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Classical statistical mechanics of a few-body interacting spin model
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We study the emergence of Boltzmann's law for the “single-particle energy distribution” in a closed system
of interacting classical spins. It is shown that for a large number of particles Boltzmann’s law may occur, even
if the interaction is very strong. Specific attention is paid to classical analogs of the average shape of quantum
eigenstates and “local density of states,” which are very important in quantum chaology. Analytical predic-
tions are then compared with numerical data.

PACS numbd(s): 05.45-a

[. INTRODUCTION also applied to dynamical models with chaotic behavior.
One of the few dynamical models studied with the use of
Chaotic properties of few-degrees-of-freedom systemshis approach was a system of two interacting spins].
have attracted much attention during the last years. Th&he most interesting result obtained numerically in Ref.
knowledge and classification of chaotic dynamical systems i& that the distribution of occupation numbéeven for two
now extremely accurate, if compared with the state of the arinteracting particlesin the chaotic region can be described
at the beginning of the century. On the other hand, convenin the form of the standard Bose-EinstéBE) distribution
tional statistical mechanics was born long before the chaoltonly symmetric states have been considered which results in
ogy of dynamical systems. It is well known that, in contrastthe BE statistics It was shown that the statistical effects of
to chaotic dynamical systems with few degrees of freedomthe interaction lead to an increase of temperature which is
for the onset of statistical equilibrium in systems with an related to the BE distribution. Also, it was discovered that
infinitely large number of particles neither nonlinearity nor the canonical distribution is recovered if one randomizes the
interaction between particles is needed. Indeed, in such sygonzero elementsf the interactiorV, keeping the dynamical
tems the thermodynamic limiinfinite number of particles —constraints of the model. This means that random interaction
N— o) leads to the statistical behavior of a system since anylays the role of a heat bath, and allows one to use statistical
weak interactior{with an environment or between particles and thermodynamical descriptions for isolated systems.
gives rise to mixing properties and onset of chaos. In order to extend the approach of Ref-6] to classical
Although statistical mechanics has undoubtedly obtainedlynamical systems with a large number of particles, we in-
results in many different fields, fundamental questions abouroduce the model oN interacting spins in one dimension.
statistical descriptions of systems with finite number of par-Due to the well-defined classical limit, it is first of interest to
ticles are still operi1]. It is clear that in such systems the explore similar problems in the classical counterpart. The
interparticle interaction is crucial; however, its role in pro- problem of a quantum-classical correspondence for chaotic
ducing chaos or ergodicity is still not understood. Due toSystems with a large number of interacting particles seems to
computing difficulties and lack of theoretical studies, many-Us extremely important in view of many physical applica-
body chaotic systems have been scarcely investigated, ad@ns. In this paper we mainly concentrate on the occurrence
little is known about them. of Boltzmann’s law, and on the classical counterparts of the
Recently, an approach to quantum isolated systems with @uantum local density of states and the shapes of the eigen-
finite number of interacting particles was develoggd-6].  functions. The investigation of the analogous Fermi-Dirac or
The goal of this approach was a direct relation between thBose-Einstein statistics in a quantized version of such a
average shape of exact eigenstafeduynctior), and the dis- model is reserved for future wor].
tribution of occupation numbenss of single-particle levels. Our investigation is complementary to the approach based
This relation shows that there is no need to know the eigenon the so-calledlynamicaltemperatur¢ 10—13, introduced
states exactly; instead, if these eigenstates are ch@atic ~ for the study of the statistical properties of few-degrees-of-
dom Superposition of a very |arge number of Components ofreedom classical models with chaotic behavior. Specifically,
basis states the F function absorbs the statistical effects of our interest is in the notion dftatisticaltemperature associ-
interaction between particles and determines the form of thated with Boltzmann’s distributiofif any) for single-particle
ne distribution. The approach was mainly developed for aenergy. The relation between statistical and dynamical tem-
model with completely random two-body interaction be- Peratures represents an open and interesting question.
tween a finite number of Fermi particles; however, it can be

Il. MODEL OF INTERACTING SPINS

*On leave of absence from the Dipartimento di Matematica e Our purpose is to investigate a few-body dynamical sys-
Fisica, UniversiteCattolica, Via Trieste 17, -25121 Brescia, Italy. tem from a statistical mechanics point of view. Following
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previous works on the two-particle spin probld®7], we 10
consider the Hamiltonian
N N 10—1 L /WW_ i
H=B2 S+ §S.1, (D
= = SO
which is known as the one-dimensional Heisenberg model in 1
a magnetic field; see, for instance, Réf3]. Here§ are spin B=1, J=1
vectors, and, for the sake of definiteness, we take periodic S
boundary conditionsS, =Sy, ;. The classical version is a o B, J=l
solvable model from the statistical point of viefmamely, S
when the number of particldd—; see Ref[14]). o
Instead, here we are interested in a dynamical approach, 10 10 10° 10 10° 10
in particular for a small number of particles, when the usual ¢

statistical approach is at least questionable. In what follows,
we shall consider a more simple version of the classical FIG. 1. Maximal Lyapunov exponents as a function of time for

Heisenberg model, which is described by the Hamiltonian E=—2 andJ=1 andB=0.5 and 1, as indicated in the picture. The
system hadN=4 spins.

N N
H=H,+V= Bz S+ JZ 99, ., (2)  edge of the energy spectrugee Fig. 2 Maximal Lyapunov
i=1 i=1 exponents have been calculated using the standard recipe
[27].

whereN>2 is the number of spins in the chain. We do this  Besides integrability, the unperturbed Hamiltonkg, in
in order to simplify analytical calculations. The equations ofthe limit N—o, has good statistical properties which we

motion can be written in the usual way, exploit in Sec. lll. It is indeed interesting to compare our
results with those obtained with the standard statistical ap-
ds . proach.
Gt ®

Ill. IDEAL GAS OF SPINS

where{,} are Poisson bracketsee Refs[15,1§ for similar This particular choice of the model, being extremely
dynamical models Constants of motion are the enerly  simple, allows an analytical treatment of the céée = in
and the magnitude of the angular mome||§da=s (the latter  both unperturbed and perturbed cases. Let us first analyze the
is assumed to be the same for each ppillithout loss of  unperturbed Hamiltoniakly. This should be thought of as a
generality, we can pu=1. model of a very weakly interacting system. In what follows,

Contrary to the common viewpointspin Hamiltonian  without loss of generality, we assuni=1. The microca-
plus a magnetic field as a perturbatiowe consider the nonical ensemble represents the most natural way to analyze
“magnetic” part as an unperturbed Hamiltonian. Indeed, wean isolated system dfl spins. One goal is to find the ther-
are interested in models which can generally be expressed asdynamical temperature as it depend on the enErgyn-
a sum of single-particle Hamiltonians, this feature not beingother is to study the single-particle energy distribution and
shared by the perturbation Therefore, the Heisenberg ker-

(]

nel (J2§i§i+1) will be considered as a perturbation between 10 . .
nearest-neighbor spins.
The unperturbed Hamiltonian is integrable, and the solu-

tion of the unperturbed equations of motion can be written 0t L
down at a glance. It should be pointed out that the perturba- N em e e,
tion itself is not chaotic. Indeed, it can be verified numeri- N
cally that two close trajectories diverge only linearly in time . 107 L AN
whenB=0. This means that the maximal Lyapunov expo- "
nent is zero for any choice of the initial conditions. On the  F=_1.9745 "

other hand, the same Lyapunov analysis shows that the total I F=—3.8489 \m

Hamiltonian, for generic values of the couplidgand for 07 g 45926 \

energy values in the middle of the band~{0), is chaotic.
Maximal Lyapunov exponents, as a function of time for dif-
ferent J and B values and fixed energl , are shown in 107 4 ") = — 5
Fig. 1. 10 10 10 10 10

As one can see, the Lyapunov exponents approach zero !
when B decreases, od increases. On the other hand, for  FIG. 2. (a) Maximal Lyapunov exponents as a function of time
fixed J, and B different from zero, the region where the for J=1, B=1, and different energf as indicated in the text.
maximal Lyapunov exponent approaches zero is close to thgimulations have been made with four spins.
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the conditions under which it can be assimilated to the Bolt- +o0
zmann distribution. Po(Eo,N)ZJ dsip(s))- -

The temperaturdf =81 (kg=1 hereafter can be de- o
fined via the microcanonical ensemble

o N
><f dsg p(szNw(iZl S- Eo)

~ds
Pme=gE* @ +e ] . r o1 N
Zf 2—d7\ e Eo f dXEQI}\X
— LT —
where S is the entropy. For a sufficiently large number of '
particles this can in turn be defined &s=logp(E). Here N M k(N+EO_2k)N_l
p(E) can be defined through the phase space voltirk If =N k}_:o (-1 RN (10

the motion ofN spins is ergodic, each of them covers uni-
formly the unit three-dimensionalBD) sphere. Therefore,
each component & has a uniform probability density func-
tion in the intervall —1,1] [19]; that is,

whereM is the integer part of £y+ N)/2.
Let us now concentrate on the “single-particle energy dis-
tribution” (SPE distribution defined as:

p(h)= ———=

N
;1 SIZ: Eo)

dh '

0 elsewhere, (5 ap( T<h
no(h|Eg)=N

11
and the same for the other componeg&fsandS’. Here the
guantity P(x=a) gives the probability that the continuous
random variablex has values less thaa In the same way,
the density of states can be evaluated as a probability:

whereP(x<a|y=Db) is the conditional probability.

This quantity is the classical analog of the quantdis:
tribution of occupation numbersvhich gives the number of
particles occupying a single-particle level with enefgy.

N
9P 2 SI<E Correspondingly, the above classical distribution determines
=0 the probability thatany of N spins has the enerdy,. From
po(Bo,N)= ——— ——. (6)  this definition, it is clear that the SPE distributif. (11)]

is normalized to the total number of particles, and it defines

The distribution of the sum ol independent random vari- the mean energy dll particles, or, the same, the mean total

ables can be obtained using the central limit theotemen

N— o) model in the same way as the model in contact with a heat
bath (see details in Refg8,6]).
5 It is well known that forN—« the single-particle energy
(Eg,N)= 1 exg — Eo @) should be distributed according to Boltzmann’s law. Under
Pot=o oco\2m 202)" suitable conditions this holds true in this model, too. Indeed,
one obtains
where
N
, N p(Si=h,i21 saZ=Eo)
T0=73" (8) no(h|Eg) =N -
3 0( | O) pO(E01N)
As a result, from Eq(4) one obtains an unusuaicroca- , N ,
nonical relationfor the energy vs inverse temperatiifef]: p Slzh:;z S=Eg—h
=N
3E, po(Eo.N)
ﬂmc: - W (9) N—1
p(Si=h)p( 2, = Eo)
In principal, the energyg, ranges fromg,;;<0 to E;,,= =N -
—Ein=>0; therefore, in this model negative temperatures are po(Eo.N)
also possiple. One shoulql note t_hat ty_pical physical systems po(h, 1) pe(Eg—h,N—1)
have densities of states increasing with energy, thus giving = , (12
positive temperature. For this reason, in what follows, we Po(Eo,N)
consider only positive temperatures which correspond to the
left (part of the symmetricenergy spectrung,<0. where the last equality is due to the independencg offhe

It is important to note that the density of states can also beguantity p(S; = h,EiN:_fS,Z= E,) defines the joint probability
obtained for finite system of particles without invoking cen- density function.
tral limit theorems. This can be done by a direct integration Substituting expressiofi7) into the above relation, it is
over the phase space volume, easy to obtair(in the limit of a very largeN>1)

energy of the system. In this way, one can treat an isolated
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25 - ' - conditionEqy>|h|~1 is fulfilled. Physically this means that
the total energy must be larger than the typical single-particle
energy, a condition naturally satisfied for a thermodynamical
exact system.

Another important relation can be obtained from EL).
Specifically, taking the derivatives of both sides of Etd)
overh, and exchanging the derivative on the right-hand side,
one obtains

20 ¢

N = Gaussian

d d
_ﬁlogno(lﬂEo):d_Eologpo(EO_h,N_l), (16)

One can see that in the limit—c and|Eg|>|h|, the right-

hand side coincides with the microcanonical definition of the
temperature, while the left-hand side shows that the only
possible exponential distribution should have a microcanoni-

FIG. 3. Single-particle energy distribution fof=10 andJ=0.  cal temperature.

Full lines represent the exact distributipq. (12)] obtained from We have thus found that in the noninteracting system,
the exact unperturbed density of stafes). (10)]. Dashed lines are when the number of particles becomes sufficiently large and
the correspondent infinite approximatiofi&g. (13)] with a proper ~ the total energy of the system is larger than the typical

-1 -0.5 0 0.5 1

normalization. Upper curves are f&p=—6, lower ones folEy= single-particle energy, theicrocanonical temperaturfeq.
-2. (9)], defined by the density of states, coincides with stee
tistical temperaturedefined directly from the SPE distribu-
3E§ 3h?2 3Eoh tion [Eq. (11)], which is the standard Boltzmann law. One
no(h|Eg)=exp — IN(N-1) - 2(N—1) + N_1)' can then assume that if the interaction is sufficiently small, in

(13) order not to change the previous results dramatically, but
enough to produce ergodicitfrom the equations of motion
whereE(<0. Boltzmann’s law again results from taking a sufficiently
Obviously, a correspondent expression for any number ofrge but finite number of particles.

particles can be obtained, using the exact value of the unper- Let us stress that in order to obtain these results, the mo-
turbed density of states Eq10). In Fig. 3 we show the tion has been assumed to be fully ergodic on the unit 3D
infinite (Gaussiah approximation N—o) and the exact Ssphere. Rigorously speaking, this can be true, from the dy-
one, computed for two different energy values. As one camamical point of view, only in the presence of interactibn
see, while in the middle of the spectrum the distributions are* 0. Indeed forJ=0 the motion is foliated onto regular tori,
almost the same, close to the band edges they are remarkalgipd no ergodicity at all is allowed. Thus this ideal spin
different. The Gaussian, or infinite approximation, worksmodel has been worked out following the traditional statisti-
very well even for a small number of particles as soon as théal mechanics picture, where the interaction is assumed to be
energyE, is not close to the edges of the baftde interval ~ sufficiently weak in order to apply noninteracting results, but
[ —N,N] for noninteracting spinsindeed, the Gaussian den- sufficiently strong in order to obtain ergodicity.
sity of states has infinitely long tails, while the exact one is

sharply defined withirf —N,N]. On the other hand, while IV. MANY INTERACTING SPINS
the support of the density function scalesNsits variance
depends on/N. It follows that the region close to the edges A. Density of states

becomes less and less important\abecomes large.

Let us briefly comment on Eq13). Although it has been o _ i
obtained for a large number of particles, it nevertheless Before switching to the interacting case, let us compute
shows that, generally speaking, the single-particle energghe density of states in the presence of an infinitely strong
distribution for finite weakly interacting systensnot nec-  interaction(namely, formally settind3=0). In this case the
essarily described by an exponential la@ne can see that density of states can be written as follows:
the latter occurs in a very strong linfit— o, provided that
|Eol>/hl,

1. Infinitely strong interaction

N
_ P(JZ Sy%lsE)
no(hEg)=exp(— foh), (19 puEN=TOEE T Can

where the temperatur‘léo=ﬁ(;1 is defined via
The central limit theorem can also be applied in this case,
3E, keeping in mind that the normalized probability distribution
Bo=— =1~ Pmct O(IN), 15 of the productz=xy of two uniformly distributed random
variablesx,y in the interval (-1,1) is given by 20]

and Ey<0. One should stress that, apart from the lilit
—, the exponential distribution arises when the second pv(E/J,1) = —(1/23)log(|E/J)), (19
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so that the variance ig?) = 1/9. Equatior(17) then becomes along thez axis, for whichE,=N, impliesV=0. However,

(in the largeN limit) if the motion is ergodic and the energy is not too close to the
band edges, the second assumption can be considered as a
(EN) 1 E2 (19 good approximation.
’ = ex N
Py o2 20y

with B. Classical analogs of quantum eigenstates and the LDOS
Another important relation can be obtained linking the

5 NJ? two quantities, theshape of the “eigenfunctioiis(SE) and

ovTTg - (20 the local density of statesLDOS), whose concepts were

motivated by quantum mechani¢see, for example, Refs.
Note that, even in this case, an explicit integral equation caf3,21,8,8). The latter quantity, the LDOS, also known in
be obtained for finite systems. Following the same steps as ipuclear physics as thstrength functionis very important
Eg. (10), one obtains when describing the spread of the energy initially concen-
: trated in a specific unperturbed state. The classical analogs of
S(\

N these functions were introduced in Rg22], and recently

+ oo
— —i\NE
pv(E.N)= ﬁw dhe™ N (22) applied to dynamical models in Ref8,21]. The very point
is that in the limit of N—oo these two quantities can be
wheres(\) is the sine-integral function defined by explicitly found, and a relation between them can be estab-
lished.
B Xd sinx In the case of ergodic motion the classical analog of the
s(\)= 0 T SE can be defined as
2. General case We(Eq) = : (27)

JEq
In the same way the density of states in the presence of

both the interaction and the “kinetic” term can be computed _ . .
by assuming thaH, andV are independent. Indeed, let us Correspondingly, the classical analog of the LDOS is
define

E aP(H0+V§E|HO=E0)
P(Ho+ V< E):j dE'p(E'). (22) We (E)= E . (28)

On the other hand, iH, andV are independent, their joint

probability density function can be written as It is very important that both the SE and LDOS can be com-

puted more efficienthf22] using the equations of motion.
_ For the SE one has to choose a chaotic trajectory at some
Eq,E)=po(E E). 23 . .
PH, V(Eo )=po(Eo)pv(E) @3 fixed energyE, compute théHy(t) trajectory, and sample the
values of the unperturbed Hamiltoniéty, along this trajec-
tory at some fixed time intervals. This procedure gives us the
ergodic distribution inside thenergy shelkconstructed by a
+oo projection of the phase space dfonto H, (see details in
p(E)ZJ dE'po(E—E")pu(E’). (24 Refs.[8,21]). In the same way, the classical LDOS can be
o numerically computed taking a bunch @egula) trajecto-
Substituting Eqs(7) and(17), and performing simple Gauss- "1€S of the unperturbed Hamiltoniat,= E,, and computing
ian integrals, one obtains the correspondent spread Hif(t) along these unperturbed
’ trajectories. The sample of the values of the total Hamil-
1 E?
p(E,N)= ex

The probability density function of the sum of two indepen-
dent random variables is thus given [20].

tonian H(t), taken at given intervals of time, results in the
-—1, (25 classical LDOS. Let us stress that even in the case of ergodic
oN2m 20° motion of the total HamiltoniarH, when only one single
trajectory is needed in order to obtain the SE, an ensemble of
trajectories ofH, is necessary in order to obtain a reliable
result for the LDOS. This is a consequence of the integrabil-

where the variance

N 1

0_2:_, V= ——, (26) |ty of Ho. ) ) ) o
3v 1+J%/3 Alternatively one can choose, as indicated by definitions
(27) and(28), many different initial conditions on the same
should be compared with EqO). energy surface, and sum over them. It is clear that the two

In Eqg. (25 there are two different approximations. The proceduregdynamical and taking the average over the phase
first one is the Gaussian form for the density of states, whiclvolume should give the same result in the case of ergodic
is valid whenN—c. The second is the independence of themotion.

(random) termsHy andV which, of course, cannot be true in ~ An important identity can be easily proven from relations
general. For instance, a configuration with all spins aligned27) and(28). Let us write
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P(Ho+V<E,Hy<E) where
B , NJ?
= | _dE;P(Ho+V=<E,Ho=Ep) ch=g (36)
% fEOdE’ P(Ho+V<E|Ho=E})po(ED) is the variance, anei;=vE is the center of the SE.
o O 0 o In order to obtain the LDOS distribution, one can use
29) relation (32), from which one obtains
from which one can obtain the classical SE, 1 (Eo—E)?
We (E)= 2n eXg -2 | (37)
1o (B 9*P(Ho+V<E,Hy<E) 20 TwyeT v
In the same way one can obtain the classical LDOS, N J2
) ol=—. (39
d°P(Ho<E(,Ho+V=<E) 9
We(Eo)p(E) = EE (3D
0 It is interesting to note that the above distribution, in the
From the above, the following relation emerges: Gaussian approximation, coincides with Ef9):
we, (E)po( Eo) =We(Eo)p(E). (32 We, (E)=pv(E-Ep). (39

Let us stress that the previous identity does not depend onhis relation can be also obtained independently, using the
the Gaussian approximation, and that it takes dynamical comssumption of the independencekbd§ from V.
relations into account as well. This simple relation between One can see that although the two Gaussians are different,
the classical SE and LDOS is very important in differentfor a weak interactioll<1, and therv ~1, they appear to
applications. Remarkably, only unperturbed and perturbetbe close to one another. This fact is of a general nature, and
densities of statepy(E) and p(E) enter into this relation. occurs in other models; see Reffi22,21,7.
This allows one to relate the shape of eigenstates to that of On the other hand, this result shows that, strictly speak-
the LDOS in the corresponding quantum model, in a deepng, even in the case of ergodic motion, one should not ex-
semiclassical region. In fact, a knowledge of these two funcpect the SE and LDOS to be the same. As found above, the
tions leads to a semiclassical approach, according to which relation between the SE and LDOS is given by B8g). One
is easy to detect quantum effects of localization; see detailsan obtain a very useful relation for the variances of the SE
in Refs.[3,6]. and LDOS(valid in the Gaussian approximation oply

It should be stressed that the classical SE and LDOS, in

essence, are ergodic measures for energy shells defined by va gg
the projection ofH, onto H (and vice verspin the energy == (40)
representation. ow @

FunctionsWg(Eg) andWEO(E) can be considered as ker-

nel operators transforming unperturbed quantities into totaﬂ1
ones, and vice versa. For instance, by integrating (B2).

We would like to stress again that both the SE and LDOS
ave a proper meaning only in the case of ergodic motion. In
other cases they depend strongly on initial conditions and on

one has the energy, thus not allowing one to use any statistical ap-
proach.
P(E):f dEqwe (E)po(Eo), (33
C. Distribution of single-particle energies
and the converse, and different temperatures
For N>1, the microcanonical temperatufg,.= 81 can
pO(EO)=f dE WE(Eg)p(E). (34  be defined from the total density of stafés. (25)],

. . . I E
In a certain wayw andW each can be considered the inverse = dlog(p) =_ 3_0, (41)

of the other. It is also easy to check that whes 0 then e JE N
We(Eo) = WEO(E) =0(E—Ey).

Assuming the Gaussian approximation for the densities oﬁ
states, and using E¢32), we can easily obtain an analytical
expression for the classical SE,

ith v=1/(1+J?%/3). In fact, Eq.(41) determines theher-

odynamical temperatuyesince it establishes the relation

between the temperature and total energy of a system. Now

we are going to find thestatistical temperatureassociated
with the SPE distribution. First of all, let us note that, if the

}, (35) variablesH, andV are independent, the following approxi-

1 (Eq—E¢)?
We(Ep)=—— ex;{ -
B0 T mate relation can be obtained:

2
20—W
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dP(Si<h|Hy,+V=E) shift of the energyA e=E— E which is due to the interaction
dh between particles. In a sense, ttstatistical effects of the
interaction are absorbed by the increase of the energy of a
system, compared to the case of noninteracting particles.
:f dEg no(h|Eo) We(Eo).- (42) Therefore, pseudorandom interaction may be treated as an
internal heat bath, thus giving rise to a statistical equilibrium.
Substituting Eqs(13) and (39) into Eq. (42), one obtains The shift Ag can be found by assuming the absence of
) ) correlations betweel, andV in a way described above.
n(h|E):exp( 3B 3wh N 3Ech One can show that
2N(N-v) 2(N-v) N-v/’
(43

n(h|E)=

E= f dEoE We(Eq) =E, (48)

where E;=vE. Note that whenJ=0, thenv=1, and Eq.

(13) is recovered. whereE.=vE is the center of the classical SE, and the last
One can see that in the limit&|>|h|~1 andN>v the  equality occurs in a strong limi> 1 using Eq.(35). There-

SPE distribution can be approximated by the exponential defore, the shift is given by the relation

pendence

2 2
— a
n(h|E)~e AEMN, (44) AE:E—Ez——VZVE:—EE. (49)
0o

where
It is important that the shift is defined by the widit), of
B(E)=— Evzﬂ 45) the LDOS and by the width of the unperturbed density. One
N me: should note that in a quantum representation, the variaﬁ,ce
is defined by the sum of squared off-diagonal matrix ele-
The last equality, claiming that the statistical temperaturements. Therefore, this energy shift can be found without di-
coincides with the thermodynamical one, is by no meansgonalization of huge quantum Hamiltonian matrices. Using
trivial. On the one hand, the presence of strong interactiofthis shift, one can find the temperature from E46) by
suggests some statistical equilibrium property, thus leadingssuming the Boltzmann dependencerfon).
to microcanonical predictions. On the other hand, we do not Another way to obtain the temperature is via the unper-

know if the single-particle description is valid since the in- turbed density of states evaluated at the renormalized energy
teraction is strong. Even in the case when mean field ape.

proach would be possiblén such a way that part of the
interaction actually becomes a single-particle engrgye

single-particle distribution would depend on the mean field, rzm =— 3—E (50)
and there are no reasons to expecpriori, that the Boltz- dE Eo=E N
mann distribution occurs with the same temperature as given
by the microcanonical ensemble. Using the relation betwee andE, one obtains
Another way to find the statistical temperature which cor-
responds to the SPE distribution is as follows. First we note 3E 3E
that, in the presence of interaction, one has Br==N = NV Bmec (53)
f dh hn(h|E)=E#E; (46) Once again, we should remember that, apart from the
limit N>1, the above relation is valid when neglecting the

correlations betweetd, and V. However, the smaller the
number of particles, the larger the energy region whdye
namica) correlations will be important.
It is now interesting to find the increase of temperature
f dh hny(h|Eg) =Eg. (477  AT=T-T, due to the interaction, in comparison with the
temperatureTy= B, 1 of the system with noninteracting

Note that the SPE distribution in E(6) depends on the SPINS:
interaction; however, the “mean value” of the energy of all 5
particles does not correspond to the energy of a system. This AT oy J? 50
very fact allows one to relate statistical effects of the inter- To o2 3° (52

action to an increase of the total ener@y application to

quantum systems, this approach was considered in Ref§ne can see that the relative increase of temperature is given

[3.4.6). _ _ S in terms of the variance of the LDOS and the width of the
Specifically, in order to find the SPE distributioh|E)  ynperturbed density onfalso see Eq49)]. This fact seems

fiom Eg. (46), one needs to know theenormalized energy tg pe generic; see the discussion in REBs6).

E. One can see that the Boltzmann distribution gives a cor- A more accurate relation for the definition of temperature

rect result for an isolated system, if we take into account thevia the SPE distribution, without the assumption of the

this is different from the noninteracting case, for the latter
the obvious relation holds;
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Gaussian form of the density of states, can be obtained as 5 - - -
follows. In close analogy to Eq16) one can write o dynamical
Gaussian
JIP( is elH=E) x dynamical
- 4.5 1
n(elE)= Je ———- Gaussian

1  JP(S'<e,H=E)
~ p(E,N) Je '

(53

log n(h | E)

On the other hand, defining=S/, andy;=JS'S,, it fol-
lows that

P(x;<e,H=E)

N 3 .
€

ZJ’ dE’P(X1=€'7X1+Y1+2 Xty =E ! " ;: " !
— i=2
. N FIG. 4. Single-particle energy distributions féf=100 and

= f de’ p( X;=€',y;+ E Xi+y;=E— e') large interaction)=1, for different energy values. One single tra-
o =2 jectory has been iterated for a given energy, up to a timéc®.

N Numerical data should be compared with the analytical expression
€ [Eg. (43)] obtained from the Gaussian approximation for the density

— ’ — _ i

B J’ dhj de P( X1z e ’yl_h’Z‘z Xi of states. Circles stand f@&= — 19, crosses foE=—7.

the trajectories have been found to be chaotic with positive
maximal Lyapunov exponents. For comparison, the analyti-
cal expressiorisee Eq.(43)], obtained in the Gaussian ap-
Owing to the independence of the three random variableggroximation, is shown. As one can see, the agreement is
the joint probability density can be factorized, and one ob-fairly good. On the other hand, a direct comparison of the
tains microcanonical temperatuy,,. with the approximated tem-
perature, obtained by fitting the SPE distribution by an ex-
onent, gives different answers; see Fig. 5. In this figure,
n(E|E)p(E’N)_p°(E’1)J dhpy(h.1)p(E=€=h,N=1). Erosses rgepresent the fitted inverse tempgratures as afSnction
(55 of the total energy, while the dashed curve is the microca-
nonical relation between the inverse temperature and the en-
ergy. In order to smooth fluctuations, the derivative has been
calculated performing local averages in small energy win-

+yi=E—e’—h). (54

Now defining now the “interacting” density of states

ZG(E)ZJdhpv(h,l)p(E—e—h,N—l), (56)

0.5 T
one obtains a relation similar to E(L6): ___+ Bru
p P 04 —— dZ(EYdE ]
~ e logn(elE)= E logZ(E). 7/ S NN - =3(E 4v)/(N-v)
0.3 3

Equation(57) states that if correlations can be neglected,
then a renormalized density of states must be introduced in B
order to obtain the “correct” temperature as obtained from 02 b
the single-particle energy distribution. On the other hand, it
is clear that in the limiN—, and|E|>1, we haveZ (E)
~p(E) and the usual definition is recovered. It is now inter- 01 f
esting to apply our estimates to a system with a not very
large number of spins. ~

-25 -20 -15 -10 -5 0

V. NUMERICAL DATA

A. Large number of spins FIG. 5. Inverse temperatures vs total energyNo+ 100 andJ
) ) . . =1. Crosses are the extract@;; from the best fit of the SPE

Let us first consider the model witd= 100 spins. On the  gisributions n(h|E) to the exponential dependence. Typical ex-
one hand, this situation is far from the thermodynamic limit; amples of these distributions are given in Fig. 4. The dashed line is
on the other hand, the number of particles is quite large, anghe microcanonical relatiofEq. (41)] found numerically from the
one can expect a good correspondence with analytical resulggnsity of stategp(E). The full line is the theoretical prediction,
obtained in Sec. IV. In Fig. 4 two SPE distributions are plot-obtained from Eq(57) with e= — 1. The dotted line is the Gaussian
ted for different values of the total ener@y In both cases, approximation(see the tejt
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dows. A small, but systematic, difference between the statis- 8 . . ,
tical and microcanonical temperatures is clearly seen.

A much better agreement can be achieved by directly us- \
ing (instead of the total density of stajethe renormalized 6 L — phase average
density[Eq. (56)]. The corresponding result is presented by \
the full line. One can see quite good correspondence to nu- \
merical data for the statistical temperature. This result means
that Eq.(56) is more accurate than the usual statistical defi-
nition [Eq. (41)].

One can also introduce the effecti(&atistical tempera-
ture by making use of Eq43), keeping all terms in the
exponent. The temperature can be defined as a slope of
Inn(h|E) at the bottom of the energy spectrum,

———- dynamical

n(h|E)

~dinn(h|E) 3E;  3vh 3u(E-h)
it™"dh ~ N-v N-»  N-

, (58

FIG. 6. Single-particle energy distribution foé=4 andJ=1.
with h— — 1. The corresponding result is shown in Fig. 5 by The dashed line is obtained dynamically, by integrating the equa-
the dotted line. One can see that this dependence practicalligns of motion for a single trajectory with ener§y, = —1.9745 up
coincides with both the fit to the actual distributiogh|E) to the timet=10". The full line is the phase average distribution
(crosses and with the temperature determined by E56) obtained for 18 different initial conditions in the energy range
(full line). This means that these two approximations cord —1.98—1.97).
rectly take into account both the dynamical correlations and . L )
the finite number of particles. Th|s I_e}ck of ergodicity |_s.also reflected in the lack of

We can conclude that, in spite of the relatively Sma”equaruthn. Indeed, defining the average unperturbed
number of particles, if compared with the usual thermody-Single-particle energy as
namical systems of £8 particles, our model oN=100 in- -
teracting spins can be approximately described by a standard (SH)=lim J dt S(t), (59)
statistical approach which ignores dynamical correlations be- T—xJ0
tween particles. Indeed, the difference between the microca-
nonical temperature and the approximate temperature, foungle obtain that, typically, for trajectories with energyclose
by the fit of the SPE distribution close to the edge of theto E, , neighbor spins do not share the same enéliapk of
energy spectrum, is quite small, and may be neglected iBquipartitior). In Table I, we show the average kinetic en-
some cases. However, even for a relatively large number adrgy per spin for a dynamical trajectory with the eneEyy
spins, N=100>1, a clear influence of dynamical correla- (second colum)n to be compared with the average kinetic
tions and finite number of particles remains. However, oneenergy per spin as obtained from the phase average distribu-
should stress that in spite of a clear manifestation of theion (right column within the energy rangA\E=[ —1.98,
influence of dynamical correlations and finite number of par-—1.97].
ticles, the SPE distribution(h|E) for low energies can be
effectively described by the standard Boltzmann distribution,

4 . C. Ergodicity versus dynamical correlations
though with a renormalized temperature. g Y y

In this section we deal with systems having a small num-
ber of spinglet us say, on the order of tgrin contrast to the
B. Chaos versus ergodicity case considered in Sec. IV, we select only those energy val-

It is reasonable to think that a statistically stable distribu-4€S which qorres_pond to both a positive .Ly"?‘puf‘o" exponent
and to equipartition among different spins; this means, in

tion would require a certain degree of chaoficity. But chaos articular, that “dynamical” and “statistical” distributions
itself, as indicated, for instance, by the positivity of the maxi- P ’ Y : . . ;
mal Lyapunov exponent, is not enough in order to Obtain(the former obtained by integration of equations of motion

equipartition among different degrees of freeddsee the Igl ocr:)enggfrféoLyﬁtgh?r:gttgrr]:?’ Ch:;?;lge rgigy d(';rf% rfn:];[nlnl-a
general discussion of this very important problem in Ref. gy P 9

[23]). We have found such cases for a small number of parphase averagare close to one another.

ticles and an energy close to the center of the spectrum.
It is instructive to work out a specific example. Let us
consider a system dfl=4 spins. ForJ=B=1 and energy . . 2 2
E, = —1.9745, the single-particle energy distribution is very Spin labeli (S(E) (S(4B)
different from the phase average distributi@btained with 1 —0.7248 —0.3783

TABLE I. Average kinetic energy per spin.

many different initial conditions in a small energy window 2 —0.1387 —0.3788
close toE, ); see Fig. 6. Nevertheless, the Lyapunov expo- 3 —0.7248 —0.3788
nent is positive for many initial conditions inside the same 4 —0.1388 —0.3801

energy window.
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' ‘ ‘ strongly correlated, and most of the uncorrelation assump-
° Ef —2.294 . tions (betweerH, andV, for exampleé made in the previous
10 ¢ — 2:_542;4 (Gaussian) sections are no longer valid.
\\<><> "j E:_4.67 Gaussi To be more precise, it can be shown that Ep) can be
Vo s 022( aussian) considered as the “diagonal” approximation of the exact
- WO T relation
=
§ 5 n(h|E):j dEo We(Eg)ne(h|Ep), (60)
where
ng(h|Eq)=P(S;=h|Ho=Ey,H=E). (62
N + 0, .. .
<>%;\\f_+jff++o In the limit whenH andH are independent one recovers Eq.
0 : 2 s s T (42), sinceng(h|Eq)=ng(h|Ey). The study of the correla-
-1 0.5 0 0.5 1 tion kernel[Eq. (61)] beyond the diagonal approximation
h will be reserved for future investigations.
FIG. 7. Single-particle energy distributiom(h|E) for N=5, On the other hand, in the middle of the energy bapl
with interactionJ=1 as a function of the single-particle energy ~~O0 there is a rough agreement with the Gaussian approxi-

Different symbols indicate different energy valugsas shown in ~Mation(see Fig. 7. Indeed, for such energy values, there is
the window. For a few sets of symbols the Gaussian approximatiorj0 preferred direction of the spitthe energy shared by each
as given by Eq(43), is also shown. single spin is relatively smalland Eq.(42) still represents a
good approximation. However, the bad point is that, close to
Let us focus on two different samples bf=5 and 10 the center of the band, the Gaussian approximation for
interacting spins with strong and chaotic interactiods ( N(h|E) is far from an exponentidiin fact, it is close to a
=1). In Figs. 7 and 8 we show the SPE distribution for Gaussian, see E3)]. Indeed, let us remember that one of
different energies, together with the correspondent Gaussidh€ conditions for obtaining the Boltzmann distribution was
approximationdEq. (43)]. |E|>1, which is of course not satisfied at the center of the
The first important point is a remarkable deviation from €N€rgy spectrum. _ _
the Gaussian approximation, at least for energy vales  Even if not completely satisfactory from the theoretical
close to the band edge. This simply means that the approxRoint of view, but in close analogy with the case Nf
mations involved in order to obtain E¢43) are no longer =100 spins, one could define a temperaturnamus the
valid. One of these approximations was to consider a Gausglope of the fitting straight line to logh|E). Operatively we
ian shape for the SE in Eq42). According to additional Observe that in the region to the left of their intersection
data, effective SE’gstatistical or dynamical, they are very point (»~—0.6 for N=5 andh~—0.7 for N=10), distri-
close to each othgfor the same energy value show remark- butions with different energy values have a behavior closer
able deviations from the Gaussian. Nonetheless, the substP that of an exponential. Therefore, it is natural to fit the
tution of the “true” SE in Eq.(42) does not affecn(h|E) numericaln(h|E) with an exponential only to the left of the
considerably. This amounts to saying that E) itself does  intersection point. Let us cajBs;; the inverse temperature
not constitute a good approximation for energy values clos@btained in this way.
to the edges. Needless to say, when compared with both the statistical
Indeed, due to the small number of spins, and to the rela@and microcanonical temperatures, one can see important de-
tively large energy shared by each spin particle, they ar&iations. In Figs. 9 and 10 we plot the obtaingg; as a
function of the energ\g, together with other definitions of

15 : : : temperature foN=>5 and 10.
. o E=—-1.024 As one can see, none of the previous definitions seems to
N —— EB=-1.024 (Gaussian) fit the numerical values. This is not surprising, in spite of the
L 0% o E=—6.01 ) fact that only an approximate exponential behavior has been
1, S T B 01 (Gaussian) found. We do not have any approximate theory able to de-
10 ’qdq***:io@ o+ E=-2.492 1 scribe such temperature differences when the number of
_ 0..?%2421% * F=-3.206 spins is small. Strictly speaking, one recognizes the impor-
= "'o..Z::ff%?zQ < E=-4.109 tance of the classical SE in the description of the behavior of
3 [ It eeSe, * B=d.934 single-particle distribution, but it becomes technically com-
plicated to go beyond the diagonal approximation, which is
correct only when the number of particles is sufficiently
large and the energy is not too close to the “many-body
Lo ground state”(bottom of the energy spectrym
. l oo The following approximate phenomenological scaling re-
0_1 05 0 0.5 1 lation has been found numerically:

h _3(E) (1+a)?
FIG. 8. The same foN= 10. Bs= N N '

(62)
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FIG. 9. Comparison between different definitions of temperature FIG. 11. By;; obtained by fitting the single-particle energy dis-
for N=5. Symbols represent the numerically extracgq, while tribution in the negative part of the single-particle spectrum, vs the
different curves refer to different definitions of temperature, theProposed phenomenological scaligg. Full circles represent the
microcanonical approximatioffull line), and the Gaussian approxi- Nnumerical data foN=4, 5, 10, 20, and 100 an#=0.1, 0.5, and 1,
mation (dotted ling. Since the latter also turns out to be dependentand different energy. The full line is the scaling relation.
on h, we computed it ah=—1.
principle, the knowledge of the correlation kerfik. (61)]
would solve the problem completely. But this in turn re-
quires a knowledge of thénfinite) intersections among the
H=E andHqy=E, surfaces.

where «=0.7 is the fitting parameter and(E)
=[dh hn(h|E) . In Fig. 11 for differentN, J, and energy,
we show the numerical data and the scaling relafigqg.
(62)].

For the time being, we have no theoretical explanation for
this scaling relation. It should be stressed that, in the limit

N—-co and sufficiently large energ{E) the second term on | this paper we have studied the emergence of Boltz-
the left-hand side of Eq62) is negligible with respect to the mann’s law for the single-particle energy distributioth|E)
first one, and Eq(51) is recovered. We point out that it is not in a isolated dynamical model of a finite number of interact-
possible to take)>1 in this model, since it becomes inte- ing spins. In the limit of a very large number of spins, this
grable, and most of the previous results are necessarilhodel allows for an analytical treatment. We have shown
wrong. that in this strong limit, Boltzmann’s distribution, indeed,
The disagreement between the microcanonical temperayccurs with an effectivestatistical temperature which coin-
tures and the statistical one for a small number of particlegides with that defined by the standaricrocanonical tem-
has few important theoretical implications. First, we noteperature The latter is defined via the total density of states.
that they are obtained in two completely different ways.Since our analytical proof is also valid for a strong spin
While the single-particle distribution reflects a property ofinteraction, it is far from trivial. Indeed, it is na priori
the constant energy surfa¢e=E, the microcanonical defi- clear that the SPE distribution, which pertains to a noninter-
nition requires a derivativeacrossthe energy surface. In acting property, follows the Boltzmann distribution with the

VI. CONCLUDING REMARKS
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FIG. 10. The same foK=10 spins.

temperature determined via the total density of states.

The above result has been obtained in an approach which
is very similar to that recently suggested in the study of the
so-calledtwo-body random interaction modgl—4]. Accord-
ing to this approach, the distribution of occupation numbers
for single-particle levels in a quantum many-body system is
directly related to the average shape of chaotic eigenstates in
the basis of the unperturbed Hamiltonié&he latter can be
considered as the mean-field part of a systerhis means,
in fact, that there is no need to know exact eigenstates of
huge Hamiltonian matrices which take into account two-
body interaction between particles. This is due to the chaotic
nature of eigenstates, which results from thesumegran-
domness of the two-body matrix elements.

An important point of the above approach is that in some
cases the average shape of eigenstates can be found analyti-
cally from off-diagonal matrix elements of the total Hamil-
tonian Hy; see Refs[3,5]. The same happens to another
important quantity, thetrength functionwhich in solid state
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physics is also known as thecal density of stated DOS).  temperature related to the SPE distribution. Detailed analysis
These two quantities are related to each other; however, sshows that these deviations are mainly due to dynamical ef-
far this relation is not well studied. Numerical data for dif- fects of correlations originating from a finite number of par-
ferent models, both disorderd®] and dynamical[21,8], ticles. As shown, analytical results can be interpreted as a
have shown that for not very strong interaction, these twd‘diagonal” approximation, neglecting correlations between
guantities are very close to one another. Knowledge of théhe total Hamiltonian and the unperturbed Hamiltonian. One
LDOS is very important in many applications. Indeed it pro- should stress that corrections to the thermodynamical expres-
vides information on how energy, initially concentrated in asions are not only on the order of\l/as commonly assumed
specific unperturbed state, spreads over all other states dueitothe literature, but depend on the interaction strength as
the interaction between particles. The inverse width of thavell.
LDOS is, in fact, the effective time of this spread. Drastic deviations from the thermodynamical approach
Until recently, the above two quantities were discussechave been found for two interacting spind<10 and 3.
only in the context of quantum systems. On the other handBoth the thermodynamical temperature defined from the mi-
in Ref.[22] it was noted that both LDOS and SE have verycrocanonical relations, and the statistical temperature found
clear classical analogs. The study of tiassicalLDOS and  analytically for a very largeN, are very different from the
SE were begun in Ref$21,8], and the first results showed approximate temperature. The latter has been determined nu-
that the average shape of quantum eigensiaied the same merically from the Boltzmann dependence of the SPE distri-
for the LDOS for chaotic eigenstates coincides fairly well bution, used as a fitting expression for low energies of the
with the classical counterpart. For this reason, when studyingystem. A phenomenological expression has been found
the occurrence of Boltzmann distribution in our model of from the analysis of the data, but without a proper analytical
interacting spins, we have also paid attention to the classicaxplanation. These problems, as well as the development of a
LDOS and SE. semiquantalapproach for which a quantum distribution of
Our results in what concerns classical SE and LDOS haveccupation numbers is computed with the use of a classical
shown a nice correspondence with the main findings for @analog of the shape of the eigenstates, will be a subject of
guantum model with random two-body interacti@4,6]. In  future investigations.
particular, in our classical model we have proved the basic ACKNOWLEDGMENTS
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