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Abstract. We study the effect of coherent propagation of two interacting partiales
in an

effective 2-3-d disordered potential. Ouf numerical data demonstrate that in dimension d > 2,

interaction can lead to two-partides delocalization below one-partiale delocahzation border. We

aise find that the distance between the two delocalized partiales (pair size) grows loganthmically
with time. As a result pair propagation is subdiffusive.

1. Introduction

The question of interacting partiales in a random potential bas recently got a great deal of

attention (see for example iii). Indeed this problem is important for the understanding of

conduction of electrons in metals and disordered systems. It is also very interesting from the

theoretical view point since it allows to understand tl~e eifects of interaction on Anderson

localization. It is a common belief that in one-dimensional (ld) systems near tl~e ground state,

a repulsive interaction between partiales leads to a stronger localization if compared witl~ non

interacting case [2]. Even if more complicate, tl~e 2-dimensional (2d) problem is assumed to

be localized, wl~ile in the 3-dimensional (3d) case delocahzation can take place in the presence

of interaction iii. However this problem is rather diilicult for analytîcal, experîmental and

numerical investigations and tl~erefore it is quite far from its final resolution.

Tl~e complicated nature of the above problem can be illustrated by the example of only

two interacting partiales (TIP)
in a random potential. Indeed in this case, contrary to tl~e

common lare, even repulsive partides can create an effective pair wl~ich is able to propagate

on a distance lc much larger than its own size of the order of one partiale locahzation length
ii 13]. From one side interference eifects for non-interacting partiales force the partiales to stay
together at a distance

m~
ii even in the repulsive case. But the relative motion between the two

partiales leads to the destruction of such interference and allows their coherent propagation on

a distance ic » ii More exphcitly, according to [3j, m the quasi Id case with M transverse
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wl~ere U is tl~e strengtl~ of on site interaction and V is tl~e one partiale l~opping matrix element.

Here tl~e inter-site distance is a =
1 and tl~e wave vector kF

+~
1. Since ii c~ M, tl~en i~ c~

M3.

In 2d localization is preserved but localization lengtl~ is exponentially large In(lc IL
+~ 1) [6j.

(here and everywhere ii represents the one-partiale localization length in any dimension).
The sharp increase of ic with the number of transverse channels M leads to a straightforward
possibility of delocalization for a pair of partiales in 3d while one particle remains localized [4-6j.
In this sense the 3d case is much more interesting due to the possibility of delocalization and

we qualitatively discuss it below.

One of the interesting features of pair delocalization in 3d is that it is net due to a simple
shift of the mobility edge produced by the interaction (such possibility is indeed net so inter-

esting). In fact, it is possible to consider a system in which ail one-partiale eigenstates are

localized for ail energies. This can be for example the 3d Lloyd model with diagonal disorder

En~,n~,n~
=

tan çin~,n~,n~ and hopping V on a cubic lattice, where çin~,n~,n~ are random phases
homogeneously distributed in the interval [0, ~j. In this model ail one-partiale eigenstates are

localized for V < l~
m~

0.2. However, two repulsive partiales with on-site interaction U can

create a coupled state which is delocahzed and propagates through the lattice. Indeed, a pair
"feels" only smoothed potential [3j that corresponds to an effective renormalization of the hop-
ping matrix element l~~ which is strongly enhanced due to interaction and becomes larger than

l~. Of course, the enhancement takes place only for sufliciently large one-partiale localization

length ii » 1. Therefore, the hopping V < l~ should be net far from l~ although there is, a

priori, no requirement for V to be very close (parametrically) to l~.

The two particles delocahzation due to interaction takes place only for states in which par-

ticles are on a distance R < ii from each other while for R » ii eigenstates are localized.

Such kind of situation is quite unusual since it means that the absolutely continuous spectrum
of the Schrôdinger operator, corresponding to the delocalized pair, is embedded into the pure

point spectrum of locahzed almost noninteracting partiales states. For R » ii the interaction

between the two particles is exponentially small and this implies a very small coupling between

the states corresponding to these two kinds of spectra. However, due to the quasi degeneracy
of levels, even a small coupling can lead to important modifications of the above picture as

it was discussed in [6j. Therefore, a direct numerical investigation of interaction-assisted de~

localization in 3d is highly desirable. While the recent theoretical arguments and numerical

simulations in quasi-Id case [3j [9j definitely demonstrate the existence of enhancement for

ic no numerical simulations have been done in 3d case. Indeed, in 3d basis grows as
Nô, where

N is the number of Id unperturbed one-particle states, and that leads to heavy numerical

problems.
A similar type of interaction-assisted delocalization can be also realized in the kicked rota-

tor model (KRM) [loi in 3d. In this case the unitary evolution operator takes the place of

Schrôdinger operator and eigenenergies are replaced by quasi-energies. The advantage of such

models is due to the independence of localization length on quasi-energy so that all one-partiale

states in 3d are localized for V < Vc and delocalized for V > Vc. Even if very eificient, numer-

ical simulations for KRM in 3d become very diflicult; for two partiales situation becomes even

worse due to Nô basis growth.
One of the ways to overcome these numerical difliculties is the following. For Id KRM the

number of dimensions can be eifectively modelled by introducing a frequency modulation of

the perturbation parameter iii,12j. The case with u incommensurate frequencies in the kick

modulation corresponds to an effective sohd state model with dimension d
= u +1. For u =

2,
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the effective dimension d
=

3 and Anderson transition can be efliciently investigated [12]. A

similar approach can be done for two interacting partiales and it allows to gain a factor N~ in

numerical simulations.

In this paper we investigate the model of two interacting kicked rotators (KR) studied

in [3], [6j with frequency modulation and u =
2, 3. The quantum dynamics is described by the

evolution operator

É2
=

exp(-1[Ho(à) + Holà') + Uôn,n>] )

x
expj-ijVj9, t) + Vj9', t)jj j2)

with fil')
=

-iô/ô91'). Here Ho In) is a random function of n in the interval [0, 2~] and it de-

scribes the unperturbed spectrum of rotational phases. The perturbation V gives the coupling
between the unperturbed levels and has the form VIS, t)

=
k(1+

e Cos Si Cos 92 cos 93) Cos 9 with

91,2,3 = uJi,2,3 t. In the case of two modulational frequencies lu
=

2,uJ3
=

0), as in [12], we

choose frequencies uJi,2 to be incommensurate with each other and with the frequency 2~ of

the kicks. Following [12] we take uJi "
2~À~~, uJ2 =

2~À~~ with
=

1.3247... the real root of

the cubic equation x~
~ l

=
0. For u =

3 we used the same uJi,2 and uJ3 "
2~ Il. We also

studied another case of functional dependence of V(b) analogous to [12] and corresponding to

the Lloyd model. All computations have been done for symmetric configurations. According to

the theoretical arguments [3j and numerical simulations [9j the antisymmetric configurations
corresponding to fermions with nearby site interaction should show a similar type of behaviour.

The paper is constructed as follows. In Section 2 we discuss the model and present the main

results for u =
2. The case of u =

3 is discussed in Section 3. The kicked rotator model

corresponding to the 3d Lloyd model is studied in Section 4. Conclusions and discussions of

results are presented in Section 5.

2. Trie KRM Model with Two Frequencies

Before to discuss the eifects of interaction let us first discuss the noninteracting case U
=

0.

Here the evolution operator can be presented as a product of two operators Si describing the

independent propagation of each partiale:

ii
"

expj-iHoiù)) expj-ivjb,t)) j3)

Since V depends on time m a quasiperiodic way with V(b,t)
=

VIS, Si >92) and 91,2 =
uJi,2t,

one can go to the extended phase space Ill], [12j with effective dimension d
=

3. In this space

tl~e operator is independent on time and bas tl~e form

Éi
"

exp(-iHi là, iii fl2)) exp(-iV(9, Si, b2)) (4)

with Hi In, ni,n2)
"

Ho(n) + uJini + uJ2n2. Due to linearity in ni,2 the transformation from

(3) to (4) is exact. However, tl~e numerical simulations of (3) are
N~ times more effective than

for (4).
Tl~e system (4) corresponds to an effective 3d model. Numerical simulations in [12j sl~owed

that the variation of coupling amplitude V gives the transition from localized to diffusive regime

as in usual Anderson transition in 3d. In [12] the form of the kick V had been chosen as

Vi b, 61
,

62
"

-2 tan ~ [2k(cos 9 + Cos 61 + Cos 62 E] là

In this case after a mapping similar to the one used in [13] the equation for eigenfunction with

a quasi-energy
~1 can be presented in a usual solid-state form:

Tnun + k~j~ln-r
=

Eun (6)

r
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Fig. 1. One-particle Anderson transition in the model (3) with V from (7)
v =

2, e =
0.75 as a

function of hopping k. Critical point kcr m 1.8. One partiale localization lengths (ii) and diffusion

coefficients (D)
are evaluated from the fitting of probability distribution. Etron bars indicate the

standard deviation obtained from
an

ensemble of100 (localized) and 10 (diffusive) different random

realizations. Lines are drawn to fit
an eye.

where the sum is taken only over nearby sites and Tn
=

tan((Hi(n,ni,n2) jl)/2),
n =

in, ni, n2). For random phases under tangent the diagonal disorder is distributed in Lorentzian

way and the model becomes equivalent to the 3d Lloyd model. While we also investigated the

kick form là) (see Section 4) our main results have been obtained for

V(6, 61, 92)
"

k cos9(1 + e
cos91cos62) (7)

in
the case of two frequencies

u =
2. According to [14j in tl~is case tl~e equation for eigen-

functions can be also reduced to an effective solid-state Hamiltonian wl~icl~, l~owever, bas a bit

more comphcated form tl~an (6). We cl~oose (7) since it was numerically more eflicient tl~an

là). To decrease tl~e number of parameters we always kept
e =

0.75.

Tl~e one-partiale transition as a function of coupling (l~opping) parameter k in (7) is pre-

sented in Figure 1. Similar to [12] tl~e localization lengtl~ li is determined from tl~e stationary
probability distribution over unperturbed levels [#n[~

m~

exp(-2 (n( IL wl~ile tl~e diffusion rate

is extracted from tl~e Gaussian form of tl~e probability distribution In Wn
m~

-n~/2Dt witl~

D =< n~ > /t. According to Figure tl~e transition takes place at tl~e critical l~opping value

kcr m 1.8. Below kcr all quasi-energy states are localized. The independence of transition point
from quasi-energy is one of useful properties of KR models.

Our main aim was tl~e investigation of TIP effects well below tl~e transition point kcr. As

m [6j we cl~aracterized tl~e dynamics (2) by tl~e second moments along tl~e diagonal line n =
n'

:

a+(t)
=

(((n( + (n'[)~)t/4 and across it a-(t)
=

(((n( [n'[)~)t. We also computed tl~e total

probability distribution along and across tl~is diagonal [6j P+ (n+ with n+ =
[n+n'[ /2~/~ The

typical case is presented in Figures 2 and 3. These pictures definitely show tl~e appearance

of pair propagation even if tl~e interaction is neitl~er attractive nor repulsive. Indeed, tl~e

pair size is mucl~ less tl~an the distance on which two partiales are propagating together. If

we fit the probability distribution
in Figure 3 as P+

m~

exp(-2n+/1*) then we can see that

tl~e ratio1+li~
m~

25 (ic m
1+

m 95) is quite large. It is interesting to note that P+(n+)
at different moments of time is doser to an exponential (lnP+

m~
n+) tl~an to a Gaussian
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time in 2-partiales model (2) with V from (7) and

v =
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k
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0.75,; Upper curve is

a+(U
=

2), middle is a-
(U

=
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=

0). At t
=

0

bath partiales
are ai n =
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0, basis is -250 < n,
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Fig. 3. Probability distribution at t
=

10~
as a

function of n+ =

2~~/~ in + n') for the
case of

Figure 2 with U
=

2: P+(n+) (fuit fine); P- in- (dashed); dotted fine is the distribution P+(n+) for

U
=

0.

(In P+
m~

n+~). Tl~e spreading along tl~e lattice leads only to growth of1+ witl~ time but the

shape of distribution does trot corresponds to a diffu81ve process.

Another interesting feature of Figure 2 is the slow decrease of tl~e rate of a+ growtl~ and tl~e

slow growtl~ of a-. To cl~eck if tl~e growtl~ of a+ is completely suppressed witl~ time we analysed
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Fig. 5. Same as Figure 3 but for U
=

1.

its dependence on t for different values of interaction U (Fig. 4, probability distribution is sl~own

in Fig. 5). For U < o-à tl~e growtl~ of a+ is completely suppressed wl~ile for U
=

1 tl~e complete
suppression is a bit less evident. To understand in a better way tl~e case U

=
i we can look on

tl~e dependence of the number of effectively excited levels AN on time. To estimate AN we

should rewrite (2) in the extended basis where the evolution operator has the form:

É2
"

exp(-1[Ho là) + Holà') + uJifii +uJ2fi2 + Uôn,n<j exp(-1[V(6, 61, 62 + V(6', 61, 62 )1) (8)

Since Ani,2 "
Anl')

m An+ tl~e number of excited levels can be estimated as AN m

An+A~-AniAn2 "
a+3/~a-~/~. Following tl~e standard estimate based on tl~e uncertainty

relation [14j a delocahzation can take place only if AN grows faster tl~an tl~e first power of t.

As our numerical data show (see Fig. 6) tl~e ratio W
=

AN/t
remains approximately constant

or is even sligl~tly decreasing in time. Tl~is indicates tl~at our case is similar to locahzation in

2d wl~ere tl~is ratio also remains constant for very long time. Tl~e reason wl~y below kcr tl~e
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Fig. 8. Dependence of a-~/~
on time In t for cases of Figure 2 (U

=
2, k

=
0.9) (fuit upper fine)

and Figure 4 (U
=

1, k
=

0.9) (dashed lower fine).

tl~e increase of the size of tl~e pair ~.
Tl~e results presented in Figure 8 show tl~at ~ m

a-~/~

grows logarithmically with time as ~ m CL In t where CL is some time independent factor being
CL "

0.8(U
=

2) and CL " 0.6(U
=

1). Of course, tl~is logaritl~mic growtl~ sl~ould terminate

after tl~e complete localization
in a+ but tl~is time scale t~ is very large and for t < tc we

bave clear logaritl~mic growtl~ of K. As discussed in [6] we attribute tl~is growtl~ to tl~e fact

tl~at propagating in a random potential the pair is affected by some effective noise whicl~ leads

to a slow separation of two partiales. Indeed, tl~e matrix elements of interaction Û- decay
exponentially fast witl~ the growth of the pair size n- = ~ according to a rough estimate

U-
m~

U~ exp(-[n- Iii with U~
m~

Ulii~~~. These small but finite matrix elements lead to tl~e

growtl~ of tl~e pair size ~ witl~ slow diffusion rate D- c~ U~~ exp(-2[n-[ Iii ). According to tl~e

relation ~~ /t
m D- tl~e pair size grows as ~ m~

ii In t/2 [6] wl~ich is in agreement witl~ data of

Figure 7. More detailed numerical simulations are required to verify tl~e dependence CL
+~

ii

Let us now discuss the physical interpretation of the model (8) Firstly we would like to

mention that in 1-d case, instead of looking on the problem of TIP in the same random poten-
tial, one can analyze the model where each partiale is moving in its own independent random

potential (two parallel random cl~ains). Witl~out interaction partiales are independently la-

calized on a length ii, wl~ile in tl~e case with interaction Uôn,ni between tl~e two chains, the

partiale pair can propagate on a larger distance ic
m~

1). Since the potentials are different in

the two chains, tl~ere are no correlations in tl~e matrix elements and all assumptions used for

TIP in one random cl~ain are even better justified. From tl~is point of view tl~e model (8)
corresponds to tl~e case in wl~icl~ eacl~ particle is moving in its own 2-d plane (two parallel
planes witl~ diiferent realization of disorder). Tl~e interaction between tl~e two partiales in tl~e

planes will lead to tl~e enl~ancement of localization lengtl~.

One can argue tl~at (8) still contains some non-interactive transitions between the two planes,
but we tl~ink tl~at below one-partiale delocahzation border tl~ese transitions are not of principal

importance and do not lead to significant changes. In tl~e same spirit one can analyze tl~e case

witl~ a larger number of frequencies, corresponding to l~igl~er dimensions.
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Fig. 9. One-partiale Anderson transition
in

the model (3) with V from (10)
v =

3,
e =

0.9 as a

function of hoppmg k. Critical point kcr m 1.15. One partiale localization lengths (li) and diffusion

coefficient (D)
are

evaluated from the fitting of probability distribution. Error bars indicate the

standard deviation for ensemble of100 (localized) and 10 (diffusive) different random realizations.

Lines are drawn to fit
an eye.

3. Trie KRM Model with Three Frequencies

According to tl~e above discussion tl~e suppression of diifusive growtl~ of a+ can be explained
by two factors. The first one is that the effective dimension is de~

=
2 and locahzation always

takes place in 2d. Another reason is the slow logaritl~mic growtl~ of pair size. To separate
tl~ese two eifects we investigated tl~e dynamics of TIP in tl~e KRM witl~ tl~ree iuodulational

frequencies
u =

3. In tl~e extended phase space tl~e evolution operator bas tl~e form

É2
=

exp(-1[Ho (fi) + Holà') + uJifli + uJ2fi2 + uJ3fi3 + Uôn,ni]
j~~exp(-1[V(6, 61> 62, 63 + V(6', 61> 62 63 ))

with

VIS, Si, 62)
"

k cos 9(1 + e cos 61 cos 62 cos 63) (10)

For U
=

0 we bave one partiale in 4d and transition to delocalization takes place above a critical

value of perturbation parameter kcr. According to our numerical data kcr m I.Ià for
e =

0.9

(Fig.9). Below kcr ail eigenstates are exponentially locahzed. For U ~ 0 tl~e total dimension in

(9) is 5 and since we bave 2 partiales tl~e effective dimension per partiale is de~
=

5/2. Since

de~ > 2 tl~e first argument given above becomes not relevant and we expect TIP delocalization

below kcr. Let us to note that above kcr the above TIP problem becomes not interesting since

even without interaction the particles spread along tl~e lattice and tl~e interaction between

tl~em does not affect significantly tl~eir dynamics.
Tl~e numerical simulations of TIP for (9)-(10) in one-partiale locahzed phase k < kcr demon-

strate strong enl~ancement of two partiales propagation. A typical case is presented in Fig-

ure 10 and II. According to these data the growth of a+ is unlimited and TIP delocahzation

takes place below kcr. The analysis of a-(t) shows that pair size ~ m
a-~/~

grows logarith-
mically witl~ time similar to tl~e case witl~ u =

2. We tl~ink that this slow growtl~ of ~ is

responsible for a slow decrease of the pair diffusion rate D+
= a+ /t with time. Due to the
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increase of
~

the probability to have a distance between partiales of the order of ii decreases

as
1/~(t)

m~

2/(ii In t) and therefore, we expect tl~at tl~e diffusion rate of the pair will decrease

with time as D+
m~

Def/In~t. Here ~1= and Def is some effective "subdiffusion" rate. While

the above probability argument gives ~1 =
1 it is quite possible that sticking in tl~e region witl~

~ m ii will give a faster decrease of D+ witl~ a l~igher value of ~1. As it was discussed in [6] tl~e

growtl~ of pair size should also grue logaritl~mic corrections to the col~erent localization lengtl~

in tl~e quasi-Id case
il) (ic

m~

ii~/ In~ ii).

Anotl~er confirmation for the delocalization transition below one-partiale thresl~old is given

by tl~e analysis of tl~e number of eifectively excited states. Indeed for
u =

3 one bas AN m
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of propagation is demonstrated in Figure 14. Even if the investigation of this model is more

diflicult for the numerical simulations, our data indicate, as it was in Section 2, that for
u =

2

tl~e suppression of a+ is always present. In the same way we attribute this behaviour to tl~e

effective two dimensionality of tl~e model de~
=

2.

We also analyzed tl~e tangent model (2), là) for tl~e case of tl~ree frequencies u =
3

(V(6, 61, 62> 63)
#

-2 tan~ 1(2k(cos6+cos 61+cos 62 +cos 63))). Tl~is case is similar to tl~at dis-

cussed in Section 3. The behaviour of a+ is presented in Figure là and indicates tl~e existence

of delocalization transition for TIP below one partiale delocalization border with kcr m o.22.
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5. Conclusions and Discussions

Our numerical investigations definitely demonstrate the eifect of enhancement of the localiza-

tion length for TIP in a random potential. These results were obtained for kicked rotators

models with frequency modulation. Such approach allows to model efliciently TIP problem

in an effective dimension de~ > 2. Numerical data for these models confirm the tl~eoretical

expectations [4-6] that TIP delocalization in d > 2 is possible below one-partiale delocaliza-

tion border. In agreement with [6] we found TIP pair delocalization and, at the same time,

a logarithmic growth of the pair size. We attribute tl~is growtl~ to tl~e noise produced by tl~e

random potential. Indeed a pair propagating in a random potential sees diiferent realizations

of disorder which act like some effective noise. Sucl~ noise originates transitions wl~icl~ increase

tl~e distance between tl~e two partiales. Even if tl~e amplitude of tl~ese transitions is exponen-

tially decreasing witl~ tl~e two-partiale distance, it gives rise to logaritl~mic growtl~ of pair size

with time. This in tum produces a subdiifusive pair propagation (An+)~
m~

Deft/ In~ t. We

give arguments for
~1 =

1, but it is possible tl~at due to sticking in the region witl~ large dis-

tance between partiales one can bave
~1 > 1. Furtl~er investigations sl~ould be done in order to

determine tl~e exact value of ~1. Anotl~er qualitative argument for the subdiifusive propagation
is the tunneling between states in whicl~ tl~e two partiales are far from each other (at a distance

R m ii and states in wl~icl~ partiales stay witl~in ii (R < ii ). Tl~ese states are quasi-degenerate

since tl~e spectrum of delocalized states is embedded in tl~e spectrum of localized ones. In tl~is

situation even an exponentially small overlapping between tl~ese two kinds of states becomes

important and it can lead to a subdiifusive pair propagation. Furtl~er work sl~ould be done for

a better understanding of tl~e final spectrum structure and tl~e eigenfunctions properties for

TIP in 3d.
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