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AbstracL We study a one-dimensional abstract model for classical and quantum irregular 
scattering in which the interaaing dynamics is defined by the aandard map. "is model 
allavs for a direct comparison of classical and quantum transpn propenies. Mereas 
the dassical model is characterized Lhaotic diffusion, in the quantum case the interplay 
of diffusion and lccalizalion determines a lransition from a ballistic regime to a localized 
one, with an intermediate ohmic regime in the cmss~ver  region. The scattering matrix 
is numericaiiy mmputm by wiving a i ippmanjcbwinger equation. in the bailistic 
regime the S-matrix Auctualions are found to share some typical fealura with the 
Ericson fluctuations, with correlation lengths close 10 the dauical rites of arpanential 
decay. Qualitative modificalions a r u n i n g  in the diffusive regime, including universal 
vanmission fluctuations, are discussed. 

1. Intmduction 

The foundational relevance of the classical doctrine of chaos is largely due to its 
provision of sound foundations for non-equilibrium statistical mechanics even for 
systems with a small number of freedoms. For this reason, the possible persistence of 
chaotic features in quantum mechanics is an important issue in the study of quantum 
rranspurr pncnomcna wai invuivt: only a small numoer vi parricics. 

One such phenomenon is the behaviour of the residual resistance of disordered 
solids, which is usually investigated in terms of single-particle dynamics in a disordered 
potential. In Landauer's approach, the conduction of electrons through one- and 
quasi-one-dimensional disordered solids is pictured as a scattering process (Landauer 
1970, Buttiker et al 1985, Pichard 1986), so that in this type of problem one has to 

The peculiarities of quantum scattering when the dynamics inside the interaction 
region is classically chaotic are now a subject of widespread interest. After Gutzwiller's 
(1983) study of scattering on a variety of negative curvature, a number of different 
model systems have been extensively studied (Gaspard and Rice 1989, Eckardt and 
Cvitanovic 1989, Blumel and Smilansky 1988). A connection between classical chaotic 
decay rates and quantum resonance widths has been clearly established (Gaspard 
and Rice 1989, Eka rd t  and Cvitanovic 1989); moreover, the important surmise has 
been formulated that the appearance of cross section fluctuations similar to those 
that go under Ericson's name in nuclear physics (Brody el ol 1981) is a generic 

0305-4470/92/113239+21$04.50 @ 1992 IOP Publishing U d  3239 

._._._.. ~ _.~ .~ .--. .~.. . I ~  .~ .-,-~ . . - . . I ,  .. .r -.-A..,.. 

des! siml?!tanenw!y with qlclntum scattering and quantum transport: 



3240 

quantum signature of classical chaos in the regime of strongly overlapping resonances 
(Smilansky 1990). 

It is well known that the residual 
conductance of mesoscopic devices exhibits strong fluctuations in the weakly localized 
regime (see, for example, Vollhardt (1987)); moreover, the statistical methods from 
random matrix theory, already used in the analysis of nuclear Ericson fluctuations, 
have been extended to the description of such ‘mesoscopic fluctuations’ (Bohigas 
and Weidenmuller 1988). This makes it all the more natural to inquire whether 
mesoscopic fluctuations can also be reduced within the framework of chaotic Ericson- 
like fluctuations (Casati ef al 1990, Bohigas and Weidenmuller 1988, Smilansky 1990). 

In order to address this problem, one needs a quantum model endowed with a 
well-defined classical limit in which a chaotic diffusive transport takes place according 
to Ohm’s law. The usual models do not satisfy these requirements, either because 
their classical limits are not well defined (as in tight-binding quantum models) or 
because these classical limits, though chaotic, are not diffusive. In fact, whereas 
diffusion would require classical decay times significantly larger than the chaotization 
time, hitherto investigated models have these two times roughly on the same order. 

In order to obtain chaotic diffusion in a model with elastic scattering, two spatial 
dimensions (at least) and a large number of scatterers are needed, which makes a 
proper quantum simulation a considerable computational task 

In this paper we present a much simpler model, which in spite of a seemingly 
unphysical character, conveys some essential features of the problem. This model is 
once more a variant of the standard map, better known in its quantum version as the 
kicked rotator (KR). is well known this model exhibits the two essential properties 
of classical and quantum transport, i.e. classical chaotic diffusion and quantum local- 
ization; indeed, its similarity to one-dimensional models for quantum transport has, 
up until now, been successfully implemented in order to get an understanding of its 
dynamical properties (Fisbman et a1 1982, Blumel el al 1987)). 

We now reverse this approach and use the KR as a model for both one-dimensional 
transport and chaotic scattering. In our scattering model the interacting dynamics is 
defined by the standard map, and if the interaction region is sufficiently extended, 
the chaotic transport across it has a diffusive character. In spite of the complete 
absence of external random agents, this transport is statistically well described by a 
Fokker-Planck boundary-value problem that yields an explicit formula for the classical 
transmission coefficient. This formula is in excellent agreement with the results of 
numerical simulations and shows that the classical transport has an ‘ohmic’ character. 
‘Ohmic’ here means that the transmission coefficient is inversely proportional to the 
length of the sample; a direct definition of conductance for our model will not be 
attempted here-this may look somewhat artificial in view of the abstract nature of 
the model itself. 

In the quantum model, the transport coetficients are directly and self-consistently 
defined from the scattering matrix, which can be numerically computed with good 
accuracy. A direct comparison of classical and quantum transport properties is thus 
made possible, without recourse to phenomenological assumptions on either side. 

A number of interesting questions can he conveniently analysed in this way. Be- 
sides providing a new illustration of the well-known localization effect occurring in the 
quantum standard map, this approach allows the transition to the delocalized ‘metallic’ 
regime to be investigated. It turns out that in between the extreme cases represented 
by the ballistic and localized regimes, mom is left for a quantum ohmic regime. 
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All this leads to an interesting question. 
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Finally, we report on numerical investigations of the S-matrix fluctuations in 
the ‘metallic’ regime of strong delocalization, aimed at investigating whether these 
fluctuations have an Ericson character, as S-matrix fluctuations have been found to 
have in other classically chaotic scattering problems. This turned out to be the case 
in the ballistic regime, where the sample size is comparable with or less than the 
mean free path; here the observed S-matrix fluctuations are approximately Lorentz- 
correlated with correlation lengths approximately equal to the classical diffusive decay 
rates (inverse escape times). Similar indications have already been given by other 
authors (Jalabert et a1 1990), who investigated the ballistic regime in a different 
model for Ericson-like fluctuations in mesoscopic devices. 

The metallic difusive regime, where the sample size is significantly larger than 
the mean free path, was found to be qualitatively different. Here our results indicate 
that the correlation lengths of S-matrix fluctuations are significantly higher than the 
classical diffusive decay rates. How does the thickness of fluctuations depend on 
the relevant parameters in this regime is an open theoretical question. Nevertheless, 
the size of the fluctuations of the transmission coefficient that are observed upon 
changing various parameters is practically scale-independent in the ohmic regime, in 
close parallel with the universal conductance fluctuations of solid state physics. 

Other important issues such as the effects of localization on the statistics of 
fluctuations or the random nature of the S-matrix in the various regimes are not 
addressed here and are deferred to future work. 

In section 2 the classical model is described and a kinetic description of classical 
transport is derived. In sections 3 and 4 we outline the quantum scattering theory for 
the model, that relies on a LippmannSchwinger equation for quantum maps that is 
derived by paraphrasing standard methods of continuous-time scattering theory; this 
procedure appears to be generalizable to any scattering model in which the interacting 
and the free dynamics are defined by discrete unitary groups. In section 5 we describe 
our numerical method; results are presented in sections 6 and 7, and the concluding 
section 8 is devoted to further developments. A number of technical details are 
supplied in the appendixes. 

2. The classical model 

The classical version of our model is a dynamical system on the cylinder r = {(n, H )  : 
-cc < n < +m, 0 < 8 < 2 ~ ) .  The discrete time dynamics of this system is specified 
by a map F : r -, r that carries states U = ( n , Q )  into states 0 = Fo = ( E , g ) ,  
The explicit form of this map is 

E =  n +  ksin 8 

B =  H +  7% 

8 = H elsewhere 

(1) 
- 

for no < n < no+ L 
- 

with k, 7 ,  no, L fixed parameters. This map is a modification of the ‘free’ dynamics 
To that is formally obtained from (1) by taking T = 0. A$ a matter of fact, outside 
the ‘scattering region’ M defined by no < n < no + L, F is the same as Fo and 
describes a motion with constant speed along straight lines 8 = constant. Inside the 
scatterer M p i n t s  move according to the standard map until they exit, in which case 
they escape to infinity. 
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The ‘classical scattering matrix’ is a map S : E;, -+ E,,,, where Ci,,o,t are the 
set of admissible incoming (outgoing) states. If T = So then there is a scattering 
state (i.e. a state which is asymptotically free in the past and in the future) whose 
orbit is asymptotic to the free orbit of U in the past and to the free orbit of a in the 
future. 

In principle the scattering map can he numerically investigated. However, in 
the presence of hyperbolicity inside the scattering region (a situation which occurs 
for kr > l), the complements of the sets Cin,our will have a complicated fractal 
geometry (Jung and Scholz 1988, Smilansky 1990). In spite of their negligibly small 
measure, the exceptional sets will dramatically affect the structure of the scattering 
map. As a matter of fact, the existence of a fractal set of singularities for the S or 
related maps has been proposed as the very definition of classical irregular scattering 
(Jung and Scholz 1988). 

Such a ‘microscopic’ analysis of the present model hardly appears feasible in 
the case of strong classical chaos (kr >> 1) with L B k, when the standard map 
dynamics is known to produce diffusive transport. However, a different, ‘kinetic’ 
approach proves useful in that case. If L > k typical orbits dwell a long time 
inside the scatterer, much longer than the characteristic time of instability. They 
therefore experience a large number of almost uncorrelated kicks and a random- 
walk description proves applicable. In particular, the evolution of an ensemble of 

random phases obeys the diffusion equation (Lichtenberg and Lieberman 1983) 
arbits distribsted i!! n accnrdi!!.n.g to a (.nitab!y S”!!) density f(R) wit!! mq!ete!y 

where r is time measured in number of iterates of the map and the diffusion coeffi- 
cient D is given byt 

with f l  a numerical coefficient that depends on the chaos parameter (Rechester ef 
a1 1981) IC = kr. We can derive a kinetic description of the scattering process by 
using equation (2) supplemented by boundary conditions at R = no and n = no + L. 
The latter conditions result from a trivial balance of the fluxes at the left and right 
boundaries of M: 

where on the right-hand side the incoming and outgoing fluxes from the left and the 
right appear, and primes denote derivatives with respect to n. The outgoing flux can 
be estimated from map (1) by computing the population that is carried out of M 
under one iterate of the map. Under the assumption that in neighbourhoods of size 

t Do is lhe so-called quasi-linear diffusion coefficient 
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k on the left and right boundary f is a linear function of n one obtains 

We now assume the incoming fluxes to be some known functions of time. Then 
equations (2). (4) and (5) define an inhomogeneous boundary-value problem that can 
be solved to find the outgoing fluxes in terms of the incoming ones. Here we give 
the solution, deferring to appendix D for more details: 

The 'memory kernels' in equation (6) are given by 

m 

G j ( U )  = A,e-A*bz,,j j = 1 , 2 .  (7) 
lL=1 

The coefficients I,,, are given in appendix D. The numbers A, in these formulae 
are the eigenvalues of the homogeneous problem. They give the spectrum of diffusive 
decay rates and are given by 

2 0  
L? la 

A, = -2 
where the numbers U, are obtained by arranging the roots of the equations into an 
increasing sequence 

D D 0 ( 2 p  - 1). (9) 
2kL 
rD 

n =  - tan(u) = 

It goes without saying that this is just an approximate description of the actual scatter- 
ing process associated with map (I). A smoothing in time and in n as well is implicit 
in the derivation of the diffusion equation. Besides washing out the intricated phase 
space structures that characterize the microscopic dynamics, this process introduces 
arbitrarily fine scales of its own, that are associated with the unbounded sequence of 
eigenvalues of the diffusion problem. Some cutoff must therefore be understood for 
the sum (7). 

If the incoming flux is stationary then (6) yields 

The transmission coefficient 7 is 

For large L, 0 is therefore inversely proportional to L (Ohm's law). Direct numer- 
ical computations of the transmission coefficient from the microscopic dynamics ( I )  
confirm the law (11) at large L (figure 1); at small values L - k this formulation is 
meaningless. 
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2kL/nD 
Figutt 1. bgarithm of the inverse transmission coefficient against the scaled length 
ZkLlnD of the sample. Quantum data I" averages 50-2M) diffeennl samples. Urds ,  
q = 29,E = 1,ZEqr = 10; squares, q = 29,E = 0.1,ZEqr = 10. hoke" m r ~ e  
b the dasical theoretical prediction, equation (11); the full curve, dadcal  numerical 
predidion. 

3. The quantum model 

Time-dependent models such as the KK involve inelastic scattering. Nevertheless 
the mathematical apparatus of elastic scattering theory can still he implemented by 
resorting to the quasi-energy formalism. The latter is especially simple when the 
one-cycle unitary propagator is explicitly !mown, and this is just the case with the KR 
model, the quantum dynamics of which is defined in the Hilbert space L2(0 ,2rr )  by 
the unitary operator 

U = TU,. (12) 

Here U. i., multiplication by exp(iV(6))  and describes the effect of one kick; al- 
though we have in mind the KR, for which V(0) = k cos 0, the real function V( e) will 
be left unspecified for the time being. We shall assume here h = 1; as is well known, 
the classical limit is then approached by letting k 3 00, T 3 0, k r  = constant. The 
operator T describes a free rotation occurring hetween subsequent kicks. Unlike the 
conventional m, T will be different from the identity only in that subspace in which 
the momentum n takes values inside the scatterer M: no < n < no + L. Therefore 
Twill be given by 

where 

In) = (2n)-'/2e'"0 (14) 

are the momentum eigenstates. The discrete-time dynamics generated by the operator 
U can he viewed as a perturbation of the free dynamics generated by the operator 
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U ,  (in other words, contrary to what is usually done, here we are considering the 
'rotation' as a perturbation of the 'kick'). A convenient picture is gained by going over 
to the momentum representation, in which wavepackets propagate on the discrete 
one-dimensional lattice labelled by the integer values n of quantized momentum, 
The free dynamics is ballistic with the expectation value of In1 growing linearly in 
time and the spectrum of the operator U,, is purely absolutely continuous. The quasi- 
energy (QE) spectrum (denoted by Spec in the following ) is the set of the eigenphases 
X E [ 0 , 2 x ] ;  it coincides with the range of the function V ( B ) ( m o d Z n ) .  For any QE 
X E Spec the equation 

X = V(f3) (mod 2 x )  (15) 

has a finite number N ,  of real roots e,, 01 = 1 , 2 , .  . . , N,. Every such root has 
associated with it a free QE eigenfunction U,̂ '" which in the coordinate representation 
has the form 

(el@" = 6(0 - e,) 

(n~u,^+) = (2x)-1/2e-in8-,  (17) 

(16) 

but in the momentum representation its form is 

In the lattice picture, these eigenfunctions describe plane waves with wavenumbers 
0,. For any given A, the set of such wavenumbers or 'channels', is the m shell at the 
QE A. If the QE shell at X consists of N ,  wavenumbers, then the QE eigenvalue X is 
N ,  times degenerate. For V( 0) = k cos 0 and large k one has N ,  - 2 x - l k  i.e. N ,  
is of the order of the number of stat= effectively coupled by one kick. Moreover, 
the channels come in pairs O,, 8,. with opposite velocities: 8, + 0,. = 2 x .  

The QE shells define a fibration of the Hilbert space into N,-dimensional fibres. 
In fact any wavefunction can he expanded in the form: 

where U, is 

(iSj 

and Iual is the density' of states. The N,dimensional complex vector with compo- 
nents .,(A) is a fibre of the wavefunction at the QE A.  Its squared norm gives the 
total flux of free waves with QE X (see also later) and is given by 

The conservation of QE has no classical counterpart. It reflects the fact that the 
scattering process changes the free energy by an integer number of quanta. With 
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the present choice of units, one quantum Of QE is just 2n and a condition for quasi- 
classicity is therefore k >> 2n, consistently with a previous remark 

The dynamics (12) has no other symmetry, in particular it is not time-reversal 
invariantt. 

The complete dynamics (12) describes wavepackets that come in from infinity, 
and enter the interaction region M, whence they are partly reflected and partly 
transmitted. A complete description of this scattering process is provided by the 
scattering operator, that can be constructed as shown in the next section. 
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4. The Lippmann-Schwinger equation and the S-matrix 

Due to the conservation of QE, the scattering operator preserves the previously de- 
scribed fibration and is therefore a fibred operator itself. In other words, it is specified 
by a unitary matrix-valued function SnB(X) (a,@ = 1,2 ,  ..., N A )  that determines 
the asymptotics of interacting QE eigenfunctions at large distance from the scatterer 
in the form: 

where the suffix ‘in’ (respectively, ‘out’) of a free plane wave means that that particu- 
lar wave does, in fact, appear in the sum only if, in the considered region (either far 
to the left or far to the right of the scatterer), it is incoming (respectively, outgoing), 
and a ,  are arbitrary complex amplitudes, The asymptotic form (21) is approached ex- 

larger than - k from the scatterer. 
The scattering operator can be constructed by a more or less straightfonuard adap- 

tation of standard methods from continuous-time scattering theory. Eigenfunctions 
of the complete propagator (12) in the form of distorted plane waves are obtained 
by solving an equation of the Lippmann-Schwinger type; this equation is derived in 
appendix A by paraphrasing methods of conventional scattering theory (Prugovechky 
1971) and has the form: 

poneniiaiiy fdSi on moving a w ~ y  from i.ne wdiiefet; in praiiiw, ii is Miid ai distances 

U$“ - e’AGt(X)(T’ - 1)tL:” = u p  (22) 

where U$“ is the sought for ‘interacting’ eigenfunction associated with the ‘free’ 
eigeniunciion u t i o ,  and 

The scattering matrix S(X) is given in terms of the distorted plane waves U+ by the 
following equation, which is justified in appendix B 

S,p(X) = 6,p - H,pl”p11/21”n11/z (24) 

t The complete KR is known 10 have some symmetries of its nun, but these symmetries are generically 
destroyed upon restricting the dynamics to a finite region M. 
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where 0, @ = 1 , 2 , .  . . , N ,  and 

(25) Hop = 27r((T- l)U,x'"lU+' , a  ). 

Since T - 1 is different from zero only at a finite number L + 1 of sites in M, 
only a finite string of L + 1 values of the eigenfunction U+ at sites inside M h 
needed in order to compute Smp . On multiplying equation (22) on the left by (nl, 
no < n < no 4- L these values of U+ are found to satisfy a set of L + 1 linear 
equations: 

n,+L 

k=n, 

[6nk -e"G;-,(T; - l ) ]  ut(k) = (27r-1/Ze-'"e- n = no,. . . ,no + L 

(26) 

(supeiscripts in U+ have been dropped for simplicity). G t  are the Fourier coefficients 
of the fee Green firndion: 

In spite of the absence of symmetries in the interacting dynamics, the S-matrix has 
one important symmetry expressed by the reciprocity property: 

Sea = se.*.. i28) 

As shown in appendix C this property stems from the time-reversal invariance of the 
free dynamics. 

The S-matrix establishes a connection between incoming and outgoing fluxes, as 
follows. Consider a 'quasi-classical' free wavefunction: 

with a narrow spread in X around some average value A,. The flux at site n 'in the 
a-channel' is ( after averaging over approximately k sites; here and in the following 
the specification of the integration domain will be omitted): 

<I)( n , t )  - lvml Jq (  X)Z.,( Y)ei(,-, ,)(~-~- )dXdX' 

&( n ,  U )  - I ~ , l e - ~ ~ * " ~  /Fe( A)z-( X + U )  d A .  

(30) 

where v, is taken at X = A,. The Fourier transform in time of this flux is 

(31) 

Since time is a discrete variable in this model, w takes values in IO, 2x1. Suppose that 
the wavefunction incoming from the left (n << no) is a free wave in the @-channel. 
The (Fourier transform of) the outgoing reflected flux in an outgoing channel OL (that 
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will be taken to the left, too, in order to f i  ideas) will be, from equations (21). (30) 
and (31): 
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with 

The upper bars in (32) and (33). denote some kind of averaging, either Over ‘disorder’ 
(as we shall assume) or over a number of channels that, although large, corresponds to 
but a small classical spread in velocity. It is assumed that the resulting autocorrelation 
C will be slowly varying with A. The phase of the exponential factor is 

ut(‘) -4 = (u ,  - up)nw (34) 

with t(‘) the time of free flight through the scattering region. Therefore, the right- 
hand side of equation (32) is the Fourier transform of the incoming free flux shifted 
in time so as to account for the time of free flight. Equations (32) and (34) show 
that outgoing fluxes are connected to incoming fluxes by an integral transform that 
we write in a sketchy symbolic way as 

The ‘response kernel’ of this transform is the inverse Fourier transform of the au- 
tocorrelation of the scattering matrix. This kernel has support in the positive real 
axis due to the causal property of the scattering matrix, which in turn relies on the 
S-matrix being the boundary mlue on the unit circle of a function analytic in the 
exterior of the circle. 

5. Numerical procedures 

The core of our numerical method is the solution of equation (26) that calls for 
numerically inverting a matrix of rank L + 1 which is constructed by means of 
the Fourier coefficients of the Green function. Once these coefficients are known, 
equations (26) can be easily solved numerically, but the very computation of these 
coefficients is the crux of the matter, because the unitarity of the S-matrix is quite 
sensitive to their accuracy (unitarity of the 5’-matrix is not built-in in our method 
and therefore provides a good check Cor the accuracy of the simulations). A direct 
numerical computation with V ( 0 )  = k cos 0 proved very difficult and unreliable, and 
we had to resort to a different approximation. We chose 

(36) 
= 2qarctan(tcosO) 
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with q an integer. In the limit E -+ 0, q - w, 2cq -+ k this yields V ( 0 )  = k cos 0 
and the map defined by the potential (36) for small and large q therefore provides a 
smooth approximation for the KR; we shall comment further on this point in section 6. 
Needless to say, the model thus obtained (referred to as 'the arctan model' in the 
following) can also be studied in its own right. With this choice of V, the integral 
in equation (27) can be turned into the integral of a rational function along the unit 
circle in the complex plane, that could be computed by means of a computer-assisted 
summation of residues. In most of the computations reported in this paper the lack 
of unitanty, as measured by the deviation of the eigenvalues of the S-matrix from 
the unit circle, was of order or less. 

6. Transport and iocniization 

Both the classical KR and its approximation, the classical arctan model, exhibit diffu- 
sion in the deeply chaotic regime and the classical transmission coefficient is found 
to obey an ohmic law as a function of the sample size, as shown in figure 1. 

In contrast to this classical behaviour, the quantum models exhibit localization. 
in the iiiiiii case uf an iniiniieiy iong scatterer, wavepackets iniiiaiiy concentrated 
at some site E inside it do not spread indefinitely in the course of their evolution, 
hut eventually enter an oscillatory regime, in which the average population of the 
sites decreases exponentially away from the initial site. The scatterer behaves like a 
'sample' of a disordered solid; the finite string of 'pseudorandom' complex numbers 
Tk, (no < k < no + L )  plays the same role as that of the random potential in 
tight-binding models. If no is changed a different string is obtained, i.e. a different 
realization of the pseudorandom potential; therefore averaging over different choices 
of no is equivalent to averaging over disorder in tight-binding models. 

In the quasi-classical regime (i.e. for 2 t q  >> 1,r << I), the localization length 
1 for the infinite sample is approximately equal to the classical diffusion coefficient. 
This theoretical prediction (Shepelyansky 1986) is confirmed for the arctan model by 
our data in figure (2) where numerically obtained diffusion coefficients are compared 
with localization lengths from a numerical simulation of the quantum evolution inside 
a very long sample. In the same figure 2 the classical diffusion coefficient as given by 
formula (3) for the KR is also shown, thus illustrating the extent to which the arctan 
model approximates the KR (for the value of the stochasticity parameter chosen for 
figure 2 one has p % 0347)  (Rechester et a/  1981). 

The transmission coefficient is defined as the sum of the squared moduli of all 

propagation, divided by N , .  The dependence of the quantum transmission coefficient 
Q of the arctan model on the size of the sample is illustrated in figure 1, where the 
average of the logarithm of 1/11 over 50-1-100 realizations is plotted against the scaled 
length of the sample: two sets of quantum data corresponding to different values of 1 
are shown. Besides I, one more parameter determines the structure of figure 1, and 
this is k, that sets the scale of the mean free path because it gives the (order of) 
the distance travelled between subsequent 'collisions' ('collisions' are described by the 
operator T ,  so the mean free path is the number of states coupled by the operator 
,Yo). The scaled lcngth on the horizontal axis is approximately the same as length 
measured in units of this mean free path. With this scaling the  same theoretical 

.I." c ..."*A.. c,,. ,."".-:*:,,"- *a*..an^ "rnrn" ..;*I. *I.- "̂.-." ,I: ---. :-.. -c 
,,I= d-,,,'x,,LA C I C L I I C , I U  L U I  U ' x I O I L I u I m  " C L I l r r l l  L I C C  aL 'xLC0 w*1111 unci =Ill= "LlGiCLIVII U, 
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n 500 7- 

700 

600 

500 

400 

300 

200 

100 

0 
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< 
Figure 2. Lacalization length (open circles) and classical diKusion mefficienl (broken 
curve) for the quantum arctan model as a funclion of ( for fixed q = 15 and 2Eqr = 10 
(open circles). ’ h e  full circles give localizalion lengths for the KR with L = 2(q .  The 
classical diKusion coefficient D = k 2 p / 2  for the KR is also shown (full mwe). 

classical behaviour (broken curve) would be predicted by the Fokker-Planck model, 
see equation (1l)t. 

The left-hand part of figure 1 corresponds to the ‘ballistic’ regime, where the 
length is less than or of the order of the mean free path. The right-hand part, where 
L > 1,  corresponds to the ‘localized‘, insulator regime, marked by an  exponential 
increase in the resistance with the length and by large relative fluctuations of the 
transmission coefficient. Obtaining more data farther to the right is difficult because 
the transmission coefficient rapidly falls to the level of the numerical unitarity defect. 

The crossover between the ballistic and insulator regimes occurs in a range of 
lengths roughly defined by k < L < 1. This range becomes larger, the larger IC, 
as is seen by comparing the two sets of quantum data in figure 1. The reason is 
that 1 - k2/2: circles in figure 1 have a (numerical) localization length 1 - 880 
and the last circle to the right corresponds to a sample length L = 400; squares 
nave a iocaiization iengtn i - 26. Tius as k ana i increase ai iixed i c j i  (i.e. 
going towards the classical limit) the model tends to behave like an ohmic conductor, 
and the ballistic range becomes negligible in comparison with the ohmic range. This 
marks a distinct difference between this model and quasi-one-dimensional models of 
the Anderson type, where the mean free path is proportional to 1. An interesting 
remark connected with this fact is that the ohmic law (11) does nof scale with the ratio 
l / L ;  the reason is that the number of channels is not k e d  but is itself proportional 
to the mean free path. 

t Provided thal Lr is kept mnstant 
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7. Fluctuations 

Ericson fluctuations of nuclear cross sections against energy are expected to appear 
when the excitation is so strong that many scattering resonances strongly overlap, and 
the energy scale of the fluctuations should be defined hy the resonance width (Brody 
et a1 1981). Fluctuations of the same statistical nature as Ericson’s are also expected 
for quantum cross sections of classically chaotic scattering processes; here, too, the 
S-matrix elements are expected to fluctuate with energy in the regime of overlapping 
resonances, on a scale semiclassically defined by the classical decay rate, or inverse 
time of escape (Smilansky 1990). 

Fluctuations of S-matrix elements could be easily observed in our model. In 
figure 3 we show the squared modulus of a scattering matrix element (a reflection 
one) against the ‘control’ parameter ( for a ballistic case with scaled length - 2 
(changing the d u e  of E directly affects the value of the OE; also recall that changing 
( is tantamount as changing k in the m). For the sake of comparison, the same plot 
is shown in the integrable case, where it displays much more regular behaviour. 

2 .1  2 . 2  2 . 3  2.4 2.5 
t 

Flgurc 3. Fluctuations of a reflection cmss section on changing e, for q = 15, Zeqr = 
0.05 (lower C U N ~ ,  integrable case) and for 2cqr = 10 (upper C U N ~ ,  chaotic rase). me 
sample size was L = 100. 

Similar fluctuations were observed for the matrix elements as functions of QE. 
Figure 4 shows how phase shifts change with the OE in a small neighbourhood of 
X = 0, the size ol which is of the order of the correlation length for the same data 
(see later). 

Ericson fluctuations have two distinctive marks. Rrst, the S-matrix at given energy 
should look like a random matrix picked from an appropriate ensemble; second, 
correlations of S-matrix elements at different energies should have a Lorentzian 
dependence on the energy spacing. The first aspect will not be addressed here, 
except for the somewhat trivial remark that traditional ensembles such as Dyson’s 
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Figure 4. Phase shifls p againsl QE A at q = 15,c = 1.5 ,2Eqr  = 10,L = 200 (same 
data as Car figure 6). 

circular ensembles or the like cannot be expected to do this job; in the diffusive 
regime, the S-matrix is by no means (statistically) invariant under rotations, because 
the transmission and reflection suhmatrices have different magnitudes, so that more 
sophisticated ensembles will have to be used as a term of comparison. As to the 
second aspect we computed, following Smilansky (1990), the function C,,(w) defined 
bY 

with Cea as in equation (33), by averaging over 50-100 different samples with the 
same size and different no. The reference value X was taken 0 (‘band centre’). In the 
ballistic and close to ballistic cases, smooth bell-shaped curves were typically found. 
In many cases, a Lorentzian fit proved very good over a large interval; in other cases, 
relevant deviations from Lorentzian were found only in the tails; finally, in a minority 
of cases deviations were Cound both at small and at large values of w (interestingb, 
such deviant results were mostly obtained with transmission rather than reflection 
matrix elements: the reason is still not clear to us). Figures 5(a)-(d) show typical 
results. 

According to equation (39 ,  the inverse Fourier transforms of the autocorrelation 
of the S-matrix elements play the role of memory kernels relating outgoing fluxes 
to incoming ones. Since the corresponding classical kernels exponentially decay with 
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Figure 5. Squared moduli of some normalized QE autocorrelations of different S-mattix 
elements (equation (37)) averaged over LOO different samples, for A = 0 @and centre) 
Z€qr = l o , €  = 1 3 , q  = 15: (a), L = 5 0 ;  (b), L = 28; (e)  and (d). L = 200 (two 
different matrix elemenu). Full curves are Lorentz N N ~ S  of widlh mmsponding to the 
average amelation length of six different S-matrix elements. The h k e n  C U N ~ E  are 
Lorentz N N ~ S  fitting the lint four data. 

time, as shown in section 2, one may expect that under suitable semiclassical con- 
ditions the quantum kernels will also decay exponentially, possibly after =me initial 
non-universal stage; this expectation is also substantiated by general arguments rely- 
ing on semiclassical formulae for the scattering matrix (Smilansky 1990). Thus the 
behaviour of C,,(w) for not too large w should be Larentz-like, as indeed we ob- 
sewed; moreover, the width of the Lorentz curve should be given by the classical 
rate of exponential decay. In figure 6 classical decay rates and quantum correlation 
lengths for the arctan model are plotted against the variable 1 /  L2. The latter variable 
is roughly proportional to the square of the inverse scaled length; it is small in the 
diffusive regime and in that case it is roughly proportional to the classical diffusive 
decay rate (the theoretical diffusive decay rate, as given by the lowest eigenvalue of 
the diffusion equation, equation (9), is shown by the full cuwe in figure 6). Correla- 
tion lengths were determined as the values of w at which Cap was found to decay to 
a value 0.5; the data in figure 6 were obtained by averaging the correlation lengths of 
six different S-matrix elements. The right-hand part of figure 6 corresponds to the 
ballistic regime; there, classical rates and quantum correlations lengths exhibit fairly 
good agreement. 

Going towards the left in figure 6 one classically approaches the diffusive regime. 
Since 1 was kept constant in these computations, quantum mechanically one ap- 
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decay rates (open circles) againsl the ralio l / L 2  far q = 15,<  = 1.5,2<q~ = IO. 
Quantum data are obtained by averaging the mrrelalion lengths of six different Sa" 
elements. A bilogarilhmic plol is shown in the insert. Full lines give the dassical decay 
rates as pmdicted bj the Fokker-Planck equation. 

proaches the localized regime; the quantum data closest to the origin were obtained 
at 1/L 5 3. A bilogarithmic plot of the left-hand part of figure 2 yields a clear 
indication that quantum correlation lengths decrease more slowly than classical decay 
rates and tend, therefore, to be significantly higher. The 'Lorentzian range' of the 
corresponding correlation curves becomes very narrow around w = 0 and, in general, 
these curves develop a very slowly decaying tail. The width of the Lorentzian curve 
that fits the correlation curve near w = 0 is significantly smaller than the global 
correlation length (figures 5(c) and (d ) ) .  

Thus our data indicate that the statistical properties of the S-matrix fluctuations 
undergo a qualitative change on moving from the ballistic regime towards the diffusive 
one. Generally speaking, Ericson fluctuations are expected to be Lorentz-correlated 
when the resonances have roughly the same width; therefore the observed behaviour 
may be a symptom that the distribution of the resonance widths is hemming broader 
in the diffusive regime. 

A remarkable feature of the fluctuations in the quantum ohmic regime emerges 
when their magnitude is investigated as a function of the sample length. In figure 7 
we show a plot of the variance 67 of the transmission coefficient 7 against the scaled 
length. These variances were obtained by either choosing different samples with the 
Same values of < , q , ~  and QE X or slightly varying some of the latter parameters 
around the values previously used for the weakly localized case in figure 1, at tixed 
disorder. 

On comparing figures 7 and 1 one sees that in the ohmic regime the fluctuations 
have approximately the same magnitude, no matter how they were generated. This 
behaviour bears a definite similarity to the universal conductance fluctuations observed 
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Figwe 1. VaCance 67 of thc quantum transmisioii weT&r.t agsind :he sfzlcd length 
2kLlnD:  full circles, variances over 50 different samples with 9 = 21, E = 1 , Z 9 ( r  = 
10, QE X = 0; open circle, variances mer 30 different values of A in a range of 10 
carrelalions lengths around X = 0, q,  T as above, tixed sample; lozenges, variances 
wer 5-10 different values of in a range 1 f 0.025 with a fued sample and canstant 
9 =  2 9 , 2 9 < r =  10. 

in mesoscopic devices. In our range of length the relative fluctuations 6 q / q  changed 
from - 0.1 to - 0.5. 

8. Concluding remarks 

The effect of quantization on classical chaotic transport is a widely studied subject, as 
is the nature of quantum scattering in the presence of classical chaos. Nevertheless, 
problems exhibiting both features at one time, i.e. scattering problems in which chaotic 
diffusion occurs inside the interaction region have scarcely been studied up to now 
(Borgonovi ef a1 1981), mainly because realistic models involve great computational 
difficulties. On the other hand, scattering problems of this sort have a broad physical 
relevance. In this paper we have described a model for 'diffusive scattering' that 
can be effectively analysed both in its classical and its quantum mechanical version. 
This was at the price of two major shortcomings. In the first place, the model is a 
very unphysical one; although we have been comparing it with electronic transport 

physical system described by such a dynamics. Second, our model involves inelastic 
scattering-although in the quantum case the consewation of OE makes it possible 
to think of it as describing the elastic scattering of waves with an unusual dispersion 
law. 

In spite of these disadvantages, we believe that the indications provided by our 
abstract model have some general validity, as was the case for the ICR of which our 
model is a variant. 

WO essential features of transport in disordered solids, i.e. diffusion and localiza- 
tion, are represented in this model and we have shown how a quantum ohmic regime 
stems from the interplay of these competing effects. This demonstrates that classical 

Ly &--:dc:ed -!ids $ . ~ ~ - g h ~ ~ ~  th$ pzper, it cert~ifi!v h i d  I .."." ~ f i & y e  zfiy p a !  
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chaotic properties can produce statistical behaviour in 'small' quantum systems, in 
spite of the well known absence of chaos in quantum mechanics. Moreover, the 
magnitude of transmission fluctuations in the quantum ohmic regime is, according 
to our data, approximately universal. Our model appears, therefore, to be able to 
qualitatively reproduce an important feature of real quantum transport 

A major motivation for this work was the analysis of the scattering matrix fluc- 
tuations. We have provided evidence that these fluctuations are Ericson-like in the 
v(IIIoLIc rrgLiiie, nuu Y I ~ L  LLIGII WIIGLL~VLL r~rrgrri ~ d i i  VG uuciieu iiuin muwrcuga 
of classical escape rates. The ballistic regime of our model thus provides one more 
specific hstance in support of some general views about quantum irregular scattering 
(Smilansky 1990). 

Many other important questions remain open. The nature of fluctuations in the 
ohmic and in the localized regime is still unclear: our data indicate that the simple 
Ericson picture needs to be modified on approaching the classical diffusive regime. 
A more detailed analysis, including the investigation of poles of the S-matrix, is 
required and is now in progress. 

F Borgonovi and I Cuameri 
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Appendix A The LippmannSchwinger equations 

Consider the Moller wave operators 

Due to their intertwining property, they transform the eigenfunctions of the free 
dynamics U ,  into eigenfunctions of the interacting dynamics U. In particular, a 
couple of interacting eigenfunctions I$" can be formally associated with any free 
eigenfunction ut*" as follows. 

= nI~u>" (A.2) 

Upon choosing the f sign and substituting (Al) into (A2) one gets the first 
LippmannSchwinger equation: 

m 
A , "  = l i m  rCe-~nq~-nlL;A 

l % = O  
uo  r-O+ 
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Instead, choosing the - sign in (A2) leads to the second LippmanSchwinger 
equation: 

Appendix B The scattering matrix from distorted plane waves 

Wr integer n define 
a, = unu;n 

k=l 

which for arbitrary states $ ,g  and integers n, < n2 yields 
n2-1 

((a,* - fL,)$Ig) = ( U V -  l ) u ; k + l i ? ) .  (B2) 
k = n ,  

We now let nl + -co,n, + +ca. Moreover, we put g = at+ in (B2) and we use 
the definition of the scattering operator: 

S = a!a+ (B3) 

(@IS+) = ($14)- ( ( T -  1)u;k+lQtu;kd4. (B4) 

and we find 
t w  

k = - m  

Both $ and 4 can be expanded in free plane waves according to 

where the density of states IuuI is given in equation (19). A similar expansion holds 
for 4 and on applying the operator a+ we get 

We now substitute (B5) and (B6) in (B4) and recall that U,"'" is an eigenfunction of 
U t  corresponding to the eigenvalue eikA,  The infinite sum over k in (84) converges 
to a 6-function that can be integrated out and we finally get 

(+IS4 = ($14) - 2 n / '  dX +*(Qa)4(Qo)((T - ~ ) U ~ ' " I ~ ~ ~ ) I ~ ~ I I ~ ~ I . ( B ~ )  

Substituting now expansions (B5) for $, 4 in the left-hand side and in the first term 
of the right-hand side of (B7) yields equation (24) of the text. Instead, choosing 
9 = a-+ in (B2) leads, via quite similar manipulations, to another expression for 
the S-matrix in which the functions 

NA 

Spec *,@=I 

appear 

SWo = 6,@ +2rrIv,11/21vo11'2(~l'al(T- I)uOX"). (B8) 
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Appendix C The reciprocity property of the S-matrix 

For free waves one has 

cu;,- = uo A,*. 

where a* is the reverse channel and C is the complex mnjugacy. Because the free 
dynamics U, is time-reversal invariant, the following property holds true for free 
Green functions: 

c lim (cia - = iim (U;' - e - l h + c  )-IC. 
e-0+ r - O t  

By applying C to both sides of the first LippmannSchwinger equation and using this 
property one gets 

Comparing this with (A4) one sees that 

7 w  -_ = elxLl; 'Cuy.  (Cl) 

So.*. = 6,' + 27r(ebAU(1,'Cu>'I(T - l )uo  A , - * )  

= 6,p + 2n((Tt  - l )uo  A ' " , T t , , y )  

Substituting (Cl) into formula (B8) for the S-matrix leads to the reciprocity property: 

= + 2a(Ce-1xUou$PIC(Tt - 1 ) ~ ; ' ~ )  

= 6,@ - 2n((T-  l )u~"(u$' )  = S,p 

where equation (24) has been used in the last line. 

Appendix D Classical transport 

The homogeneous boundaty-value problem has a complete set of eigenfunctions 
U , ( . ) ,  (no  < z < no + L). The 71th normalized eigenfunction is associated with 
an eigenvalue A,. It has the parity of ( - I )"+ '  under reflections with respect to 
z = no + L / 2  and it is given by 

sin 2u,, 2u,, ( 2 - Z) 

Z U , , ( Z  - Z) 

(n odd) 

(TL  even). 

L 
- 1 1 2  (D') 

[g (I--)] s in  L 

U,(.) = 

?he eigenvalue equations (9), stem from directly imposing the homogeneous boundaly 
conditions. The solution of the diffusion equation subject to the inhomogeneous 
boundary mnditions is sought in the form: 

f ( i , r )  = g(z,7) + ~ 4 7 )  + B(7) (D2) 
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with g satisfying homogeneous conditions and A , B  so chosen that (D2) satisfies 
the complete conditions. Upon expanding the right-hand side of equation (D2) on 
the basis U, differential equations for the coefficients of the expansion are obtained 
that once solved allow to reconstruct f ( z , r ) .  In the solution thus obtained the 
coefficients xn,, stem from expanding the functions F ( z )  = z and F ( z )  = 1 over 
the basis U,: 

The solution contains a transient part depending on the initial condition. On dropping 
this part and using equations (5) to calculate the outgoing flux one gets the solution 
given in the text. 
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