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AbstmeL The existence of delocalized regimes at all positive values of the Planck 
mnstant is proved to be a generic property of quantum maps of the 'kicked Harper' 
we. The qualitative properties of lhe delocalized wavepacket propagation are illust~dcd 
by numerical computations of the quantum-phase space distributions. 

1. Introduction 

Dynamical models described by maps are frequently used in several branches of 
quantum physics. Iterating a 'quantum map', i.e. a unitary propagator that 
defines a discrete-time dynamics, is numerically easier than solving a continuous- 
time Schrodinger equation; moreover, in spite of the crude approximations involved 
in reducing the exact dynamics to a map, the latter is often able to reproduce the 
essential qualitative features of the former; in primis, its stable or unstable nature. 

The issue of stability is decided by the long-time behaviour of wavepackets in 
some representation, which is sometimes a coordinate representation but more often 
a momentum or an energy one. Mvepackets may oscillate quasi-periodically and thus 
remain localized forever inside some bounded region of the considered space; or else 
they can spread indefinitely. Perhaps the simplest case of such unbounded propagation 
occurs when the evolution operator is invariant under a group of translations in 
the relevant space; then the Bloch theorem applies and the spread of wavepackets 
in the relevant space is typically found to grow linearly in time. 'Ibis is called 
ballistic propagation, and is generically associated with the existence of an absolutely 
continuous component in the spectrum of the evolution operator. 

"slational invariance is linked with some strict periodicity. In momentum or 
energy space such a periodicity is often obtained under conditions of commensurability 
of some characteristic frequencies; in that case the ballistic propagation is also called 
quantum resonance. This is the case, e.g., with the kicked rotator model [l] when 
the period of the kicks is commensurate with the internal frequencies of the rotator. 

Such outcomes for translational invariances are purely quantum effects and may 
be completely unrelated to classical dynamics, as demonstrated, for example, by the 
well known resonances occurring in the kicked rotator model [I]. 
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The recently introduced ‘kicked Harper’ (KH) model provides grounds for the 
non-trivial application of the Bloch theorem [2]. It bears some resemblance to the 
conventional Harper model but unlike that model it has a classical dynamics marked 
by chaotic diffusion in appropriate parameter ranges. In its quantum version it 
has been numerically found to exhibit a variety of behaviours, including dynamical 
localization, ballistic propagation and diffusive-like propagation [2,3]. The delocalized 
regimes are transparently related to translational invariance when the Planck constant 
k given certain ‘commensurate’ numerical values, but the Occurrence of such regimes 
is by no means restricted to such special choices of d 

In this paper we investigate a class of models of the KH type, parametrized 
by a ’potential’ chosen in a dass of analytic functions. We prove by a simple 
but nonetheless rigorous argument that the existence of delocalized regimes is a 
generic property in this class of models, independently of the arithmetic nature of 6. 
This we do by relating the spectral properties of the models to those of the same 
models taken ‘on the line’, where they are translationally invariant for any 6 (this 
translational invariance is not caused by any resonance of frequencies, anyway). We 
give the term ‘generic’ the same technical meaning as in the theory of (classical) 
differentiable dynamical systems, namely, we call ‘generic’ any property that is shared 
by all members of a set of the second Baire categoly in a suitable functional space. On 
mathematical grounds, very general methods such as the spectral duality theorem [4] 
have been developed for the class of almost periodic problems to which the KH 
model belongs. However, in the case of the KH model the crux of the matter lies with 
establishing the absence of infinitely degenerate quasienergy eigenfunctions. Quite 
an analogous situation occurs in the theory of almost periodic Schrodinger operators 
[4], where infinite degeneracies have recently been ruled out [SI. In our case we 
prove that the Occurrence of such infinite degeneracies is a non-generic property, but 
we actually suspect, on physical grounds, that such degeneracies should be absent in 
all cases. 

In previous numerical works, the KH model was investigated on the circle, where 
it looks like a variant of the kicked rotator model. The m model can also be 
analysed on the l i e  by ‘pasting’ together the results of numerical simulations of a 
bundle of models on the circle, each one of which is taken at a different value of 
quasi-momentum. In the second part of this paper we report some numerical results 
obtained in this way. These results illustrate the evolution of the quantum-phase space 
distributions and suggest a simple classification of the different types of propagation. 

2. Description of the model 

We study a class of models with a discrete-time quantum dynamics generated by the 
iteration of a unitary propagator in L*(W) defined by 

where F(+) is an analytic, real, even function with period Zx, and k,l are real 
non-negative parameters. (In the following it will sometimes be nccessary to specify 
these data by Writing 9 E 9( F, IC, l ) . )  
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The propagator ( 1 )  can-be considered as a formal quantization of a classical map 
of the form: 

I' = I - IF'(p) 

P' = P + IcF'(z') 

which is an area-preserving map in the plane. Thanks to the periodicity of F, ( la)  
can also be. used to define a map on the cylinder parametrized by z(mod(2n)) and 
p or on the cylinder parametrized by I and p(mod(2n)), and also on the torus 
parametrized by r(mod(Zv)), p(mod(2v)). All these different dynamical systems 
are obtained from the map ( la)  by 'folding back' its orbits onto cylinders or ton. 
This folding process has a quantum analogue; because the invariance of 3 under 
translations in x or in p by multiples of 2n allows for a Bloch decomposition that 
reduces 3 to a direct sum of operators, that are related to the classical cylindrical or 
toral maps. 

' b o  cases have to be distinguished, according to whether f i  is incommensurate with 
2n, or not. In the former case, the Bloch decomposition of 9 can be accomplished 
in either the p- or the x-representation. However, the corresponding operators of 
'quasimomentum' and 'quasi-position' do not commute with each other and the 
quasi-energies (Le. the eigenphases of 9)  can he expressed as functions of only one 
Bloch number. 

Instead, if fi is commensurate with 2v, certain subgroups of translations in x and 
in p commute with each other, and this yields quasi-energies that depend on two 
Bloch numbers. 

We now need to introduce an appropriate formalism. Ear any wavefunction +(I) 
in the r-representation, one can write 

where TJ is quasi-momentum and @,,(z) is a 2n-periodic function given by 

m=-m 

4 being the wavefunction in the p representation. Equation (2) defines a fibration 
of the Hilbert space in fibres labelled by the values of quasi-momentum. Since the 
latter is conserved under the dynamics (l), the operator 2 is itself fibred, according 
to 

The operator @) will he called the pdbre map at T J .  It acts in Lz(0,2v) according 
to 

(5) P) = eikF(e')/ne-ilF((.;t7))h)/h 4 
where A = -ia/aO with periodic boundaly conditions. 
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A completely similar fibration is obtained by using the quasi-positions E in place 
of the quasi-momentum q. The x-fibre maps obtained in this way are related to the 
pfibre maps via 

@P’(F, IC, 1 )  = @”’( F, l ,  k). 

The fibre maps are quite different objects from the original map (1). Anyone of them 
can be taken as a formal quantization of a classical cylindrical map; as such, it can be 
formally assumed to describe the dynamics of a particle on a circle, ia of a rotator. 

The state of evey such rotator is described by a wavefunction *,(e) ( or W F ( S ) ) .  
In the angular momentum representation, defined by the eigenfunctions In) = eins 
the state of the rotator is specified by the non-normalized sequence &(n + q)h) 
(n E iZ) in the case of p-fibres and by the sequence $((m + <)h) in the case of 
x-fibres 

The evolution of any wavefunction +(z) under the dynamics (1) can be obtained, 
by decomposing $ in its fibres @,, and by letting every fibre evolve, independently 
of the others, under the action of the corresponding fibre map (5). The numerical 
results described in section 3 have been obtained in this way. 

In the ‘commensurate’ case when i5 = 2?rr/q ( r ,q  integers) one further Bloch 
reduction is possible, that reduces (5) to a direct sum of unitary matrices of rank q,  
of the form: 

where F is the qdimensional Fourier transform, and Me, N, are diagonal matrices. 
The unitary matrices (7) provide a quantization of the classical toral map; such a 
quantization exists only for commensurate li, and in that case there is a two-parameter 
family of non-equivalent quantizations labelled by < and 17. 

3. Mathematical results 

The qualitative nature. of the quantum dynamics described by 3 and that of the fibre 
dynamics described by the ‘cylindrical’ fibre maps is determined by their respective 
spectral properties. We shall investigate what spectral properties have to be expected 
for the operator and for its fibre maps 3, for a generic choice of the potential F in 
the class of analytic periodic functions. We shall say that a certain property of i?( F) 
is generic in the class of analytic periodic Fs, if that property is shared by all Fs in 
a set of the second Baire category in a suitable space of analytic functions. Although 
the generic or non-generic character of a property depends on the choice of a class 
of functions, in the following we shall speak of generic properties of g( F) letting it 
be understood that the relevant functional class is that of analytic functions, properly 
defined in appendix 1. 

In the case when h is cOmmensurate with 2?r the unitary matrix U), i.e. the 
quantum ‘toral’ map will obviously have a discrete spectrum. For non-trivial choices 
of F, one at least of the eigenvalues will not be a constant on changing <,qt and 
it will therefore sweep a band in the spectrum of the p-fibres, x-fibres and the 

t ?his can be readily decked by explicily wiling the Irace of the matrh (7) 
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complete operator as well. In the commensurate case therefore the operator 9 and 
the cylindrical operators 3 will have a continuous component in their spectrum. 

In the remainder of this section we shall be concerned with the incommensurate 
case: throughout the following discussion h/27r is assumed to be irrational. In that 
case there is still one Bloch number left for the map (l), that can be or q depending 
on the chosen representation. On heuristic grounds one would therefore expect .?? to 
have a continuous spectrum. In this respect we have the following result. 

meorem 1. The following property of F is generic: 
continuous spectrum for almost all 1 2 0, including 1 = 1. 

g ( F , l , I )  has a purely 

‘Almost all’, in this statement and in the following, means except possibly for a 
set of zero Lebesgue measure. The proof of this theorem is given in appendix 1: we 
stress here that at the heart of this proof lies translational invariance, due to which 
any proper eigenvalue of 9 ought to be infinitely degenerate-a properly that we 
prove to be non-generic. 

The absence of infinite degeneracies is easily established for particular choices of 
F, that give rise to fibre maps which couple a finite number of momentum eigenstates. 
Such cases can be handled by a ‘Wronskian’ argument and provide a skeleton for the 
second category set constructed in appendix 1. 

We can now prove a result that says how the continuity of the spectrum of 9 
affects the spectra of its fibres s. 
Lemma. Let .??(F, k ,  1 )  have a purely continuous spectrum for given F, k ,  1. Then 
either &)(F, k,  1 )  or .$PI( F, k ,  I) or both have a non-empty continuous spectrum 
for almost all q or E. 

Froof The spectra of gip) at different values of a are essentially the same. In fact, 
if q in equation (5) is taken as a random variable uniformly distributed in [0,2a], 
then the ergodic shift q -+ q + h is mapped by the correspondence q + .$?) in 
the shift -+ e-iB8eiB. Therefore, as a function of q the unitary operator 3?) is a 
random ergodic operator [6,7 and it has been shown that under such conditions the 
continuous spectrum of S?) is the same for almost aU q [A. 

Now suppose that j$’)(F, k ,  1 )  has a pure-point spectrum for almost all q; we 
have to prove that .$?I( F, k ,  I) has a non-empty continuous spectrum for almost all 
E. Consider the functions: 

unr(+) = x,(r)eins r , n E Z  

with x, the characteristic function of the interval [ rh , ( r+  I)h]. Let t E Z be discrete 
time and, for a given II ,  E L*(R), let @(t)  = g*II,. Thent 
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Let us introduce time averages up to time T 
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so that 

since the spectrum of 9 is continuous, 

and this entails that 

lim (P7( t ) )T  = 0. 
T-rm 

Interchanging the limit T + m and the infinite sum over n in equation (8) is the 
central point of this argument Roughly speaking, this step is justified because the 
motion of the wavepacket has been assumed to be localized in p, so the distribution 
Icnr(l)r cannot spread arbitrarily in n. In appendix 2 we actually prove that (8) is 
uniformly convergent with respect to T. 

Using the decomposition in z-fibres, we have 

The l i t  for T --t CO of the quantity under the integral sign in equation (11) exists; 
therefore, (11) entails that th is  limit is 0 for almost all t. In other words, the dynamics 
of almost all x-fibres is such that the average probability of occupation of any state 
IT-) decreases to zero in the limit T -+ m. Being true for all r, this implies that 
almost all z-fibres have a non-empty continuous spectrum. 

"@ether with theorem 1 and equation (6), the result just proven yields our main 
result: 

Theorem 2. The following property of F is generic for almost all 1 > 0 (including 
1 = I), either $p)( F, 1,1)  has a nonempty continuous spectrum for almost all q 
or @)(F,z, I) has a non-empty continuous spectrum for almost all q. In particular 
$?)( F, 1 , l )  has a non-empty continuous spectrum for almost all q .  

4. Some numerical results 

The fibre dynamics of the KH dodel ( F ( + )  = cos(z)) has been numerically 
investigated in [2,3]. Evidence wad found that for k > 1 the motion is delocalized 
with the expectation of n2 growing $I time as t2 ;  for k < 1 localized motion has been 
usually observed, but in some cases the ballistic propagation found at k > 1 was also 
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observed on interchanging the values of k and 1. At k = 1 unbounded propagation 
was observed in all cases with (n*) - tQ and CY equal or close to 1; according to 
m n t  results, however, CY may be increasing with k [SI. 

This behaviour is strongly suggestive of a singular continuous spectrum for which 
a multifractal analysis has been undertaken [2,9]. All these results consistently fit 
into the generic picture provided by theorem 2. 

A numerical investigation of the full dynamics described by the operator (1) with 
F(I) = cos(+) shows some elements of interest. In order to numerically compute 
the complete evolution (1) we have taken as initial state a coherent state centred near 
+ = 10,p = 10. Having decomposed this state in p fibres, corresponding to - 10’ 
evenly spaced quasi-momenta, we computed the corresponding fibre evolutions up to a 
time t - 400 and we used the results to reconstruct the complete wavefunction at time 
t. From thiswavefunction we obtained the Husimidistribution H(g,p,t)  = I ( z l + J ~ ,  
with 1.) the normalized coherent state at z = q + ip. The phase space pictures thus 
obtained are shown in figures 1 4 .  Figure 4 is about a commensurate case with 
b = ~ / 2  Here the phase distribution is spreading in time more or less in all 
directions. 

a 600 

400 

200 

Flgurc t Contour plot of the Husimi distribution after 430 kicks for k = 3.1, I = 6, 
ii = 2 ~ / ( 6 +  r), y = (&+ 1)/2 salting from a coherent state peaked in (10,lO). 

In all commensurate cases one can write 

with h = 2rp /q .  Xn([,o) are the eigenphases of the Bloch matrix (7) and the 
smooth functions p,, result from the expansion of +(z,O) in Bloch waves. A 
stationary phase argument then shows that the Husimi distribution H ( q , p , t )  decays 
in time as t-2. Therefore the phase area (Le. the semiclassical number of states) that 
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q 
Flgum 2. me same as figure I ,  but with k and I intemhanged. 

- 

-200 0 '0 
c 

Y 

Q u r c  3. The same as figure 1, but with k = I = 5. 

is signiRcantly populated by H at time t can be assumed to grow as tZ,  and since the 
propagation is (roughly) isotropic, the same type of growth is exhibited by (d )  and 

Figure 1 describes an incommensurate case with k > 1. With the chosen values of 
k,Z, delocalization occurs also with k and 1 interchanged (figure 2). In both cases the 
propagation is highly anisotropic and actually takes place along two 'chimneys' along 
the 2'- and p-axes. (The lack of symmetry between figures 1 and 2 which is observed 
on comparing the Iine texture of the respective distributions is due to the fact that 
the discretization of the phase plane used to compute the Husimi distribution is not 

by ( P 2 h  
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Figure 4. Husimi mntour plol in the mmmensurafe case h = n/2, k = 1 = 2, after 
1M kicks. 

symmetric in + and p for technical reasons.) 
Figure 3 describes an incommensurate case with k = 1. In this case a rough 

isotropy is restored. 
In the cases of figures 1 and 2 (3’) and ( p z )  increase as t Z ;  the same behaviour 

is exhibited by the fibre map. Instead, in figure 3 (zZ) and ( p z )  increase over the 
explored time scale as 1, which is also the behaviour of the fibre maps Over the same 
time scale. 

An interesting remark about these incommensurate cases is that the different types 
of propagation observed are consistent with a linear growth of the phase area in all 
cases, provided that account is taken of the different geometry of the propagation. 
Indeed, if the latter takes place inside ‘chimneys’ then a linear increase in the area 
enforces a quadratic growth of (a?) and ( p z ) ;  if instead the distribution propagates 
in all directions, then (z2) and ( p z )  have to grow linearly, as observed. On the other 
hand, at the present time we do not know how the linear increase in the number 
of states could be theoretically justified. A formal stationary phase argument based 
on the existence of just one Bloch number would yield this result, but recourse to a 
stationary phase is hardly justified. 

5. Concluding remarks 

The results of section 2 admit some obvious generalizations. For instance, the proof 
of theorem 1 makes no use of the existence of two translation groups commuting 
with the map: one is sufficient to establish the result. By slight changes the argument 
can also be adapted to maps of the type expi(F(3) + t F ( $ ) ) / h  and, in particular, 
to the time-one propagator of the standard Harper model (F(r) = cos(+)). In the 
latter case, the crucial step of ruling out infinite degeneracies is straightforward. 
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1 

Figure 5. Fxpeclalion value of p z  as a funclion of lime for the mmplete map and for 
the Same data as in Bgure 3. 

Generally speaking, this very step plays a key role. ?fanslation invariance alone 
does not preclude a point spectrum; for instance the Koopman operator associated 
with the classical map ( la) ,  Le. the unitary operator that describes the evolution 
of classical square-integrable phase functions, exhibits the same type of translation 
invariance as the quantum propagator, yet it can have an infinitely degenerate p i n t  
spectrum due to the existence of KAM curves. The small overlap of quantum 
eigenfunctions provided by tunnelling is sufficient to remove any such degeneracy, 
generically at least; this physical argument actually suggests that our results may hold 
for all analytic potentials. However, to the best of our present knowledge this remains 
an open mathematical question. 

Acknowledgments 

We wish to thank F Ivailev and D Shepelyansky for discussions on the KH model, 
and J Bellissard for reading a draft of this paper. 

Appendix 1 

Let r, the annulus in complex plane defined by 01 < IzI < 01-1 with 0 < 01 < 1. 
Let B, the vector space of real valued functions F ( 0 )  defined on the unit circle that 
are even in 0 = arg(r), (-n < B < n) and have an analytic continuation P(z) in 
r,, continuous in F,. B, is a real Banach space under the norm 

IlFll, = S"f IQ.)l. 
Z E r ,  

We shall construct a subset 3 c B,, of the second Baire category in B,, such 
that for all F E 7 and for almost all 1 > 0 (including E = 1) the operator .5?( F, 1,L) 
has no proper eigenvalues. Any proper eigenvalue of s( F, 1,1) ought to be infinitely 
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degenerate due to translational invariance. At the same time it ought to be an 
eigenvalue for almost all fibre maps; therefore, it will be sufficient to construct a 
second category set F c 8, for no element of which the fibre maps have infinitely 
degenerate eigenvalues. 

The determination of the eigenvectors of an operator of the type (5) can be. 
formally reduced to the solution of a discrete SchrCidinger equation. 'RI this end we 
use a method introduced by Shepelyansky [9]. Let @(e)  be an eigenfunction of the 
fibre map %p): 

,iF(s)/fie-irF((ntn)6)/fi@(e) = e-im@(e), (Al.1) 

Let %(e) = &P(e)/2fi@(B)g(0) with g ( 0 )  a continuous real even function, and let 
U,, (n E Z) the Fourier coefficients of .(e). Then (Al.1) is equivalent to 

(A1.2) 

where 

W,. are real and, on account of parity, W, = W-?. Equation (A1.2) is often likened 
to a solid-state one-dimensional model of the tight-binding type, with the coefficients 
W, definiig the 'hopping amplitude' between sites a distance T apart. We consider, 
first, those potentials F for which only finitely many W, are different from zero. More 
precisely, let Z c B, the class of potentials endowed with the following property: 

Property I. A real even function g( 8) exists, such that g and l/g are continuous, 
and eiF(s)/2fig(S) is a polynomial in z and 1/z ( z  = eio). 

For such potentials we can prove: 

Proposition 1. If F E Z, then V l  > 0 no eigenvalue e-& of (Al.1) can be infinitely 
degenerate. 

Prmf. If F has the property I then W, = 0 for lrl > N, with a suitably chosen N. 
Let us define 2N vectors X, by 

x, (U,tN- , ,%+N-2, . . .  ,%-N) (A1.3) 

then equation (A1.2) yields 

Xntl = M(")X,  (A1.4) 
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with the transfer matrix M(R) given by 
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so that det( M(n)) = 1. Let U('), . . . , dZN) be square-summable solutions of (Al.1) 
with the same e-iw. The Fourier coetlicients of everyone of them must satisfy the 
same equation (A1.2). Then let X i j )  be the vectors (A1.3) defined by d). These 
vectors define matrim S(") of rank 2 N  via (S(n));,j = ( X ? ) ) ; ,  and from (A1.4) 
we get 

det( dn)) = det( S("+')) Vn 

ie. det(S(*)) does not depend on n. Now every U?) is a square-summable sequence, 
so the vectors X,") tend to 0 as n -+ 00; therefore, det(S(>)) = 0. Being true for 
all ns, this entails that d), ... , dZN) are linearly dependent. (Note that Xi') = 0 

0 for some R would imply X i j )  = 0 for all n because of (A1.4).) 

Proposilion 2. Z is dense in 0,. 

PTOof. Given F E Be, let q an integer such that IlFll, < Tqh. The function 
w ( z )  = tan(P(z)/2qh) is analytic in Fm. By using Laurent expansion w can be 
arbitrary weU approximated (in 0, ) by polynomials P(z) in z and l /z ,  real and even 
on the unit circle. Then P ( z )  = 2qhtan-'(w(z)) can be likewise approximated by 
functions of the type Pp(z) = 2qhtan-'(P(z)). Any such function has the property 
I; indeed, 

and I will be satisfied by the choice g(0) = (1 + P2(eiB))' because P is real and 
even on the unit circle. D 

From the dense set Z we can extract a dense countable set Z, = {Fn}. 
Given any vector + E Lz( R), let 

and 

From proposition 1 it follows that for any 1 2 0 and for any n the operator 
Therefore, as T - CO both &Fn, 1, l )  has a purely continuous spectrum. 
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R( Fn , T, I, 11) and R( F, , T, 11) tend to 0, Vn. For all positive integer N and for 
any E > 0 let us define v( N, E, 11) as the smallest integer such that R( F, , T, +) < e 
for VT 2 v( N, E, 11) and for V n  4 N; then v( N, c, $) will monotonically diverge 
for E + 0 and will be non-decreasing for N --t CO. 

Let uN,rN be arbitrary non-negative sequences tending to 0 for N --t CO, and 
define 

YN = / v z (  N ,  ~,v) (A1.5) 

so that y N  + 0 for N - 00. Fiially let us define subsets Ah,+ and F+ of 0,: 

Ab,$ E IF E 0, : IIF- Fkl l  < Y ~ I  
" 

F+ = n U 'k& 
n=l k=n 

Proposifion 3. F+ is a set of the second category in 5, and VF E F+, $ belongs 
to the continuous subspace of g( F, 1, I)  for almost all 1 2 0. 

Pro@ The set F+ is by definition a countable intersection of open sets, each one of 
which is dense (it contains all but finitely many of the Fns). If F E F+, a sequence 
F,, E Zu can be found such that, V k ,  

IIF- Fnillo! < Ynb. (A1.6) 

The map F + $(F, 1,1) is continuous from 5, into the bounded operators in 
L*(W): indeed, 

Il9(F,l7I) - 9 ( F ' , l , I ) l l <  c ~ ( l + ~ ) l l F - F ' l l Q  
with a suitable constant e , .  Therefore, for any T > 0, 

l'R(F,T,ll)-R(Ff,T,+)l<o,TIIF- F'll,. 
From this and from equation (A1.6) we get, VF E F+ 

R(F,T,$) B C2TYnx +R(F,,,T,+). (A1.7) 

Now we can take Tk = v ( ~ ~ , T % ~ , + )  so that Tk - 03 by the definition of v .  

(A1.8) 

On the other hand, the limit of R(F, T, I ,  +) as T + CO exists V t  and so does, 
by dominated convergence, the limit of R( F, T, $); the latter limit has to be zero 
on m u n t  of (AM). It follows that the limit of R( F, T, 1,  +) is zero for almost all 
I 2 0. Therefore + lies in the continuous subspace of $( F, 1,I) for almost all 1 2 0. 

By a slight change in this argument we can define another set F$, of the second 
category, such that V F  E F;, + lies in the continuous subspace of S ( F ,  1, l )  (it 
suffices to define v( N, E, $) from R( F,, T, 1,  $).) Finally, the set 

mom (A1.5) and (A1.7) we obtain 

'R( F, Tk, $) < c2unt + T~~ - 0 for k + M. 

n 

where {&} is a complete set of vectors, is a set of the second category, and for 
F E F $F, I ,  I) has a purely continuous spectrum for a set of full measure of 
values of I, including I = 1. 
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Upon decomposing x,(r) in its p-fibres gT,q(0) we get 
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C n r ( t )  = l d q  1 dee-ineg:,(e)@k.,(e,t). 

y,(q, ip)  = / dee-ineg:,(e)qe) ( A 2 4  

( A 2 4  

Apart h m  a normalizing constant, the inner integral is the nth Fourier coeficient 
of g&(0)@q(O,t). Fbr any @ E L2(0 ,2v )  let us define 

2s 

U 

(T is fixed throughout this argument). Then 

(42.3) 

where the right-hand side is a continuous function of @ E L2(0 ,2n)  because g* 
is a bounded function of 8. Therefore, from Dini's theorem we get that (A2.3)ri 
uniformly convergent with respect to ip varying on any relatively compact subset of 
L2(0,2?r). Now the orbit {Q, , ( t ) } tGz is just one such subset, (for almost all q), 
because the fibre dynamics is assumed to have a pure p i n t  spectrum, for almost 
all q. Therefore replacing @ with Q n ( t )  in (A2.3) we conclude that the series thus 
obtained is uniformly convergent with respect to t for almost all q. 

It follows that also the series 

(42.4) 

converges uniformly with respect to t @y monotone convergence). Therefore, 
the series E::-"-, Icn,(t)r, which is termwise dominated by (A2.4) is uniformly 
convergent too, and so is the series obtained by averaging up to time T. 
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