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Ahstract. We study a cne-dimensional abstract model for classical and quantum irregular
scattering in which the interacting dynamics is defined by the standard map. This model
allows for a direct comparison of classical and quantum transport properties. Whereas
the classical model is characterized by chaotic diffusion, in the quantum case the interplay
of diffusion and localization determines a transition from a ballistic regime to a localized
one, with an intermediate ohmic regime in the crossover region. The scattering matrix
is numericaily computed by sciving a Lippman-Schwinger equation. In the bailistic
regime the S-matrix fluctuations are found to share some typical features with the
Ericson Auctuations, with correlation lengths close to the classical rates of exponential
decay. Qualitative modifications occurring in the diffusive regime, including universal
transmission fluctuations, are discussed.

1. Introduction

The foundational relevance of the classical doctrine of chaos is largely due to its
provision of sound foundations for non-cquilibrium statistical mechanics even for
systems with a small number of freedoms. For this reason, the possible persistence of
chaotic features in quantum mechanics is an important issue in the study of quantum
transpori phenomena that involve only a small number of particies.

One such phenomenon is the behaviour of the residual resistance of disordered
solids, which is usually investigated in terms of single-particle dynamics in 2 disordered
potential. In Landauer’s approach, the conduction of electrons through one- and
quasi-one-dimensional disordered solids is pictured as a scattering process (Landauer
1970, Buttiker et al 1985, Pichard 1986), so that in this type of problem one has to

deal simultaneously with quantum smrrering and guantum transport.
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The peculiarities of quantum scattering when the dynamics inside the interaction
region is classically chaotic are now a subject of widespread interest. After Gutzwiller’s
(1983) study of scattering on a variety of negative curvature, a number of different
model systems have been extensively studied (Gaspard and Rice 1989, Eckardt and
Cvitanovic 1989, Blumel and Smilansky 1988). A connection between classical chaotic
decay rates and quantum resonance widths has been clearly established (Gaspard
and Rice 1989, Eckardt and Cvitanovic 1989); moreover, the important surmise has
been formulated that the appearance of cross section fluctuations similar to those
that go under Ericson’s name in nuclear physics (Brody et a/ 1981) is a generic
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quantum signature of classical chaos in the regime of strongly overlapping resonances
(Smilansky 1990}.

All this leads to an interesting question. It is well known that the residual
conductance of mesoscopic devices exhibits strong fluctuations in the weakly localized
regime (see, for example, Vollhardt (1987)); moreover, the statistical methods from
random matrix theory, already used in the analysis of nuclear Ericson fluctuations,
have been extended to the description of such ‘mesoscopic fluctuations’ (Bohigas
and Weidenmulier 1988). This makes it all the more natural to inquire whether
mesoscopic fluctuations can also be reduced within the framework of chaotic Ericson-
like fluctuations (Casati et al 1990, Bohigas and Weidenmuller 1988, Smilansky 1990).

In order to address this problem, one needs a quantum model endowed with a
well-defined classical limit in which a chaotic diffusive transport takes place according
to Ohm’s law. The usual models do not satisfy these requirements, either because
their classical limits are not well defined (as in tight-binding quantum models) or
because these classical limits, though chaotic, are not diffusive. In fact, whereas
diffusion would require classical decay times significantly larger than the chaotization
time, hitherto investigated models have these two times roughly on the same order.

In order to obtain chaotic diffusion in a model with elastic scattering, two spatial
dimensions (at least) and a large number of scatterers are needed, which makes a
proper quantum simulation a considerable computational task.

In this paper we present a much simpler model, which in spite of a scemingly
unphysical character, conveys some essential features of the problem. This model is
once more a variant of the standard map, better known in its quantum version as the
kicked rotator (KR). As is well known this model exhibits the two essential properties
of classical and quantum transport, i.e. classical chaotic diffusion and quantum local-
ization; indeed, its similarity to one-dimensional models for quantum transport has,
up until now, been successfully implemented in order to get an understanding of its
dynamical properties (Fishman er af 1982, Blumel et al 1987)).

We now reverse this approach and use the KR as a model for both one-dimensional
transport and chaotic scattering. In our scattering model the interacting dynamics is
defined by the standard map, and if the interaction region is sufficiently extended,
the chaotic transport across it has a diffusive character. In spite of the complete
absence of external random agents, this transport is statistically well described by a
Fokker-Planck boundary-value problem that yields an explicit formula for the classical
transmission coefficient, This formula is in excellent agreement with the results of
numerical simulations and shows that the classical transport has an ‘ohmic’ character.
‘Ohmic’ here means that the transmission coefficient is inversely proportional to the
length of the sample; a direct definition of conductance for our model will not be
attempted here—this may look somewhat artificial in view of the abstract nature of
the model itself.

In the quantum model, the transport coeflicients are directly and self-consistently
defined from the scattering matrix, which can be numerically computed with good
accuracy. A direct comparison of classical and quantum transport properties is thus
made possible, without recourse to phenomenological assumptions on either side.

A number of interesting questions can be conveniently analysed in this way. Be-
sides providing a new illustration of the well-known Jocalization effect occurring in the
quantum standard map, this approach allows the transition to the delocalized ‘metallic’
regime 1o be investigated. It turns out that in between the extreme cases represented
by the ballistic and localized regimes, room is left for a quantum ohmic regime.
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Finally, we report on numerical investigations of the S-matrix fluctuations in
the ‘metallic’ regime of strong delocalization, aimed at investigating whether these
fluctuations have an Ericson character, as S-matrix fluctuations have been found to
have in other classically chaotic scattering problems. This turned out to be the case
in the ballistic regime, where the sample size is comparable with or less than the
mean free path; here the observed S-matrix fluctuations are approximately Lorentz-
correlated with correlation lengths approximately equal to the classical diffusive decay
rates (inverse escape times). Similar indications have already been given by other
authors (Jalabert e al 1990), who investigated the ballistic regime in a different
model for Ericson-like fluctuations in mesoscopic devices.

The metallic diffisive regime, where the sample size is significantly larger than
the mean free path, was found to be qualitatively different. Here our results indicate
that the correlation lengths of S-matrix fluctuations are significantly higher than the
classical diffusive decay rates. How does the thickness of fluctuations depend on
the relevant parameters in this regime is an open theoretical question. Nevertheless,
the size of the fluctuations of the transmission cocfficient that are observed upon
changing various parameters is practically scale-independent in the ohmic regime, in
close paraliel with the universal conductance fluctuations of solid state physics.

Other important issues such as the effects of localization on the statistics of
fluctuations or the random nature of the S-matrix in the various regimes are not
addressed here and are deferred to future work.

In section 2 the classical model is described and a kinetic description of ¢lassical
transport is derived. In sections 3 and 4 we outline the quantum scattering theory for
the model, that relies on a Lippmann—Schwinger equation for quantum maps that is
derived by paraphrasing standard methods of continuous-time scattering theory; this
procedure appears to be generalizable to any scattering model in which the intcracting
and the free dynamics are defined by discrete unitary groups. In section 5 we describe
our numerical method; results are presented in sections 6 and 7, and the concluding
section 8 is devoted to further developments. A number of technical details are
supplied in the appendixes.

2. The classical model

The classical version of our model is a dynamical system on the cylinder I' = {(n, 8} :
—00 < n < +oc, 0 €0 < 2n}. The discrete time dynamics of this system is specified
by a map F: [ — I that carries states o = (n,0) into states & = Fo = (%, ).
The explicit form of this map is

fi=n-+ ksin @
6=0+r10 for ng<ngng+ L (1)
=0 clsewhere

with k, 7,n,, L fixed parameters. This map is a modification of the ‘free’ dynamics
F, that is formally obtained from (1) by taking 7 = 0. As a matter of fact, outside
the ‘scattering region’ M defined by ny < n < ng+ L, F is the same as F; and
describes a motion with constant speed along straight lines @ = constant. Inside the
scatterer M points move according to the standard map until they exit, in which case
they escape to infinity.
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The ‘classical scattering matrix’ is amap §: X, — X_ ., where Em oue are the
set of admissible incoming (outgoing) states. If & = So then there is a scattering
state (i.e. a state which is asymptotically free in the past and in the future) whose
orbit is asymptotic to the free orbit of o in the past and to the free orbit of & in the
future.

In principle the scattering map can be numerically investigated. However, in
the presence of hyperbolicity inside the scattering region (a situation which occurs
for k7 > 1), the complements of the sets X, . will have a complicated fractal
geometry (Jung and Scholz 1988, Smilansky 1990). In spite of their negligibly smalt
measure, the exceptional sets will dramatically affect the structure of the scattering
map. As a matter of fact, the existence of a fractal set of singularities for the § or
related maps has been proposed as the very definition of classical irregular scattering
(Jung and Scholz 1988).

Such a ‘microscopic’ analysis of the present model hardly appears feasible in
the case of strong classical chaos (k7 >»> 1) with L » k, when the standard map
dynamics is known to produce diffusive transport. However, a different, ‘kinetic’
approach proves useful in that case. If L » k typical orbits dwell a long time
inside the scatterer, much longer than the characteristic time of instability. They
therefore experience a large number of almost uncorrelated kicks and a random-

walk description proves applicable. In particular, the evolution of an ensemble of
arhits distributed in » nn‘nrdma toa fm"rnhlv unnnt!-\\ dencity F(m with mmnlarplu

LRSIy f U with com proeew

random phases obeys the dlffusmn equatnon (Llchtenberg and Laeberman 1983)

8f(n) _ D8 f(n)
or — 2 dn? @

where 7 is time measured in number of iterates of the map and the diffusion coeffi-
cient D) is given byt

D=p8"—=4D, 3

with J a numerical coeflicient that depends on the chaos parameter (Rechester ef
al 1981) K = kr. We can derive a kinetic description of the scattering process by
using equation (2) supplemented by boundary conditions at n = ng ard n = ngy+ L.
The latter conditions result from a trivial balance of the fluxes at the left and right
boundaries of M:

D i o
2 f’("o) = q)g,) CI)E‘) "
D — (i) (o) @
2f(n0+l;)_ (DR +(I)R

where on the right-hand side the incoming and outgoing fluxes from the left and the
right appear, and primes denote derivatives with respect to n. The outgoing flux can
be estimated from map (1) by computing the population that is carried out of M
under one iterate of the map. Under the assumption that in neighbourhoods of size

t Dy is the so-catled quasi-tinear diffusion coefficient.
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k on the left and right boundary f is a linear function of n one obtains

o = = f(ng) + 20 (ny)
iy 4 (5)
() __ k Dy
O’ = ;_'f(no +L)- ‘Z—f (no+ L).

We now assume the incoming fluxes (Dg)'L to be some known functions of time. Then
equations (2), (4) and (5) define an inhomogeneous boundary-value problem that can
be solved to find the outgoing fluxes in terms of the incoming ones. Here we give
the solution, deferring to appendix D for more details:

l@%ﬁ’)(r) - /“’ 4o|Ga) = 8(a)  Ga(o) ‘ R (r— )| ©
o{(r) 0 Go(0) Gi(o) = 8(a)||oV(r - o)
The ‘memory kernels’ G, , in equation (6) are given by

Gi(a) = Z Ane'l""mn’j i=1,2. )]

n=1

The coefficients «,, ; are given in appendix D. The numbers A, in these formulae
are the eigenvalues of the homogeneous problem. They give the spectrum of diffusive
decay rates and are given by
2D
An = FV:' (8)

where the numbers v, are obtained by arranging the roots of the equations into an
increasing sequence

tan(v) = {_“U/}’a o= % D=Dy(28-1). (9)
It goes without saying that this is just an approximate description of the actual scatter-
ing process associated with map (1). A smoothing in time and in »n as well is implicit
in the derivation of the diffusion equation. Besides washing out the intricated phase
space structures that characterize the microscopic dynamics, this process introduces
arbitrarily fine scales of its own, that are associated with the unbounded sequence of
eigenvalues of the diffusion problem. Some cutoff must therefore be understood for
the sum (7).
If the incoming flux is stationary then (6) yiclds

‘I’%i . ‘ q’%: : (10)
P n  l-n|je
The transmission coefficient » is
D
= e 1
"= XD+ 2kL an

For large L, n is therefore inversely proportional to L (Ohm’s law). Direct numer-
ical computations of the transmission coeflicient from the microscopic dynamics (1)
confirm the law (11) at large L (figure 1); at small values L ~ k this formulation is
meaningless.
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Figure 1. Logarithm of the inverse transmission coefficient against the scaled length
2kL /=D of the sample. Quantum data from averages 50-200 different sampies. Circles,
¢=29,£=1,26qr = 10, squares, ¢ = 29, £ = 0.1,2£¢r = 10. The broken curve
is the classical theoretical prediction, equation (11); the full curve, dassical numerical
prediction.

3, The quantum model

Time-dependent models such as the KR involve inelastic scattering. Nevertheless
the mathematical apparatus of elastic scattering theory can still be implemented by
resorting to the quasi-energy formalism. The latter is especially simple when the
one-cycle unitary propagator is explicitly known, and this is just the case with the KR
model, the quantum dynamics of which is defined in the Hilbert space L%(0,2x) by
the unitary operator

U= TU,. (12)

Here U, is multiplication by exp(iV(6)) and describes the effect of one kick; al-
though we have in mind the KR, for which V(0) = k cos 8, the real function V{8) will
be left unspecified for the time being. We shall assume here £ = 1; as is well known,
the classical limit is then approached by letting k — oo, 7 — 0, k7 = constant. The
operator T describes a free rotation occurring between subsequent kicks. Unlike the
conventional XR, T will be different from the identity only in that subspace in which
the momentum n takes values inside the scatterer M: ny < n € ng + L. Therefore
T will be given by

T=3Y e ™ nynl+ Y In)n| (13)
neM nEZ\AM
where
|n) = (27)"1/2ei"® (14)

are the momentum eigenstates, The discrete-time dynamics generated by the operator
U can be viewed as a perturbation of the free dynamics generated by the operator
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U, (in other words, contrary to what is usually done, here we are considering the
‘rotation’ as a perturbation of the ‘kick’). A convenient picture is gained by going over
to the momentum representation, in which wavepackets propagate on the discrete
one-dimensional lattice labelled by the integer values n of quantized momentum.
The free dynamics is ballistic with the expectation value of |n| growing linearly in
time and the spectrum of the operator U, is purely absolutely continuous. The quasi-
energy (QE) spectrum (denoted by Spec in the following } is the set of the eigenphases
A € [0,2x]; it coincides with the range of the function V(#)(mod2«). For any QE
A € Spec the equation

A=V(0) (mod 2x) (15)

has a finite number N, of real roots §,, a = 1,2,..., N,. Every such root has

associated with it a free QE eigenfunction ua\'a which in the coordinate representation
has the form

(Blug™} = 6(6 - 6,) (16)
but in the momentum representation its form is
(nlug®) = (2m)~1/%e7inba, (a7

In the lattice picture, these eigenfunctions describe plane waves with wavenumbers
6,,. For any given A, the set of such wavenumbers or ‘channels’, is the Q& shell at the
QE X. If the QE shell at A consists of N, wavenumbers, then the QE eigenvalue A is
N, times degenerate. For V(#) = kcos 8 and large k one has N, ~2r~lk ie. N,
is of the order of the number of states effectively coupled by one kick. Moreover,
the channels come in pairs @, 8,. with opposite velocities: 6, + 8,. = 27.

The QE shells define a fibration of the Hilbert space into IV, -dimensional fibres.
In fact any wavefunction can be expanded in the form:

LN f WO RNy [ W= N 7108
"P(n)—j GA P ZalA)¥g|Ue 72} (18)
Spec o
where v, is
dvy™!
= (38, )

and |v,| is the density of states. The N,-dimensional complex vector with compo-
nents z,(\) is a fibre of the wavefunction at the QE A. Its squared norm gives the
total flux of free waves with QE A (see also later) and is given by

N
3 Wallza (M 20)
a=]

The conservation of QE has no classical counterpart. It reflects the fact that the
scattering process changes the free energy by an integer number of quanta. With



3246 F Borgonovi and I Guarneri

the present choice of units, one quantum of QE is just 27 and a condition for quasi-
classicity is therefore k >» 2w, consistently with a previous remark.

The dynamics (12) has no other symmetry, in particular it is not time-reversal
invariantt.

The complete dynamics (12) describes wavepackets that come in from infinity,
and enter the interaction region A, whence they are partly reflected and partly
transmitted. A complete description of this scattering process is provided by the
scattering operator, that can be constructed as shown in the next section.

4, The Lippmann-Schwinger equation and the S-matrix

Duc to the conservation of QE, the scattering operator preserves the previously de-
scribed fibration and is thercfore a fibred operator itself. In other words, it is specified
by a unitary matrix-valued function S, 4(A) («,8 = 1,2,..., N,) that determines
the asymptotics of interacting QE eigenfunctions at large distance from the scatterer
in the form:

ut(n) ~ Za (MNugia(n) + Z ol gl 728, (N ag(Mug it (n)  (21)

9:6 1

where the suffix ‘in’ (respectively, ‘out’) of a free plane wave means that that particu-
lar wave does, in fact, appear in the sum only if, in the considered region (either far
to the left or far to the right of the scatterer), it is incoming (respectively, outgoing),
and a,, are arbltrary complex amphtudes The asymptotlc form (21) is approached ex-
ponemmny fast on movmg away from ihe deIlBIBT, in pracuu:, it is valid at distances
larger than ~ k from the scatterer.

The scattering operator can be constructed by a more or less straightforward adap-
tation of standard methods from continuous-time scattering theory. Eigenfunctions
of the complete propagator (12) in the form of distorted plane waves are obtained
by solving an equation of the Lippmann-Schwinger type; this equation is derived in
appendix A by paraphrasing methods of conventional scattering theory (Prugovechky
1971) and has the form:

up® -G ANT - Duy™ = u)® (22)

where ui"’ is the sought for ‘interacting’ eigenfunction associated with the ‘free’

eigenfunction 113 and
= 1 -ertey=1, 23
G (A) Elng}"l (Uy~e ) (23)

The scattering matrix S(A) is given in terms of the distorted plane waves v, by the
following equation, which is justified in appendix B:

Saﬂ('\) = 6aﬁ - Haa|Vﬁ|l/2|Va|1/2 (24)

t The complele KR is known to have some symmetries of itls own, but these symmetries are genericaily
destroyed upon restricting the dynamics to a finite region M.
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where @, 8 = 1,2,..., N, and
H,s=2n{(T- Dug*lul?y. (25)

Since T — 1 is different from zero only at a finite number L + 1 of sites in M,
only a finite string of L + 1 values of the cigenfunction u_ at sites inside M is
needed in order to compute S,; . On multiplying equation (22) on the left by (n|,
ng < n < ny+ L these values of «, are found to satisfy a set of L + 1 linear
equations:

ng+L
Z [6nk —-e*GY_(T7 - 1)] u, (k)= (21)"1/2e—inba n=ng,...,0,+ L

k=ngy

(26)

(supesscripts in . have been dropped for simplicity). G} are the Fourier coefficients
of the free Green function:

+ 1/2 1y T eTnde
Gt = (2m)2(n|G, (N)|0) = (27) ellr&fo T @7
In spite of the absence of symmetries in the interacting dynamics, the S-matrix has
one important symmetry expressed by the reciprocity property:

Sap = Sgege- (28)
As shown in appendix C this property stems from the time-reversal invariance of the
free dynamics.

The S-matrix establishes a connection between incoming and outgoing fluxes, as
follows. Consider a ‘quasi-classical’ free wavefunction:

W(n, 1) = /S AT 2y (M) emioePmin 29)
pec o

with a narrow spread in A around some average value A;. The flux at site n ‘in the
a-channel’ is ( after averaging over approximately & sites; here and in the following
the specification of the integration domain will be omitted):

D(n,t) ~ |uﬂfja;n(A)Eu(,\')ei("-*’x‘-"nn)dA d) (30)
where v, is taken at A = A,. The Fourier transform in time of this flux is
é(n,w)~|ua|e—i**nw/-fa(A)ma(A+w)dA. 31)

Since time is a discrete variable in this model, w takes values in [0, 2x]. Suppose that
the wavefunciion incoming from the left (n € n,) i8 a free wave in the S-channel.
The (Fourier transform of) the outgoing reflected flux in an outgoing channel « (that
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will be taken to the left, too, in order to fix ideas) will be, from equations (21), (30)
and (31):

—_—

out(n w) ~ g i Wamvsjungp ,8()\05“’)(1) (n,w) (32)

with

Ca,@(}‘uaw) =§aﬂ(A0)Saﬁ(A0+w)‘ (33)

The upper bars in (32) and (33), denote some kind of averaging, either over ‘disorder
(as we shall assume) or over a number of channels that, although large, corresponds to
but a small classical spread in velocity. It is assumed that the resulting autocorrelation
C will be slowly varying with A. The phase of the exponential factor is

t(% = (v, — vg)nw (34)

with {0 the time of free flight through the scattering region. Therefore, the right-
hand side of equation (32) is the Fourier transform of the incoming free flux shifted
in time so as to account for the time of free flight. Equations (32) and (34) show
that outgoing fluxes are connected to incoming fluxes by an integral transform that
we write in a sketchy symbolic way as

om(z)_/ C(e)®,, (t—o—tD)do. (35)

The ‘response kernel’ of this transform is the inverse Fourier transform of the au-
tocorrelation of the scattering matrix. This kernel has support in the positive real
axis due to the causal property of the scattering matrix, which in turn relies on the
S-matrix being the boundary value on the unit circle of a function analytic in the
exterior of the circle.

5. Numerical procedures

The core of our numerical method is the solution of equation (26) that calls for
numerically inverting a matrix of rank L 4 1 which is constructed by means of
the Fourier coeflicients of the Green function. Once these coeflicients are known,
equations (26) can be easily solved numerically, but the very computation of these
coeflicients is the crux of the matter, because the unitarity of the S-matrix is quite
sensitive to their accuracy (unitarity of the S-matrix is not built-in in our method
and therefore provides a good check for the accuracy of the simulations). A direct
numerical computation with V(6) = k cos & proved very difficult and unreliable, and
we had to resort to a different approximation. We chose

_ 1 i€ cos 0!
Vo) =1 (1 + if cos 0) (36)

= 2garctan(£cos §)
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with ¢ an integer. In the limit { — 0,q — c0,2&q — k this yields V(0) = kcos 0
and the map defined by the potential (36) for small £ and large q therefore provides a
smooth approximation for the KR; we shall comment further on this point in section 6.
Needless to say, the model thus obtained (referred to as ‘the arctan model’ in the
following) can also be studied in its own right. With this choice of V, the integral
in equation (27) can be turned into the integral of a rationa! function along the unit
circle in the complex plane, that could be computed by means of a computer-assisted
summation of residues. In most of the computations reported in this paper the lack
of unitarity, as measured by the deviation of the eigenvalues of the S-matrix from
the unit circle, was of order 10-% or less.

6. Transport and iocalization

Both the classical KR and its approximation, the classical arctan model, exhibit diffu-
sion in the deeply chaotic regime and the classical transmission coefficient is found
to obey an ohmic faw as a function of the sample size, as shown in figure 1.

In contrast to this classical behaviour, the quantum models exhibit localization.
In the limit case of an infinitely long scatterer, wavepackets inifiaily concentrated
at some site 7 inside it do not spread mdeﬁmtely in the course of their evolution,
but eventually enter an oscillatory regime, in which the average population of the
sites decreases exponentially away from the initial site. The scatterer behaves like a
‘sample’ of a disordered solid; the finite string of ‘pseudorandom’ complex numbers
Ty, (ng € k € ng+ L) plays the same role as that of the random potential in
tight-binding models. If n, is changed a different string is obtained, ie. a different
realization of the pseudorandom potential; therefore averaging over different choices
of n, is equivalent to averaging over disorder in tight-binding models.

In the quasi-classical regime (i.e. for 2£¢ > 1,7 < 1), the localization length
{ for the infinite sample is approximately equal to the classical diffusion coefficient.
This theoretical prediction (Shepelyansky 1986) is confirmed for the arctan model by
our data in figure (2) where numerically obtained diffusion coefficients are compared
with localization lengths from a numerical simulation of the quantum evolution inside
a very long sample. In the same figure 2 the classical diffusion coefficient as given by
formula (3) for the KR is also shown, thus illustrating the extent to which the arctan
model] approximates the KR (for the value of the stochasticity parameter chosen for
figure 2 one has 3 =~ 0.647) (Rechester et af 1981).

The transmission coefficient is defined as the sum of the squared moduli of all
the S-matrix elements for transitions between free states with the same direction of
propagation, divided by /V,. The dependence of the quantum transmission coefficient
n of the arctan model on the size of the sample is illustrated in figure 1, where the
average of the logarithm of 1/n over 50-100 realizations is plotted against the scaled
length of the sample: two sets of quantum data corresponding to different values of {
are shown. Besides {, cne more parameter determines the structure of figure 1, and
this is k, that sets the scale of the mean free path because it gives the (order of)
the distance travelled between subsequent ‘collisions’ (‘collisions’ are described by the
operator T, so the mean free path is the number of states coupled by the operator
Uy)- The scaled length on the horizontal axis is approximately the same as length
measured in units of this mean free path. With this scaling the same theoretical
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Figure 2. Localization length (open circles) and classical diffusion coefficient (broken
curve) for the quantum arctan model as a function of & for fixed g =15 and 2£¢7 = 10
(open circles). The full circies give localization lengths for the kr with k = 2£q. The
classical diffusion coefficient £ = k23 /2 for the KR is also shown (full curve).

classical behaviour (broken curve) would be predicted by the Fokker-Planck model,
see equation (11)t.

The left-hand part of figure 1 corresponds to the ‘ballistic’ regime, where the
length is less than or of the order of the mean free path. The right-hand part, where
L > I, corresponds to the ‘localized’, insulator regime, marked by an exponential
increase in the resistance with the length and by large relative fluctuations of the
transmission coefficient. Obtaining more data farther to the right is difficult because
the transmission coefficient rapidly falls to the level of the numerical unitarity defect.

The crossover between the ballistic and insulator regimes occurs in a range of
lengths roughly defined by k < L « I. This range becomes larger, the larger k,
as is seen by comparing the two sets of quantum data in figure 1. The reason is
that | ~ k%/2: circles in figure 1 have a (numerical) localization length [ ~ 880
and the last circle to the right corresponds to a sample length L = 400; squares
have a iocalization iength { ~ 26. Thus as & and L increase ai fixed &/ L (ie.
going towards the classical limit) the model tends to behave like an ohmic conductor,
and the ballistic range becomes negligible in comparison with the ohmic range. This
marks a distinct difference between this model and quasi-one-dimensional models of
the Anderson type, where the mean free path is proportional to L An interesting
remark connected with this fact is that the ohmic law (11) does not scale with the ratio
{/L; the reason is that the number of channels is not fixed but is itself proportional
to the mean free path.

t Provided that kr is kept constant.
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7. Fluctuations

Ericson fluctuations of nuclear cross sections against energy are expected to appear
when the excitation is so strong that many scattering resonances strongly overlap, and
the energy scale of the fluctuations should be defined by the resonance width (Brody
et al 1981). Fluctuations of the same statistical nature as Ericson’s are also expected
for quantum cross sections of classically chaotic scattering processes; here, too, the
S-matrix elements are expected 1o fluctuate with energy in the regime of overlapping
resonances, on a scale semiclassically defined by the classical decay rate, or inverse
time of escape (Smilansky 1990).

Fluctuations of S-matrix elements could be easily observed in our model. In
figure 3 we show the squared modulus of a scattering matrix clement (a reflection
one) against the ‘control’ parameter { for a ballistic case with scaled length ~ 2
(changing the valuc of £ directly affects the value of the QE; also recall that changing
£ is tantamount as changing k in the KR). For the sake of comparison, the same plot
is shown in the integrable case, where it displays much more regular behaviour.

1
il A hvl\ hW/A\/VL W

15(2,3)1*

—
.

T % T
—

}O { | 1
2. 2.2 2.3 2.4 2.5

3

Figure 3. Fluctuations of a reflection cross section on changing £, for ¢ =15, 2fqr =
0.05 (lower curve, integrable case) and for 2£¢7 = 10 (upper curve, chaotic case). The
sample size was L = 100.

Similar fluctuations were observed for the matrix elements as functions of QE.
Figure 4 shows how phasc shifts change with the QE in a small neighbourhood of
A = 0, the size of which is of the order of the correlation length for the same data
(see later).

Ericson fluctuations have two distinctive marks. First, the S-matrix at given energy
should Jook like a random matrix picked from an appropriate ensemble; second,
correlations of S-matrix elements at different energies should have a Lorentzian
dependence on the cnergy spacing. The first aspect will not be addressed here,
except for the somewhat trivial remark that traditional ensembles such as Dyson’s
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Figure 4. Phase shifts ¢ against QE A at ¢ = 15,£ = 1.5,2£g7 =10, L = 200 (same
data as for figure 6).

circalar ensembles or the like cannot be expected to do this job; in the diffusive
regime, the S-matrix is by no means (statistically) invariant under rotations, because
the transmission and reflection submatrices have different magnitudes, so that more
sophisticated ensembles will have to be used as a term of comparison. As to the
second aspect we computed, following Smilansky (1990), the function C, s(w) defined
by

 [Cap(X @)
Cos0o) = TR 0P n

with C, 5 as in equation (33), by averaging over 50~100 different samples with the
same snze and different n,. The reference value A was taken 0 (‘band centre’). In the
ballistic and close to ballistic cases, smooth bell-shaped curves were typically found.
In many cases, a Lorentzian fit proved very good over a large interval; in other cases,
relevant deviations from Lorentzian were found only in the tails; finally, in a minority
of cases deviations were found both at small and at large values of w (interestingly,
such deviant results were mostly obtained with transmission rather than reflection
matrix elements: the reason is still not clear to us). Figures 5(a)-(d) show typical
results,

According to equation (35), the inverse Fourier transforms of the autocorrelation
of the S-matrix elements play the role of memory kernels relating outgoing fluxes
to incoming ones. Since the corresponding classical kernels exponentially decay with
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Figure 5. Squared moduli of some normalized QE autocorrelations of different S-matrix
elements (equation {37)) averaged over 100 different samples, for A = 0 (band centre)
28gqr = 10,£ =1.5,9 = 15: {@), L = 30; (b), L = 28; (c) and (d), L = 200 (iwo
different matrix elements). Full curves are Lorentz curves of width corresponding to the
average correlation length of six different S-matrix elements. The broken curves are
Lorentz curves fitting the first four data.

time, as shown in section 2, one may expect that under suitable semiclassical con-
ditions the quantum kernels will also decay exponentially, possibly after some initial
non-universal stage; this expectation is also substantiated by general arguments rely-
ing on semiclassical formulae for the scattering matrix (Smilansky 1990). Thus the
behaviour of C, 5(w) for not too large w should be Lorentz-like, as indeed we ob-
served; moreover, the width of the Lorentz curve should be given by the classical
rate of exponential decay. In figure 6 classical decay rates and quantum correlation
lengths for the arctan model are plotted against the variable I/ L2, The latter variable
is roughly proportional to the square of the inverse scaled length; it is small in the
diffusive regime and in that case it is roughly proportional to the classical diffusive
decay rate (the theoretical diffusive decay rate, as given by the lowest eigenvalue of
the diffusion equation, equation (9), is shown by the full curve in figure 6). Correla-
tion lengths were determined as the values of w at which C, 4 was found to decay to
a value 0.5; the data in figure 6 were obtained by averaging the correlation lengths of
six different S-matrix elements. The right-hand part of figure 6 corresponds to the
ballistic regime; there, classical rates and quantum correlations lengths exhibit fairly
good agreement.

Going towards the left in figure 6 one classically approaches the diffusive regime.
Since ! was kept constant in these computations, quantum mechanically one ap-
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decay rates (open circles) against the ratio {fL? for g = 15,¢ = 1.5,2€q1 = 10.
Quantum data are obtained by averaging the correlation lengths of six different S-matrix
elemenis. A bilogarithmic plot is shown in the insert. Full lines give the classical decay
rales as predicted by the Fokker—Planck equation.

proaches the localized regime; the quantum data closest to the origin were obtained
at [/L ~ 3. A bilogarithmic plot of the left-hand part of figure 2 yields a clear
indication that quantum correlation lengths decrease more slowly than classical decay
rates and tend, therefore, to be significantly higher. The ‘Lorentzian range’ of the
corresponding correlation curves becomes very narrow around w = 0 and, in general,
these curves deveiop a very slowly decaying tail. The width of the Lorentzian curve
that fits the correlation curve near w = 0 is significantly smaller than the global
correlation length (figures 5(c) and @)).

Thus our data indicate that the statistical properties of the S-matrix fluctuations
undergo a qualitative change on moving from the ballistic regime towards the diffusive
one. Generally speaking, Ericson fluctuations are expected to be Lorentz-correlated
when the resonances have roughly the same width; therefore the observed behaviour
may be a symptom that the distribution of the resonance widths is becoming broader
in the diffusive regime.

A remarkable feature of the fluctuations in the quantum ohmic regime emerges
when their magnitude is investigated as a function of the sample length. In figure 7
we show a plot of the variance 67 of the transmission coefficient # against the scaled
length. These variances were obtained by either choosing different samples with the
same values of £,q,r and QE ) or slightly varying some of the latter parameters
around the values previously used for the weakly localized case in figure 1, at fixed
disorder.

On comparing figures 7 and 1 one sees that in the ohmic regime the fluctuations
have approximately the same magnitude, no matter how they were generated. This
behaviour bears a definite similarity to the universal conductance fluctuations observed
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Figure 7. Variance 65 of the quantum transmission coefficient against the scaled length
2kL /7 D: full circles, variances over 50 different samples with ¢ = 21,£ =1, 2qlr =
10, OE A = 0; open circles, variances over 30 different values of A in a range of 10
correlations lengths around A = 0, ¢, £, 7 as above, fixed sample; lozenges, variances
over 5-10 different values of £ in a range 1 & 0.025 with a fixed sample and constant
g= 29,2¢fr = 10.

in mesoscopic devices. In our range of length the relative fluctuations é7/# changed
from ~ 0.1 to ~ 0.5,

8. Concluding remarks

The effect of quantization on classical chaotic transport is a widely studied subject, as
is the nature of quantum scattering in the presence of classical chaos. Nevertheless,
problems exhibiting both features at one time, i.¢. scattering problems in which chaotic
diffusion occurs inside the interaction region have scarcely been studied up to now
(Borgonovi et al 1981), mainly because realistic models involve great computational
difficulties. On the other hand, scattering problems of this sort have a broad physical
relevance. In this paper we have described a model for ‘diffusive scattering’ that
can be effectively analysed both in its classical and its quantum mechanical version.
This was at the price of two major shortcomings. In the first place, the model is a
very unphysical one; atthough we have been comparing it with electronic transport

in dicnrdarad enlide thronghout thic naner it i rprrpnn]u hard to conceive anv raal
Ll WL ULl Wl LD Likl U“ LAV R L WERT III-I rvl A WA RA S LR W R N MIJJ [+ ]

physical system described by such a dynamics. Second, our model involves inelastic
scattering—although in the quantum case the conservation of QE makes it possible
to think of it as describing the elastic scattering of waves with an unusual dispersion
law.

In spite of these disadvantages, we believe that the indications provided by our
abstract model have some general validity, as was the case for the KR of which our
model is a variant.

Two essential features of transport in disordered solids, i.e. diffusion and localiza-
tion, are represented in this model and we have shown how a quantum ohmic regime
stems from the interplay of these competing effects. This demonstrates that classical



3256 F Borgonovi and I Guarneri

chaotic properties can produce statistical behaviour in ‘small’ quantum systems, in
spite of the well known absence of chaos in quantum mechanics. Moreover, the
magnitude of transmission fluctuations in the quantum ohmic regime is, according
to our data, approximately universal. Our model appears, therefore, to be able to
qualitatively reproduce an important feature of real quantum transport.

A major motivation for this work was the analysis of the scattering matrix fluc-
tuations, We have provided evidence that these fluctuations are Ericson-like in the
ballistic regime, and that their correlation length can be inferred from knowiedge
of classical escape rates. The ballistic regime of our model thus provides one more
specific instance in support of some general views about quantum irregular scattering
(Smilansky 1990).

Many other important questions remain open. The nature of fluctuations in the
ohmic and in the localized regime is still unclear: our data indicate that the simple
Ericson picture needs to be modified on approaching the classical diffusive regime.
A more detailed analysis, including the investigation of poles of the S-matrix, is
required and is now in progress.
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Appendix A: The Lippmann-Schwinger equations
Consider the Moller wave operators

Q, = lim UU;™. (A1)

n—+too

Due to their intertwining property, they transform the eigenfunctions of the free
dynamics U, into eigenfunctions of the interacting dynamics /. In particular, a
couple of interacting eigenfunctions ui’“ can be formally associated with any free
eigenfunction uy™® as follows.

ug'® = Q3lul® (A2)

Upon choosing the + sign and substituting (Al) into (A2) one gets the first
Lippmann-Schwinger equation:

oo
. _ - A
w)® = lim €Y e UPUT
0 +
e—0+
n=0

[e=]
= lim [] + Ze"‘"l’i{f‘l('}“T - 1)U‘“+]l ui"’

s O 1

(A3)

[ L& 1
= lim l1 + et }Tle-w”" Uy T - 1)J uy’

= [1 - e Ellrgl"—( Uy — ey (Tt = 1)] ui’a
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Instead, choosing the — sign in (A2) leads to the second Lippman-Schwinger
equation:

W = |1 fim (Uy - D) T = 1)U, (a9

Appendix B: The scattering matrix from distorted plane waves

For integer n define
Q, =U"U"
n—1i B1)
=UU 4+ Y Uk [uug! -1} Uk (
k=1
which for arbitrary states 1, g and integers n, < n, yields
ng—1
(Q, =92, )pley = D (UHT - U 4lg). (B2)
k=n,
We now let ny — —oo,ny, — +oo. Moreover, we put ¢ = Q¢ in (B2) and we use
the definition of the scattering operator:

s=0lq, (B3)
and we find
+oa
(VSe) = (i)~ S (T~ VUG $|Q, U5 ). (B4)
k=z—oo

Both v and ¢ can be expanded in free plane waves according to

Ny
W= i dA D up g v (6,) (B5)
pec a=1

where the density of states |v,| is given in equation (19). A similar expansion holds
for ¢ and on applying the operator 2, we get

N
Qb= AX Y ul v, 19(8,) (B6)

Spec  q=1

We now substitute (BS) and (B6) in (B4) and recall that ;'™ is an eigenfunction of

Uk corresponding to the eigenvalue e'**. The infinite sum over k in (B4) converges
to a é-function that can be integrated out and we finally get

. N
(4159 = (Wleh =27 [ Ak 30 0 (0a)80)((T = 1)ug i} v, gl B)
pec o,B=1
Substituting now expansions (B5) for 1, ¢ in the left-hand side and in the first term
of the right-hand side of (B7) yields equation (24) of the text. Instead, choosing
g = Q_¢ in (B2) leads, via quite similar manipulations, to another expression for

the S-matrix in which the functions u'® appear

Sup = bag + 2mlua M 2lug A uA (T - D)ug ). (BS)
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Appendix C: The reciprocity property of the S-matrix
For free waves one has

Cu™ = uy™

where o™ is the reverse channel and C is the complex conjugacy. Because the free
dynamics U, is time-reversal invariant, the following property holds true for free
Green functions:

‘  alAtey—1 T -1 —ikdey—1
Cel.l..[g+(U° e te) Elil'cl)l_'_(UU e yTrC.

By applying C' to both sides of the first Lippmann-Schwinger equation and using this
property one pgets

1 + UO 11161+(U0 _ ei,\—ﬁ)z-](T_ l)] Cui:ﬁ - ué\’ﬁ‘.
€—
Comparing this with (A4) one sees that
ud = P stoud’, (€1
Substituting (C1) into formula (B8) for the S-matrix leads to the reciprocity property:

Sgeas = bap 4+ 20( U 1CuMP T — D)’y
= 6,5 + 27 (Ce P UuP? |C(T - 1ug®)
= 8,5 4 20((T! = g™ |TTu}?)
= 8o = 2m{(T - Dud*[u)?) = S, , (C2)

where equation (24) has been used in the last line.

Appendix D: Classical transport

The homogen¢ous boundary-value problem has a complete set of eigenfunctions
u,(2), (nyg € £ € ng+ L). The nth normalized eigenfunction is associated with
an eigenvalue A,. It has the parity of (—1)"** under reflections with respect to
T=ny+ L/2and it is given by

L sin 20, \17'/* 2p,(z—7)
[E (1 + 20 )] Cos ""L—— (n Odd)

u, () = " (D)

. -1/2 .
L P 2n sin —w———zy"(r z) (n even).
2 2y L

n

The eigenvalue equations (9), stem from directly imposing the homogeneous boundary
conditions. The solution of the diffusion equation subject to the inhomogeneous
boundary conditions is sought in the form:

fle,7) =gz, 1)+ 2 A(7)+ B(r) (D2)
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with g satisfying homogenecous conditions and A, B so chosen that (D2) satisfies
the complete conditions. Upon expanding the right-hand side of equation (D2) on
the basis u, differential equations for the coeflicients of the expansion are obtained
that once solved ailow to reconstruct f(x,7). In the solution thus obtained the
coeflicients z, . stem from expanding the functions F{z) = = and F(x) = 1 over
the basis u,:

a
vi+a+ta

(=1

for odd n

n,j a

]
T2 a0+ a) for even n.

The solution contains a transient part depending on the initial condition. On dropping
this part and using equations (5) to calculate the outgoing flux one gets the solution
given in the text.
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