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Summary. — Starting from the Kepler map approximation of highly excited
H atoms in a microwave field, we construct a simple model to describe the
decay of the survival probability. Taking into account the non-Markov
character of this process, we derive an asymptotic 722 law for the survival
probability, well confirmed by numerical experiments.

PACS 05.45 — Theory and models of chaotic systems.

1. — Introduction.

The problem of microwave ionization of highly excited hydrogen atoms is a
striking example of the relevance of chaos in microphysics. The simplest classical
model for this phenomenon describes an electron moving on a half-line under the
combined action of the Coulomb field of the nucleus and of a monochromatic
electric field (). At some critical value of the perturbation strength, a transition
to chaotic motion occurs and the electron «diffuses» through the bound state
region of the classical phase space until it eventually reaches the «continuum»,
i.e. ionizes.

The process of chaotic excitation—or, more properly, some quantum counter-
part of this process(*®)—appears to be responsible for the intense under-
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threshold ionization which was observed as early as 1974 (*). The complexity of
motion in the stochastic regime calls for a statistical description, which is in fact
accomplished by means of a suitable Fokker-Planck equation (). The diffusion
coefficient turns out to be the relevant quantity ruling the classical ionization (¥).
Numerical simulation showed that this Fokker-Planck equation provides a good
local description of the classical excitation process('). However, this equation
should not be used to analyse important aspects of this process involving long-
time behaviour such as, e.g., the time decay of the survival probability, for two
reasons at least. The first of these is well known from previous investigations of
dynamical systems in which a chaos border is present. Near the last KAM curve,
the geometry of the chaotic component of the phase space is astonishingly
complicated by a structure of residual stable islands and remnants of broken tori.
This «critical zone» acts as a trapping region for chaotic trajectories and
produces long tails in the decay of correlations («statistical anomalies») (**).

Besides this, in the present problem there is still another reason why a
Markovian approximation is invalid for long times. According to a simple
resonance analysis, chaos is generated by the interaction of the external field
frequency with the harmonics of the unperturbed motion. Thus the «diffusive
time scale», i.e. the time scale on which the loss of memory due to local
instability justifies a Markovian approximation, is of the order of the unper-
turbed period and therefore sharply increases as the electron diffuses upwards in
energy towards the continuum. As a matter of fact, longer and longer pseudo-
integrable segments appear in the orbit, as the orbit itself approaches the
ionization border.

The present paper is devoted to the formulation of a statistical description for
the chaotic excitation of 1-dimensional H atom in microwave fields, that
circumvents the above difficulties and allows for the determination of the decay
law.

2. — Mathematical model.

The essential ingredient of our model will be the «Kepler map» formulation of
the H atom dynamiecs(*®). The classical dynamics of a 1-d H atom with
unperturbed action-angle variables (n,6) in a monochromatic electric field of
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strength ¢ and frequency o can be viewed as a time-independent Hamiltonian
problem in the extended 4-dimensional phase space. Subsequent crossings of the
plane 6 == («aphelion») define a canonical Poincaré map, that for w,= wnj>1
has the form

2.1) T=x+ksing, E=¢+2xw(—-2w§)_3/2,

where © = — 1/2n*w is the unperturbed electron energy divided by w, ¢ is the
field phase at perihelion, and k =2.58cw . The «Kepler map» (2.1) is area-
preserving and is defined for all bound states @ <0 but carries some of them into
the region @ >0; this accounts for ionization. Orbits leaving with a value x,
undergo a stochastic transition for

1
b = 2w

We mention here that a map with a similar structure has been recently proposed
in order to describe the Halley comet dynamics (). By iterating (2.1) we get a
simplified description of the dynamics in the discrete time n defined by the
number of passages at perihelion. In the fully chaotic regime the phase ¢ can be
assumed to change at random and this leads to a statistical picture in which the
electron performs a random walk in «, with an absorbing boundary at « = 0 and a
zero flux boundary at the bottom of the chaotic region. However, this picture
accounts for the decay law only in its initial stage (fig. 2). Indeed, due to critical
effects, the long time decay is algebraic and not exponential (as would be
predicted by the pure random-walk model) (*).

Anyway, we wish to describe how the chaotic excitation develops in real time;
for this purpose we need to modify the basic model (2.1). This map was obtained
by a stationary phase analysis of the change in x between subsequent passages at
the aphelion (*). That analysis shows that for w,> 1 the effect of the external field
is concentrated in a neighbourhood of the perihelion and this suggests a picture
in which the electron, away from perihelion moves along an unperturbed Kepler
orbit; at perihelion it undergoes a «kick», described by (2.1), that throws it on a
new orbit, or directly into the continuum. In this picture the small field-induced
oscillations around the unperturbed Kepler motion are neglected, so that its
limits of validity are defined by ¢ << 5*2 (¥). With this picture in mind, we shall
investigate the continuous time motion of a point described by 3 coordinates,
—o<r<0, 0s6<27, 0<¢<2z. The motion will be described by

2.2) =0, ¢=0, 0=(—2wx)*"

() B. V. CHIrIKOV and V. V. VECHESLAVOV: Chaotic dynamics of the Comet Halley,
Preprint INP 86-184 (Novosibirsk, 1986).
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as long as 0 <6< 2z. Instead, when an orbit defined by (2.2) impinges in 6 = 2,
x and ¢ change according to (2.1) and 6 becomes 0. If the orbit approaches x =0,
then longer and longer «integrable segments» defined by (2.2) appear, so that we
cannot assume the changes of « in time to have a Markov character, even when
the map (2.1) is chaotic. Notice that the invariant measure for this model in the
(x, 6, ¢) phase space is defined by the volume element x~2?dx dfd¢. This means
that any region bounded on the right by =0 has an infinite measure; this
remark will be important below. A statistical model for excitation in the fully
chaotic region will now be derived under the assumption that subsequent kicks
are uncorrelated. We shall then study the evolution of an ensemble of points,
distributed in « and 6 with a density w(zx, 6, t), which move along orbits (2.2) and
in 6=2r change their energy at random, according to some transition kernel
k(x, x").

The region of interest will be bounded below by a zero-flux boundary at x =7,
corresponding to the last KAM curve for mapping (2.1). The density w(x, 6, t)
must then satisfy

ow(x, 6,%) B 5 Qw(x, 6, 1)

@.3) ot Rl

for 0<6<2z, which is the Liouville equation associated with (2.2). (For
convenience we assumed 20 =1 and changed variable to —x.)
The effect of kicks at 6=2x is described by

(2.4) w(x,0,t) =272 f da’ k(x, x")w(x', 2z, t) x'32,
0

where the factors 7%, 2% account for the change in phase volume. There will be

no need to give the specific form of k(x, x'); anyway the boundary condition at
=7 should be taken into account when specifying k. We wish to find how the
distribution in energy

2=
2.5) P, t)= [ dow(a, 6, 1)
0
evolves in time. By using (2.3) and (2.4) we get
2z
(2.6) % = f da’ "2 [k(x, x") — &x — ") ]w(x’, 27, 1),
0

so we need an equation for w(x, 2z, t) and this is

Q2.7  wx,2x,t) =62z ~%2 — ) w(x, 27 — x¥2t, 0) +
+0(t — 273 w(x, 0, t — 27 ™32) ,

where 6 is the unit step function.
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(2.7) just says that particles at 6 =2z at time t are either incoming there for
the first time after ¢ = 0 or have undergone a kick at a previous time t — 2z ™"
Assuming the initial condition w(x,6,0)=g(x), sharply peaked around some
value x, (0 <x,<7%) and, using (2.4), we get

(2.8) wizx,2r, t)=62rx3% — ) gla) +
+ 6(t — 2rx~3%) £~ 32 f da’ ke, x") 22w’ , 2r, t — 2732 .
0

Let us put &(x, t) = w(w, 27, t). By taking Laplace transforms (in time) of (2.6),
(2.8) we get two coupled equations for the transforms &(x,2) and P(x, 2). In
operator form these equations read

(2.9) WP=2rg+(K—-1)y, ¢=h+EKy,

where U(x, 1) = x*? ®(x,2), the operator E is multiplication by exp[— 2zx2 %], K
is the integral operator with kernel k(x, ") and

_ _ 7T‘ —3/2
h(x)=ﬁ<1 exp [— 2z ]>g(x).

A A

Being interested in the long time behaviour of P we shall analyse P near 2 = 0.
For small 2, (1 —FE) is «small», and this motivates the expansion

J=Q1-EK)'h=01-K)'1-E-1DKA-K)'1'h=
=1-K''I+E-DKA-K)'+...]h.
Upon substituting this into the 1st equation (2.9) we finally get
AP (2, ) =2rg(x) — [1+ (E - DKQA - K) '] h(x).
Under not very restrictive smoothness assumptions on k(x,x’) the integral
operator K has a complete orthonormal set of eigenfunctions w,(x) with related
eigenvalues £, (0<£,<1). If we assume g(x) = é(x — ), and expand K(1 — K)™!

on the u,’s, we get

P 21— — 2macy
(2.10)  P(x, A):%g(x'_ x0)+x%< exp[A AL

3/2]
) e — ) +

1—exp[—2m225%%] 1 —exp[— 2rrx~%?] £,
p 2 i p 2 2 1 _r un(x()) un(x)-

=n

3/2
+ xp
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The first two terms describe the decay of the initial ¢-like distribution which is
completely effaced as soon as all the particles in the ensemble undergo their first
kick. Integrating in x, we obtain that the Laplace transform P()) of the total
survival probability P(f) behaves as A™® near 1 =0. According to well-known
estimates, this entails that P(t) decays as ¢ 22,

In the same way it can be seen that the following terms of the expansion in
(E —1) have an asymptotic behaviour which acquires a —2/3 exponent each
time, i.e. the second order ~ ¢ *? and so on; then survival probability decays as
t7%® when t becomes large.

This is the asymptotic form of the decay law predicted by the stochastic
model.

3. — Numerical results.

Unlike the «stochastic» model (2.3), (2.4) our model (2.1) (2.2) for chaotic
excitation is completely deterministic.

Nevertheless, the above predictions about the decay law hold for that model
as well, above the chaotic threshold. This is confirmed by numerical simulations.

In fig. 1 we show the results of one such simulation. Here we followed the
evolution of 10° initial points according to the deterministic model with an initial

Log P(t)

log t

Fig. 1. — Plot in log-log scale of the survival probability P(t) against time t—full
line—(only the tail is shown). The dashed line is the predicted ¢** law. Here
w=1.2-10"° k=1.1, with an ensemble of 100000 points with initial energy x,= —7 and
uniformly distributed phase.
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value xy= —7 and 6 homogeneously distributed in (0, 27). Particles with >0
were absorbed.

We took k=1.1, w =1.2- 107, which correspond to an initial hydrogenic level
ny=66 and rescaled field and frequency ¢ =eni=>5.088-10"2 and
wy = wng = 3.45.

o was therefore ~ 4 times the chaotic threshold; @ could be roughly estimated
by the resonance overlap criterion as ® ~ — 15, in agreement with numerical
results.

In developing our statistical model we took no special steps to describe the
critical region close to ¥ = Z. An interesting question is then what the role of this
critical region would be in the decay process. Indeed, since chaotic trajectories
explore the whole chaotic component of phase space, particles diffusing
downwards in energy must sooner or later enter this region, where they spend a
long time as their orbits wind around residual stability islands in a pseudo-
integrable way. This «trapping» produces a delay in the ionization process and
one may expect that even the decay law would be changed.

The effect of the critical region on the decay of correlations and on the
survival probability has been studied on different models. It was found that the
survival probability in the critical region decays according to a t™'* law. Since in
our stochastic model no special care was taken to describe the trapping in the

log P(n)

0 0.8 1.6 2.4 3.2
log n

Fig. 2. — Plot in log-log scale of the survival probability P(n) against the number n of
iterations (full line) of the Kepler map. The dashed-line represents the %~ law predicted
by the initial free diffusion; the dashed and dotted line shows the %2 law observed in
other numerical experiments and discussed in ref. (°). Here » =1.2-107°, k = 2.2, with an
ensemble of 75000 points with initial energy a;= —2 and uniformly distributed phase.



158 F. BORGONOVI, I. GUARNERI and P. SEMPIO

region near ¥, one might then expect the decay of the deterministic model to
deviate from the ¢~#® law, due to critical effects not accounted for in the model.
One might even guess that the ¢~ critical decay, being slower than the t~2® one,
would dominate for very long times. This expectation is contradicted by
numerical results which demonstrate the ¢t7*® decay in real time, in spite of the
anomalies that appear when the survival probability is plotted against the
fictitious time defined by the number of iterations (fig. 2). Our explanation is that
the decay law is determined by the sojourn inside the phase space region
bounded by « =0 on the right which acts as a trapping region itself. Since this
region has an infinite measure, it overwhelms the effect of the critical region,
which has instead a finite measure.

In other words, the long time decay is determined by the waiting time before
the last, ionizing kick, and the average of this time is infinite.

The above-described stochastic model appears to provide a statistical picture
of the excitation process that, unlike the Fokker-Planck equation, accounts for
the non-Markov character of the chaotic motion near the ionization border. It
should then be possible to extract from the model other information about the
statistics of chaotic excitation, besides the decay law; this will be the subject of
future investigations.

* ok ok
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® RIASSUNTO

Partendo dalla mappa di Keplero, quale approssimazione della dinamica di atomi di
idrogeno altamente eccitati in un campo a microonde, viene sviluppato un modello per
descrivere il decadimento della probabilita di sopravvivenza. Il carattere non Markoviano
di questo processo permette di ricavare il comportamento asintotico ¢~2 per la probabilita
di sopravvivenza, ben confermato dagli esperimenti numerici.

CpoiicTBa JIMHHOBPEMEHHOTO 3aTyxaHusi oroopaxkenus Kemnepa.

Pesrome (¥). — Mcxons u3 mnpubmmkenuss oToOpaxkeHust Kemnepa §ias  CHIIBHO
BO30YXIEHHBIX aTOMOB BOJOPOfia B MUKPOBOJHOBOM IOJIE€, Mbl KOHCTPYHUPYEM IIPOCTYIO
MOJIeNb ISl ONHCAHMS 3aTyXaHWsl BEPOSTHOCTH BBIKWMBAHUS. YUYHUTbIBasg HEMAapPKOBCKUH
XapakTep 3TOTO MPOLECca, Mbl BLIBOMMM ACHMITOTHYECKHMI 3aKOH { /> [JIsi BEPOSITHOCTH

BBIKUBAHWs, YTO XOPOMIO MOATBEPXKMACTCA YUCIEHHBIMU IKCIICPUMEHTAMU.

(*) Hepeseoeno pedaxuueti.



