 through a quasi-one-dimensional sample of
length L, with ¢y <« L < £. Such universal fluctuations
are considered a distinctive mark of a proper quantum
diffusive regime, besides the validity of Ohm’s law (apart
from weak-localization corrections).

As mentioned in Sec. IITA, the KRM exhibits
UCF’s.%>® In Figs. 9,10 we present results for the other
two models examined in this paper which do not share
this property. Data for the KHM (Fig. 9) are rather am-
biguous. In fact, even if the points are distributed along
the line 2/15 (their average value is 0.12), they appear
at the same time slowly decreasing with length. This be-
havior is especially clear with the HM (Fig. 10), where a
power-law dependence on length is found: Var(T) ~ L~¢
with 6 = 0.38 +0.04 (in this case conductance and trans-
mission coefficient are the same since only the “in” and
“out” scattering channels are active).

One more feature preventing fluctuations from being
length independent is the presence of sharp variations of
Var(T) as a function of the sample length L, when L
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FIG. 9. Var(G) versus the length for the KHM. Open and
solid circles are obtained by fixing two different quasienergies
and varying the quasiposition over 100 samples; triangles are
obtained by varying the quasienergy over 100 samples and
fixing the quasiposition o = 0. The horizontal dashed line is
the theoretical value 2/15.
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In(Var(T))
o

10
In(L)

FIG. 10. In[Var(T')] versus the logarithm of the length for
the HM. Here E = 0, Vo = 2, Qa/2n = p. Each point is
obtained by averaging over 10° different samples. The dashed
line is the best fit line with slope § = —0.38 £ 0.04.

is some multiple of a denominator occurring in rational
approximants of Qa/2w. This behavior does not appear
to be due to insufficient statistics, and is shown by a
dashed line in Fig. 8. Therefore, although the range of
lengths inspected in Figs. 9 and 10 is “Ohmic” for trans-
mission, transmission fluctuations are not universal, be-
cause Var(T) is length dependent. UCF’s appear then to
be typical of quasiclassical diffusion.

Finally we remark that in the Harper model the trans-
mission remains a non-self-averaging quantity,*® since
Var(T)/(T)? diverges algebraically with L when L — co.

V. CONCLUSIONS

The Ohmic dependence of transmission on the sample
length is a typical feature of classical one-dimensional
diffusive transport, which can be observed in strictly de-
terministic classical systems in the presence of a chaotic
dynamics. On the other hand, one-dimensional chaotic
diffusion is typically suppressed, in the long run, by quan-
tization, so that an Ohmic behavior can be quantally ob-
served only on length scales which are small in compar-
ison to the quantum localization length. In some cases,
however, localization effects leave room for an unbounded
pseudodiffusive spread of wave packets, connected with
a fractal structure of the energy (or quasienergy) spec-
trum. On analyzing the transmission properties associ-
ated with such a “fractal” pseudodiffusion, which is ob-
served in a model endowed with a chaotic classical limit,
we have found evidence that this kind of quantum dif-
fusion is a purely quantum effect, as unrelated to quasi-
classical chaotic diffusion as is quantum localization it-
self. On comparing the behavior of the kicked Harper
model, which exhibits both types of diffusion, with the
kicked rotator model on the one hand, and with the
Harper model on the other, it becomes apparent that
the proper Ohmic regime is still restricted to a range of
“small” sample lengths, in which the singular continu-
ous nature of the spectrum is still unresolved (as was the
singular pointlike spectrum of the kicked rotator model),
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and the quantum motion is essentially a quasiclassical
diffusion. Beyond that, the purely quantum pseudodiffu-
sion alone is at work, leading to a substantially different
type of transmission, which is still power-law dependent
on the length, but with an exponent which depends on
the arithmetic nature of the Planck’s constant, according
to as-yet unknown rules, and cannot therefore be mean-
ingfully carried to the classical limit. In addition, the
statistics of transmission fluctuations are quite different
from the quasiclassical case; in particular, their magni-
tude is not scale independent, as it should be in a proper
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metallic regime. In the language of the theory of quan-
tum chaotic scattering, the crucial aspects of the Ericson
regime of strongly overlapped scattering resonances ap-
pear to be lost as soon as the continuous (singular) nature
of the spectrum comes into play.
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