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We review recent work on the so-called kicked Harper model, which can be viewed either
as a model system in the framework of quantum chaos, or as a pulsed version of the
Harper model, which has been thoroughly investigated in the context of magnetic field
effects in solid state physics. In particular we describe its rich phase diagram, by means
of both dynamical methods and multifractal analysis of the spectrum.

1. Introduction

Harper’s equation was introduced in 1955 as an approximate model for electrons
in a two-dimensional crystal in the presence of a perpendicular magnetic field. Its
derivation involves different drastic approximations, as it takes into account a single
Bloch band, with a tight binding energy form, from which the effective Hamiltonian
1s derived by Peierls’ substitution. This amounts in converting Ak appearing in the
explicit expression of the Bloch energy function with no field, into the operator
P —e/cA, thus turning the starting function into the effective Hamilton operator of
the system once the field is turned on (further details and references can be found
in Ref. 2).
The eigenvalue (difference) equation is written..

%K (¢n41+ Sn_1)+ Lcos(2mon +0) ¢, = edp, (1.1)

where the modulation parameter o gives the ratio of flux through a lattice cell to
one flux quantum.

207



208 R. Artuso et al.

The original derivation (1.1) has been found to provide an approximate descrip-
tion of many other physical systems,? and fresh interest in the problem has also been
prompted in the framework of the quantum Hall effect.* The spectrum of (1.1) has
several peculiar properties: first of all Azbel® observed that an irrational value of o
may generate a Cantor-set spectrum, while if & = p/q the system is periodic with
period ¢, so we have Bloch eigenfunctions and a spectrum consisting of ¢ bands.
One of the most striking features of the model is a duality property®: that is if we
perform the transformation

00
Im = E ¢n e—in(270m+0) e—imﬂ

n=—oo

then the set of {g,,} satisfies

1
§K (9n+1+ gn—1)+ Lcos(2mon + 0) g, = €gn

which is the same as (1.1) but with the role of K and L interchanged. By using this
duality property and Thouless’ formula” Aubry and André gave arguments showing
that a metal-insulator transition occurs at K = L.

The nature of the spectrum of (1.1) has been widely investigated in the mathe-
matical literature (see Refs. 8 and 9 for the relevant results and references). If the
modulation parameter ¢ is irrational, the associated almost periodic Schrodinger
operator presents peculiar features, considered pathologies from a “conventional”
point of view, like possible occurrence of dense point spectrum, singular continuous
spectrum and absolutely continuous spectrum with non trivial scaling properties.!®
In particular spectral properties of (1.1) depend crucially on number theoretical
properties of the (irrational) modulation parameter o: quite different behaviors are
expected depending on whether o has good diophantine properties or is a Liouville
number (that is approximated very badly or very well by rational numbers). For
strongly irrational values of o (like ¢ = pgy; = (V6 — 1)/2) it is believed that for
K < L all states are exponentially localized, so, by duality, for K > L all states
are extended, while the spectrum is singular continuous with critical states at the
self-dual point K = L. This has been checked by scaling analysis of the spectrum
by Kohmoto and Tang,!! by a method we will comment upon and employ in later
sections (for a useful review, which contains related work for other tight binding
models see Ref. 12).

A question of fundamental import is tied to how spectral properties affect dy-
namical behavior: while extended states and localized states lead respectively to
ballistic spreading and no spreading at all in the long time limit (at least this is
the heuristic expectation, not fully supported by rigorous results), it is not a pri-
ori clear what should happen in the critical case. This question was addressed in
Ref. 13, and the spreading of the wave packet was found to be given by (Az2) ~ t*
with « close to one (which would correspond to normal diffusion). In fact these
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authors report a/2 = 0.485 for golden mean modulation, and very close exponents
for other quadratic irrationals: moreover, on the basis of former work on the Fi-
bonacci quasicrystal’* they compare a/2 with the spectrum of scalings studied by
Tang and Kohmoto,'! noticing that /2 is very near to the scaling index for which
f(e) reaches its maximum.® The same exponent (a/2) was related to the Hausdorff
dimension of the spectrum in Refs. 15 and 16, as well as to some sort of power-law
level statistics (apparently first observed in Ref. 17). We remark that a rigorous
bound was established by Guarneri,'® relating the rate of spreading of wave packets
to the information dimension Dy of the spectrum (a/2 > Dy), in a quite general
framework of discrete unitary group evolution on a one-dimensional lattice: this
type of bound has been confirmed and generalized.!® Since information dimension
is bound from above by Hausdorff dimension, this bound is compatible with the
numerical findings and heuristic arguments quoted above. We add as a further
remark that through scaling arguments and numerical calculations?® (based upon
a derivation — using perturbation theory — of some clustering rules proposed
by Hofstadter?!) it has been conjectured that Dy = 0.5 for typical modulation
parameter o.

We may think of the kicked Harper model as a sort of modified Harper model,
in which the field is delta pulsed, thus being described by the (time-dependent)
Hamiltonian

H = Lcos(p) + K cos(£)6,(t) (1.2)
where

6i(t)= > 8(t—n) and ﬁ:-—ih{%

n=-—00

and where the modulation parameter is now the effective Planck constant & (which
thus plays the role of 2r0). To our knowledge the first proposal to study such
a system came in a paper?? where some Schrodinger-type equations were derived
in connection to time-dependent velocity fields characterized by chaotic advection
properties. The system was analyzed in Ref. 23 to investigate relationships between
topological invariants (Chern number of the band) and nodal properties of the
eigenfunctions (which are claimed to be connected to phase-space localization),
along the lines of Thouless et al’s approach to quantized Hall conductance.® The
kicked Harper model was investigated by Lima and Shepelyansky,?* who analyzed
its dynamical features (spreading of an initial wave packet), motivated by the well-
known results?® for the kicked rotator, characterized by the quantum suppression
of classical chaotic diffusion. The operator (1.2) can be derived upon standard
quantization of the classical two-dimensional area preserving map

Pn+1 = Pn + Ksin(z,) Tn41 = Zn — Lsin(ppy1) (mod (27)) . (1.3)

2We point out that, as we will comment upon in the following, the f (o) calculated by Kohmoto
and Tang does not contain information on the “dynamical” spectral measure, so one has to be
careful in comparing dynamical exponents with scaling indices referring to it (except Dy).
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This map was introduced?® to investigate the dynamics of classical particles in a
static magnetic field and in the field of a wave packet which is propagating across
the magnetic field. The investigation of quantum behavior?* (for K and L yielding
chaotic behavior in the classical map, and strongly irrational values of h) revealed
a rich variety of dynamical behavior (in particular dynamical localization is present
only in a fraction of the parameters’ space), symmetric pairs (K = L) giving rise
to quantum diffusion, (K > L) pairs originating ballistic spreading and dynamical
localization for (K < L) values (even though departures from this general picture
were mentioned, see also Ref. 27). The overall parameter space picture was con-
firmed by Geisel, Ketzmerick and Petschel, who claimed that the kicked Harper
model was characterized by the same critical exponents of Harper’s model: both
as regards the spreading of the wave packet and small scale level statistics?® and
in the exponents ruling power-law decay of autocorrelation functions?® (differences,
due to chaotic classical dynamics, appearing only in transients).

We investigated the model in much detail, motivated both by the striking dif-
ferences reported in the quantum behavior when compared with other quantized
area preserving maps, and to pursue if really the kicking did not change the “uni-
versality class” of the model. We found a non-trivial behavior along the symmetric
line (K = L), indicating a richer dynamics than formerly supposed, as well as a
complicated structure of the phase diagram.3! It is to be remarked that however,
kicked Harper model has much in common with the usual Harper model duality
properties,3® and this gives strong mathematical support for the existence of ex-
tended quasienergy eigenstates in some region of the (K, L) plane. As a matter of
fact, the existence of delocalized regimes has been rigorously proved for a class of
models defined by a Hamiltonian like (1.2), but with a generic analytic function in
place of the cosinus.3® A brief account of such results will be given in Sec. 6.

This review is intended to present the main points of our investigations, both as
regards dynamical analysis and thermodynamics’ approach to spectral
properties.!1:32 Before going into details about our methods and results we men-
tion that other features of the kicked Harper model have been investigated in the
literature (see e.g. Refs. 35 and 36).

2. The Model and Possible Ways to Investigate its Dynamical
Behavior

We thus start from the classical map (1.3), which we imagine acting on the cylin-
der (the z-coordinate is taken modulo 2x: this angle will be denoted by 8 in the
following). A large fraction of its phase diagram is characterized by chaotic diffu-
sion: in this respect the map behaves differently from the classical standard map,
in which the transition to unbounded chaos follows a critical transition to chaos for
golden mean torus,3” as here (for instance in the symmetric K = L case) diffusion
is supported along a stochastic web which is built upon destruction of a lattice-like
separatrices net.
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The quantum version of the model is obtained by canonical quantization?® of
(1.3), and leads to the Floquet operator

UL,k =exp (—i—i—cos(hﬁ)) exp (—i—I;—cos(a)) | (2.1)

where fi = —i9/06 and periodic boundary conditions are assumed. This operator
corresponds to the unitary evolution over a unit time-step: the corresponding prop-
agator in the standard Harper model is recovered via the limit lim_, o U Lt=1, Kt=1
The quasienergy spectrum is determined by the eigenvalue equation

OL,K"’«; = e_iw'/’w

and depends crucially on the number theoretic properties of %, which, we recall,
plays in this context the role of the incommensurability parameter. The eigenvalue
equation is conveniently expressed in the Fourier (momentum) basis
w » | 2* .
Y@= Y €™m  bm=(02m)" | dog(8)e™ .
(]

m=-00

In this representation the eigenvalue equation becomes
e_iqum = Z Um,m’¢m’ ' (22)
ml

where

. 2x . .
Ut = (2m) e themsm) [ g itn'-mie- i o)
0

By employing the Jacobi—Anger expansion this can be written as

Un,m' = e—i*cos(hm)im—m’.’m_ml (—%)

where the decay properties of the diagonal elements are expressed in a more trans-
parent way: in particular hopping terms that couple rather distant sites may
be relevant when the argument of the Bessel function is large. The eigenvalue
equation presents remarkable features when A = 27p/q. As a matter of fact in
this case Um4gmi+q = Um,m’ and we have Bloch eigenfunctions ¢,4,1 = e~%%4,
s=1,...,¢,1€Z a€|0,1) and (2.2) reduces to the matrix equation3®

[U(a)), o #(a)s = (a), e~w(a)
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where the unitary operator

V@)l = 52 o (i (ZG+0) (¢ - 0)) exp (5 cos (i 40)))

X exp (—z—— (cos(his) + cos(hs'))) (2.3)

determines the eigenstates on a torus of length ¢. The one-period evolution opera-
tor (2.1) is the product of two non-commuting exponentials: the K-part is diagonal
in the phase representation, while the L-part is diagonal in the momentum rep-
resentation: this makes it convenient to follow time evolution numerically by fast
Fourier transform from one basis to the other (so that the only remaining operations
are multiplications). The reliability checks on such an algorithm are performed by
controlling that the results we obtain are not influenced by the (finite) size of the
Fourier basis we work with. We usually used a Fourier basis of 2!7 unperturbed
eigenstates, which proved to give reliable results for time series up to 3-10° kicks, by
taking initial states of various shapes initially localized around the zero-component
of momentum.

The dynamical information we get from each run amounts to the autocorrelation
function {(1/)o|l7}: k%o)} and the probability distribution over unperturbed eigen-

. 2
states py, (k) = |(¢k|UE K'/’0>| . From this distribution we can reconstruct time
behavior for different moments (we always have ), pm(k) - k = 0)

og(m) =Y |k|'Pm(k) . (2.4)

k

In particular the spreading of the wave packet is governed by the variance o3(m).
In the case of the kicked rotator?® o3(m) is asymptotically bounded, in agreement
with the fact that this model should be characterized by a pure point spectrum.®
This is just one of the remarkable connections between dynamical properties and
spectral analysis, an argument we already mentioned and that will be commented
upon in later sections. It also plays a role in the discussion of correlations: in this
respect the quantity we will investigate will be the integrated, or time-averaged,
correlation function

3

Cine(m) = = 3 | (ol vl - (25)

1
m

a
1]

0

This quantity is directly linked to the spectral measure, as the autocorrelation
function is the Fourier transform of the latter

N 1 ]
C(m) = (1/)0 lUIli,K I/)o) = [) dl"/'o(z) e~ 2xizk
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In particular a rigorous criterion for the existence of a pure point component of
the spectral measure is the convergence of (2.5) to a non-zero limit as m — oo.
In the case of purely continuous spectrum a power-law behavior is expected for
singular continuous or recurrent absolutely continuous spectrum,!® and moreover
the exponent § ruling this decay (Cini(m) ~ m~?) should coincide with the correla-
tion dimension of the fractal measure.? We add as a remark that different possible
decays of autocorrelation functions have been observed in a simple quasiperiodic
system.0

3. Scaling Analysis of the Spectrum and the Thermodynamic
Formalism

We have already pointed out that a careful consideration of the spectrum is of
outmost importance in this context, and was pioneered by Kohmoto and Tang!!
in the analysis of Harper’s equation. Before reviewing the version of the thermo-
dynamic formalism we will employ in the following, a comment is in order. We
will mainly use a purely “metric” approach to the limiting spectrum, that is we
will not take into account the fact that, once we select an initial wave packet a
spectral measure is determined on the spectrum itself. This is dictated by the
hierarchical approach we will put forward, and prevents a quantitative compari-
son between spectral indices and dynamical exponents.*! A multifractal analysis of
the spectral measure requires different techniques, which are presently under active
investigation .42

The main idea underlying the Kohmoto-Tang approach is to build up a sequence
of rational (p,/¢n) approximations to the incommensurability parameter £/27. In
particular we consider /27 with good diophantine properties (typically correspond-
ing to quadratic irrationals),*® the sequence p,/g, being determined by successive
truncations of the continued fraction expansion of /i/2x. This represents an optimal
choice of rational approximations,** with exponentially increasing g, (for quadratic
irrationals), g, ~ a”. To each p,/g, there corresponds a periodic system, whose
spectrum consists of ¢, bands whose length we denote by w;(y), which we can cal-
culate by diagonalizing (2.3) for all values of the Bloch phase a (see Fig. 1). This
procedure can be viewed like a sequence of more and more refined coverings of the
spectrum, whose scaling properties are then studied in the framework of the ther-
modynamic formalism*®: we will now recall the introduction of the key quantities,
following the notation in Ref. 46.

At each level n of the hierarchical sequence of coverings (win)i(n) =1, ..., ¢a)
one can associate the “partition sum”

an
Za(t) = Zl Wiiny (3.1)
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Fig. 1. Quasienergy eigenvalues as a function of the Bloch phase a (K = L = 5 i = 2x - 2/15).

where the weighting parameter 7 (formally analogous to an inverse temperature) is
allowed to vary over the whole real axis. The role of r is to probe different sizes
of the covering intervals: as 7 — oo the sum (which will diverge) is dominated by
the thinnest intervals, while at the opposite limit the behavior is dominated by the
fattest Wi(n). The relevance of (3.1) in accounting for scaling properties is easily
appreciated if one recalls that the critical value of 7, 7. such that

Zp(t) 2 0(n—>00) 7< 71

Zn(T) 2 00(Nn—>00) T>T

determines the Hausdorff dimension*” of the set (Dy = —7¢). The scaling properties
will be encoded in the free energy g(r), defined in the thermodynamic limit

g(r) = lim go(r)

where finite size approximations are determined by

N

Am=¢*> (3.2)
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g(7) is a monotonically increasing function of 7, and its zero determines the Haus-
dorff dimension g(—Dy) = 0, while it is easy to check that g(0) = 1. Thus for a
homogeneous fractal set (like the usual middle-third Cantor set) g(7) is a straight
line with slope Dg'. In general the first derivative of g(7) will span the whole set
of scales characterizing the set. If we define scaling exponents {#i(n)} by

log Wi(n)

log gn (3.3)

Bi(n) = —
and rewrite ]
Zn(T) - Z q;l‘i(n)
i=1
it is easy to see that

T pignyan ™"
2'(]-) q::.‘(n)‘r

so that u(r) gives the scaling exponent dominating the partition sum for weighting
factor 7. A useful function accounting for the distribution of scaling exponents is
given by the scaling spectrum s(u), which is defined once the sum (3.1) is reordered
by increasing length size ‘

g'(r) = p(r) = lim

“m.l
)= lim () Zar)= [ dugrtu (34

Hmin

where q,‘.“(" )d;z gives the number of coverings (at the nth step of the hierarchical
procedure) whose scaling exponent is within g and u + du. The scaling spectrum
8(p) is a highly irregular function of y for finite n: in practice one evaluates g, ()
and replaces s(u) by its convex envelope S(u), evaluated in the thermodynamic
limit saddle point evaluation of (3.4).

' 2w log ¢ /2
g"(r) = R =LA (sn(Tl')‘i'"'m
o C(n) [ E) o
where Ji(7) is the solution of the extremum condition

dSn(7)
dp

B

The distinction between the scaling spectrum and its convex envelope is a crucial
tool in diagnosing phase transitions (a concavity in s(u) signals a first order phase
transition).%64® The inverse function (¢) gives the spectrum of generalized dimen-
sions Dy (Halsey et al. in Refs. 45 and 49), through the relation r(q) = (¢ — 1) D,.
Again we remark that the only generalized dimension of the spectral measure co-
inciding with the set we calculate along the former prescription is the Hausdorff
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dimension, which is the only one which is insensitive to the choice of probability
measure attached upon the set.

In terms of this formalism the results obtained for Harper’s equation by Kohmoto
and Tang!! (in full agreement with the discussion in terms of duality properties®)
may be summarized as follows. In the localization regime no scaling behavior is
observed, as bands shrink faster than exponentially (we remark that this is also
true for the kicked rotator®®). In the extended regime the scaling spectrum col-
lapses to two points (s = 1 for p = 1, and s = 0 for u = 2), the first giving the
indication of an absolutely continuous spectrum, while the other is a remnant of
Van Hove singularities. The critical case is characterized by a non-trivial scaling
spectrum, with Dy = 0.5 and scaling exponents strictly larger than one: this should
correspond to a purely singular continuous spectrum. Single scaling exponents have
been thoroughly studied for a number of other tight binding models,'? while, as we
will illustrate in the following, features of the scaling spectrum indicating mixed
spectra were commented upon in Ref. 32. The extended case analysis thus provides
a simple example of a phase transition®': we shall see that the kicked Harper model
will provide examples of subtler phase transitions, similar, in a sense, to the one
that characterizes the structure of Hénon’s attractor.52

4. Behavior Along the Critical Line

The first parameter region we investigated3® is the critical line K = L. We con-
sidered incommensurability parameter i/2x of the form 1/(m + pgm), in order to
vary the parameter v = K/ either by changing K or &, but leaving the number
theoretic properties of the modulation unaltered. The first result we get (in agree-
ment with Refs. 24 and 28) is that the spreading of the wave packet is unbounded,
and well-described, after an initial transient, by a law of the form o3(m) ~ mX. In
Refs. 15 and 16 a general relation was proposed, of the form xy = 2Dy, moreover!3:28
for either kicked or unkicked Harper Dy was conjectured to be 1/2. While for pa-
rameters values approaching the Harper’s equation limit (K/A — 0) we found this
to hold, for higher values of K/k we discovered examples of anomalous (enhanced)
diffusion: for instance (see Fig. 2) for K = L = 5 and h/2r = (18 + pgm)~! the
growth exponent x takes the value 1.42. This strongly suggests that the kicked
Harper model is characterized by a richer behavior than the Harper model, and at
the same time prompts for a more detailed investigation of the proposed relation
between the diffusion exponent and Hausdorff dimension of the spectrum. This
quantity is calculated following the hierarchical approach illustrated in the former
section, for a selection of parameters’ values. Once the band widths {w,-(,.)} have
been calculated for a subsequence of hierarchical indices n (each corresponding to
a periodic approximation /27 = p,/q,), nth order estimates of Dy are calculated
by solving

n
; w..l()":) =1.
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The {D,.} sequence is generally found to converge geometrically (see Fig. 3), which
allows one to estimate Dy within a small percentage. While generally Dy tends to
increase for higher values of K/h we do not have evidence of any scaling property
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Fig. 4. Hausdorff dimension estimates (0 A = 27/(6 + pgm), ® & = 27/(18 + pgum), A ki =
2r/(1+ paMm), A k= 27/(3+ pgM)). X indicates the Harper limit. A few error bars are reported.

in terms of this parameter (see Fig. 4). Within the set of parameters investigated
we observed discrepancies between 2Dy and the diffusion exponent x (see Fig. 5),
which in these cases gets a smaller value than 2Dy. This is in agreement with
recent theoretical bounds.®® While Hausdorff dimension calculations exhibit good
convergence, this does not hold for the whole range of thermodynamical functions:
in particular it seems that a maximal scaling index is not defined. This can be
appreciated by plotting finite order estimates for the mean scaling exponent yu(r)
(Fig. 6), and it is due to bandwidths shrinking faster than exponentially. On the
basis of tight binding!'!? and kicked rotator®® models this may be interpreted as
an effect of a portion of point component in the spectrum: its occurrence seems
typical (see Table 1). As we anticipated this somehow resembles what one observes
in the thermodynamic analysis of the Hénon strange attractor,3? where a phase is
dominated by longer and longer orbits which come closer and closer to turnbacks,
making only averages dominated by the “hyperbolic” phase meaningful. In our
case the stable phase seems to be associated with the negative T region, and this
confirms the reliability of Hausdorff dimension calculations. The unstable phase
seems dominated by very few thin intervals, as one can see by a comparison of
the scaling spectrum s,(u) (obtained by statistics on different {wi(n)} sets) and
its convex envelope S,(u) (coming from a Legendre transform of the free energy):
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Table 1. Approximate maximum scaling index for a choice of symmetric parameter values ((*)
h=2n/(64 pam), (**) h = 27/(18 + pgm))-

K=L=5(*%) K=L=5(% K=L=20(*%

Pn/CIn Hmax Pn/qn Hmax Pn/q'n Hmax

1/20 155 3/23 2.22 3/23 112
2/39  1.89 5/38  2.42 5/38  1.26
3/59  2.04 8/61  2.67 8/61  1.42

5/98  2.00 13/99  2.88 13/99  1.48
8/157 213 21/160 2.78  21/160  1.58
13/255  2.22  34/259 285  34/259 195
21/412  2.58  55/419 320  55/419  2.22

1.2

1.0
LIRS

s{mu)
0.4 0.6 0.8
T T

0.2

Fig. 7. s(u) (dashed line) and its convex envelope (full line) for K = L = 5 /27 = 21/412.

see Fig. 7. Another dynamical quantity that has been considered in the problem of
dynamical localization is the probability distribution over unperturbed states?5:54:
in that case asymptotically one observes an exponentially localized distribution.
In Ref. 24 it was pointed out that this distribution function does not possess a
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Fig. 8. Probability distribution over unperturbed states pe(m) (K = L = 5 h = 27/(18 + pgMm),
solid line: ¢ = 20000, dashed line: ¢t = 40000).

trivial structure (for instance it is not satisfactorily fitted by a Gaussian distribu-
tion): we indeed observed a much structured p,(k) (see Fig. 8, which refers to
the above-mentioned parameters’ choice exhibiting enhanced anomalous diffusion).
The distribution functions refer to values of the kick number in which the quantum
regime has set in since long: another problem is if also for the kicked Harper model
a break time is present, up to which the quantum evolution mimics classical dy-
namics. The existence of an initial transient exhibiting these features was noted in
Refs. 24 and 28: in this last paper it was claimed that tp ~ A~2 when the system
is classically chaotic. In Fig. 9 the quantum evolution is confronted with classical
(normal) diffusion: a coincidence time is clearly present, though by examining a va-
riety of parameters choice we do not have clear evidence for a scaling law exhibited
by tp.

5. Dynamical Exponents and the Phase Diagram

First of all we recall that analogy with unkicked Harper would imply localization (in
momentum) for L < K, and extended states when K > L. We already pointed out
that examples were mentioned at variance with such a picture?*2” and an extended
analysis of the global phase diagram®! confirmed that indeed the situation is rather
different. The first attempt was to calculate the momentum growth exponent o
from the dynamical evolution of a wavepacket peaked around some initial angular
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where the temporal mean is taken to average out the fluctuations. As illustrated
in Fig. 10, a large plethora of exponents ranging from 0 to 2 was found (0 simply
means a localized dynamics). Each exponent was obtained by analyzing dynamical
time series from 3 - 10* up to 10 kicks. We would like to emphasize that such a
measure can produce misleading results if one does not look on the overall behavior.
To this end very interesting information can be obtained from the study of a(T) at
fixed intermediate times T'. In fact, in most cases a was found either to converge
or to oscillate around some limiting value.

From the same picture it is also clear that no simple transition from localized
to extended states can be found (the choice of K/L as z-label does not mean any
scaling relation). Nevertheless from this information we can pictorially represent the
structure of a phase diagram (see for instance Fig. 11). We would like to point out
that the transition line which has been drawn only connects pairs in the parameter
space and is not meant to represent a smooth boundary between localized and
extended dynamics. Let us then analyze the different regions in the phase plane.

For each fixed L, extremely low values of K indeed correspond to localization
(region I), but a transition to unbounded spreading is observed for K > K*(L)
well below the critical line (K = L) (we call II the region bounded by the critical
line and the threshold line (K = K*(L)). In region II we found evidence for
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Fig. 10. Dynamical exponent o versus K/L for some fixed L values. Open circles: L = 3;
open squares: L = 4; full circles: L = 5; full squares: L = 6, full triangles: L = 7. Here
E=2n/(6+ pam).

Fig. 11. Phase diagram of the kicked Harper model (ki = 27/(6 + paMm))-
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the coexistence of pure point and absolutely continuous spectrum (as we shall see
this comes from analysis of both correlation decay and thermodynamics). The re-
maining part of the phase diagram is determined by duality (we already commented
upon the self-dual critical line K = L): region I* presents a purely continuous spec-
trum, while in IT* we still have evidences of a mixed spectrum (* means region
obtained as image according to the transformation K — L I — K ). We remark
again that we do not have enough information on very small scales to check whether
the threshold line is smooth or not.

To illustrate the behavior in different regions we first consider parameter pairs
belonging to regions IT and IT*. We first notice (Fig. 12) that unbounded spreading
is evident in both cases (with an exponent extremely near to y = 2, i.e. ballistic
propagation). We also checked, for a set of other moments, whether the moments’
scaling law shows anomalies®: that is if we put (cfr. (2.4)) o,(m) ~ m*@ we
essentially control whether ¢(g) is given by a straight line (whose slope is x/2)
or some sort of crossover between different regimes determines a non trivial form
of ¢(g). Within numerical errors we do not have evidence (in these cases as well
in all other cases examined) of deviations from a straight line behavior of #(q).
Correspondingly to unbounded propagation we also observe an expanding form for
Pm(k) (see Fig. 13, notice that near the origin still a “localization” peak persists),
suggesting that the unperturbed basis is being filled linearly in time. These features
indicate the presence in the spectrum of a continuous component (we remark that
rigorously this is guaranteed only if the spreading is ballistic5¢).

Fig. 12. o2(t) vs. tfor K = 4L = 7 (full line) (Il) and K = 7 L = 4 (dashed line) (I1*):
k= 27/(6 + pgm). Units along the vertical axis are arbitrary.
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Fig. 13. Probability distribution over unperturbed states p;(m) (K =4 L =5 h = 2n/(6 + pgMm)
(IT); dotted line: ¢t = 8000, dashed line: ¢ = 14000, full line: ¢ = 20000). In the conjugate region
pe(m) exhibits the same features.

Conversely the behavior of correlation functions (see Fig. 14) strongly suggests
the presence of a pure point component in the spectrum, as Cj,¢(m) does not seem
to tend to zero (but to a finite limit) in the m — oo limit. The convergence to the
asymptotic limit seems ruled by a power-law, thus this limit is not easily estimated®?
without further information, (see Ref. 42). This is consistent with thermodynamic
analysis of the spectrum: in Table 2 we report on gmin (which seems well defined)
and pmax calculations for periodic approximations: the {fmax} sequence reveals
the presence of bandwidths shrinking faster than exponentially, which, according to
the arguments in the former sections, is the thermodynamic signal for a pure point
component. The coexistence of two different contributions to the thermodynamic
functions is also evident from evaluation of different orders of the scaling spectrum
(Fig. 15).

A completely different situation appears when we consider dual parameter pairs
in region I and I*. As regards spreading of the wave packet they exhibit, respectively,
dynamical localization and (ballistic) unbounded spreading (see Fig. 16). This
behavior is as usually reflected in snapshot pictures of probability distributions
over unperturbed states: they indicate dynamical localization in region I and linear
in time spreading over the unperturbed basis in region I* (Fig. 17). This indicates
that in I we have pure point spectrum, while in the dual conjugate region I* the
spectrum is entirely continuous. This is confirmed by the behavior of Cine(m),
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Fig. 14. log Cin¢(t) vs. logt (upper points: K = 4L =7k = 27 /(6 + pgm) (1), lower points:
K=7L=4hk=2n/(6+ pgm) (I1*)).

Table 2. Approximate minimum and maximum scaling indices some rational approximation to
(A=2n/(6+pgm)) for K=7L =4.

Pn/?n Hmin Hmax

2/15 113 1.86
5/38 1.06  2.55
13/99 102 4.20
34/259 102 5.5

which in region I* decays to zero, according to a power-law (see Fig. 18). We have
to remark that the decay exponent in this region does not seem to be universal, in
contrast to what claimed in.?® Pure point character of the spectrum is confirmed
by thermodynamic analysis: while in region I lack of good scaling is exhibited by
all scaling spectrum, in region I* we observe good convergence, without any high u
unstable phase (see Fig. 19 and Table 3).

bThe relation § = D, (Ref. 29) seems, however, satisfied.42:53
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Table 3. Approximate minimum and maximum scaling indices some rational approximation to
(h=2r/(6+pgm)) for K=4L=2.

Pn/‘ln Hmin Hmax

2/15 .91 1.87
3/23 .90 1.94
5/38 .90 1.91

8/61 92 1.92
13/99 92 1.93

21/160 .93 1.94
34/259 .93 1.95
55/419 .94 1.95

6. Exact Results on the Kicked Harper Model

The dynamical behavior of any quantum model is strictly connected with its spectral
properties. It is well-known for example that the presence of a continuous compo-
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nent in the spectrum leads to an unbounded propagation. A more involved situation
is connected with the quantum diffusive motion: in fact it has been proved!® that
such a situation can only be accomplished by the presence of a singular spectrum.

The presence of ballistic propagation was found in closely-related kicked systems,
e.g. the kicked rotator,*® the kicked harmonic oscillator,5? and is usually related with
the rationality of the relevant frequency ratios of the system. For this reason this
situation is usually called quantum resonance. Since the rationality is often related
with some periodicity of the system, the same result can also be stated as the
invariance of the evolution operator under the action of some group of translations
in the relevant space. In this case, in fact, due to the Bloch theorem, the presence
of a continuous component in the spectrum is insured together with the unbounded
diffusion of quantum states. A key to the theoretical analysis of the KH model is
obtained by investigating the same model “on the line”, i.e. taking the variable 8
in Eq. (2.1) on the whole line rather in (0, 27). The quantum model is in this case
described by the propagator

U(L, K) = exp (—i%F(ﬁ)) exp (—i%F(:ﬁ)) =U'(-K, -L) (6.1)

where F is a 27-periodic, real even function. In the KH case F(z) = cos(z) but
the results of this section hold for a larger class of potentials.3* How is the model
“on the line” related to the conventional model “on the circle”? In the classical
case the phase space is the (z, p) plane in the former case, and the cylinder 4, p)
in the latter: orbits on the cylinder are trivially obtained by folding orbits in the
plane. In the quantum case, an equivalent to classical folding is provided by Bloch’s
theorem. Indeed, due to the periodicity of F, any wavefunction (z) can be written
as a superposition of 2x-periodic functions ¥, (z)

1
¥(z)=C / dne "y, (z) (6.2)
0
where C' is a normalizing constant and t,(z) is the same function at fixed quasi-
momentum 7). From the mathematical standpoint the decomposition (6.2) defines

a fibration of the Hilbert space. Then the action of the evolution operator over a
generic wavefunction can be represented as

1
A(L, K)p(z) = C / dne™= i, (L, K )by (z) (6.3)
0
where the “fibre map” is given by
. L . K
U,(L, K) = exp (—1-EF(h(n + 17))) exp (—sz(:c))

and i = —i3/86.
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The operators i, (L, K) at different 7 define different (and non-equivalent) quan-
tizations of the KH model “on the circle”, and their spectral properties are strictly
related with those of the operator (6.1).34

A quite similar Bloch decomposition can be obtained by exploiting the p-
periodicity instead of the z-one. A new family of fibre maps are obtained in this
way. The duality property of the KH model can be simply stated as the spectral
equivalence of z-fibre maps L?,,(L, K) with p-fibre maps I],,(K , L). On such grounds
the following theorem can be proved:

Theorem
For almost all L € R one of the following properties is true:

i) l],,(L, 1) has a non-empty continuous spectrum for almost all 7;
il) U, (1, L) has a non-empty continuous spectrum for almost all ;
iii) both U, (L, 1) and U, (1, L) have a non-empty continuous spectrum for almost
all 7.

In particular l?,,(l, 1) is found to have a non-empty continuous spectrum for almost
all 7.

In Ref. 34 this theorem (Theorem 2) was stated for almost all L < 0 (note the
different signs in the definition of the evolution operator); nevertheless it can be
casily generalized to L > 0.

We stress here that this theorem holds for a generic choice of the potential in
a class of periodic analytic functions (for the explicit construction of such a set
see the Appendix 1 of Ref. 34). It is then clear that such a theorem provides an
interpretation, even if partial, of the phase diagram introduced in Sec. 5.

The apparently strange behavior observed in Ref. 27 namely a ballistic propa-
gation for two conjugate pairs of parameters (K, L), (L, K) was then numerically
analyzed by using the full operator (6.1). An initial coherent state has been de-
composed in N, = 128 fibres, each of one was iterated, under the fibre map, for
t = 400 kicks. All these fibres were then put together to reconstruct the state at
time ¢ and the related Husimi function h(q, p, t) = |(z|¥(t))|? z being the coherent
state peaked at ¢ + ip. A phase space portrait of the Husimi function is shown in
Figs. 20, 21 and 22. The first two pictures refer to the conjugate pairs of parameters
while, for sake of comparison, we plot in Fig. 22 the Husimi function for K = L
(diffusive propagation). As one can see the ballistic propagation is characterized by
a spread along orthogonal chimneys (in such a way that Ap? ~ A¢? ~ t?). This
explains why interchanging K with L, namely changing p with ¢ the same behavior
is obtained. In Fig. 22 the spread fills all the phase space with Ap? ~ Ag? ~ t). It
is interesting to remark that these three types of propagation are consistent with a
linear growth of the phase space area, which represents the semiclassical number of
states.
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Fig. 22. The same as Fig. 20 with K = L = 5.

7. Conclusion

We have presented a number of results describing in some detail the behavior of the
kicked Harper model. We have given evidence of its rich phase diagram structure,
which strongly contrasts with either what would be expected on the grounds of the
usual Harper’s equation or with the paradigm of quantum dynamical localization,
which has been one of the guiding principles in the discipline of quantum chaos.
The analysis has been carried through both by dynamical investigations (spreading
of the wave function, decay of tempbral autocorrelation functions) and by means
of the thermodynamic formalism. Obviously the classical map we started from has
peculiarities which make it quite different from the standard map (which is the
classical counterpart of the quantum kicked rotator); we believe here lies the major
problem to be solved, i.e. to understand what features of classical dynamics lead to
quantum localization or diffusion (at least at the semiclassical level).

References

1. P. G. Harper, Proc. Phys. Soc. A68, 874 (1955).

2. J. Bellissard and A. Barelli, J. Phys. I France 3, 471 (1993); J. Bellissard in From Num-
ber Theory to Physics, eds. M. Waldschmidt, P. Moussa, J.-M. Luck and C. Itzykson
(Springer, Berlin, 1992).

3. P. A. Lee, T. M. Rice and P. W. Anderson, Solid State Commun. 14, 703 (1974); P.
Bak, Rep. Progr. Phys. 45, 587 (1982); S. Alexander, Phys. Rev. B27, 1541 (1983);
R. Rammal, T. C. Lubensky and G. Toulouse, Phys. Rev. B27, 2820 (1983); J. B.
Sokoloff, Phys. Rep. 126, 189 (1985).



234 R. Artuso el al.

4. D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs, Phys. Rev. Lett.

®© 1 & on

10.
11.

12.
13.
14.
15.
16.

17.
18.
19.

20.

21.
22.
23.

24.
25.

26.

27.
28.
29.
30.
31.

32.

33.
34.

49, 405 (1982); D. J. Thouless, in Number Theory and Physics, eds. J.-M. Luck, P.
Moussa and M. Waldschmidt (Springer, Berlin, 1990).

. M. Ya. Azbel, JETP 19, 634 (1964).
- S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980).
. D. J. Thouless, J. Phys. C5, 77 (1972).

L. Pastur and A. Figotin, Spectra of Random and Quasiperiodic Operators, (Springer,
Berlin, 1992).

H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrédinger Operators (Springer,
Berlin, 1987).

J. Avron and B. Simon, J. Funct. Anal. 43, 1 (1981).

M. Kohmoto, Phys. Rev. Lett. 51 1198 (1983) C. Tang and M. Kohmoto, Phys. Rev.
B34, 2041 (1986).

H. Hiramoto and M. Kohmoto, Int J. Mod. Phys. B6, 281 (1992).

H. Hiramoto and S. Abe, J. Phys. Soc. Jap. 57, 1365 (1988).

H. Hiramoto and S. Abe, J. Phys. Soc. Jap. 57, 230 (1988).

T. Geisel, R. Ketzmerick and G. Petschel, Phys. Rev. Lett. 66, 1651 (1991).

T. Geisel, R. Ketzmerick and G. Petschel, in Quantum Chaos — Quantum Measure-
ment, eds. P. Cvitanovi¢, I. C. Percival and A. Wirzba (Kluwer, Dordrecht, 1992).
K. Machida and M. Fujita, Phys. Rev. B34, 7367 (1986).

1. Guarneri, Europhys.Lett. 10, 95 (1989); 21, 729 (1993).

J.-M. Combes, “Connections between quantum dynamics and spectral properties of
time-evolution operators”, Marseille preprint, 1992.

R. B. Stinchcombe and S. C. Bell, J. Phys. A20, L739 (1987); S. C. Bell and R. B.
Stinchcombe, J. Phys. A22, 717 (1989).

D. R. Hofstadter, Phys. Rev. B14, 2239 (1976).

R. A. Pasmanter, Phys. Rev. A42, 3622 (1990).

P. Leboeuf, J. Kurchan, M. Feingold and D. P. Arovas, Phys. Rev. Lett. 85, 3076
(1990); Chaos 2, 125 (1992).

R. Lima and D. Shepelyansky, Phys. Rev. Lett. 67, 1377 (1991).

G. Casati, B. V. Chirikov, J. Ford and F. M. Izrailev, in Stochastic Behavior in Clas-
sical and Quantum Hamiltonian Systems, eds. G. Casati and J. Ford, Lecture Notes
in Physics 93 (Springer, Berlin, 1979); F. M. Izrailev, Phys. Rep. 196, 299 (1990); G.
Casati and L. Molinari, Progr. Theor. Phys. Suppl. 98, 287 (1989); B. V. Chirikov,
in Chaos and Quantum Physics, eds. M.-J. Giannoni, A. Voros and J. Zinn-Justin
(North-Holland, Amsterdam, 1991).

G. M. Zaslavsky, M. Yu. Zakharov, R. Z. Sagdeev, D. A. Usikov and A. A. Chernikov,
JETP Lett. 44, 451 (1986); V. V. Afanasiev, A. A. Chernikov, R. Z. Sagdeev and G.
M. Zaslavsky, Phys. Lett. A144, 229 (1990); R. Z. Sagdeev, D. A. Usikov and G. M.
Zaslavsky, Nonlinear Physics (Harwood, Chur, 1988).

D. Shepelyansky, in Quantum Chaos — Theory and Ezperiment (see Ref. 17).

T. Geisel, R. Ketzmerick and G. Petschel, Phys. Rev. Lett. 67, 3635 (1991).

R. Ketzmerick, G. Petschel and T. Geisel, Phys. Rev. Lett. 69, 695 (1992).

R. Artuso, G. Casati and D. Shepelyansky, Phys. Rev. Lett. 68, 3826 (1992).

R. Artuso, F. Borgonovi, I. Guarneri, L. Rebuzzini and G. Casatl, Phys. Rev. Lett.
69, 3302 (1992).

R. Artuso and G. Casati, “Thermodynamic formalism of quasienergy spectra”, in
Proceedings of the Workshop “From Classical to Quantum Chaos”, to be published.
J. Bellissard and A. Barelli, in Quantum Chaos - Quantum Measurement (see Ref. 17).
1. Guarneri and F. Borgonovi, J. Phys. A26, 119 (1993).



35
36
37

38.
39.

40.
41.
42.

43.

44.
45.

46.
47.
48,

49,
50.

51.
52.
53.

54,
55.

56.

57.

58.
59.

Fractal and Dynamical Properties of the Kicked Harper Model 235

Wei and D. P. Arovas, Phys. Lett. A158, 469 (1991).

C. Kimball, V. A. Singh and M. D’Souza, Phys. Rev. A45, 7065 (1992).

M. Greene, J. Math. Phys. 20, 1183 (1979); R. S. MacKay, Physica D7, 283 (1983);
R. S. MacKay, J. D. Meiss and I. C. Percival, Physica D13, 55 (1984).

S.-J. Chang and K.-J. Shi, Phys. Rev. A34, 7 (1986).

J. Bellissard, in Trends and Developments in the Eighties, eds. S. Albeverio and Ph.
Blanchard (World Scientific, Singapore, 1985).

B. Sutherland, Phys. Rev. Lett. 57, 770 (1986).

T. Dittrich and U. Smilansky, Nonlinearity 4, 59; 85 (1991).

D. Belluzzo, Thesis (Universiti degli Studi di Milano, 1993); R. Artuso, D. Belluzzo
and G. Casati, “ Thermodynamic analysis of the spectral measure of kicked quantum
systems”, preprint, Universitd di Milano, Sede di Como, 1993; the approach was stim-
ulated by some considerations in M. Samuelides, R. Fleckinger, L. Touzillier and J.
Bellissard, Europhys. Lett. 1, 203 (1986).

J. W. S. Cassels, An Introduction to Diophantine Approzimation {Cambridge
Univ. Press, Cambridge, 1957); 1. Niven, Irrational Numbers (Wiley, New York, 1963).
A.Y. Khinchin, Continued Fractions, (Univ. of Chicago Press, Chicago, 1964).

R. Bowen, “Equilibrium states and the ergodic theory of Anosov diffeomorphism”,
Lect. Notes in Math. 470 (Springer, Berlin, 1975); D. Ruelle, Thermodynamic For-
malism (Addison-Wesley, Reading, 1978); E. B. Vul, Ya. G. Sinai and K. M. Khanin,
Russ. Math. Surv. 39, 1 (1984); R. Benzi, G. Paladin, G. Parisi and A. Vulpiani, J.
Phys. A17, 3521 (1984); T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and
B. I. Shraiman, Phys. Rev. A107, 1141 (1986); M. J. Feigenbaum, J. Stat. Phys. 48,
919; 925 (1987).

R. Artuso, P. Cvitanovié and B. G. Kenny, Phys. Rev. A39, 268 (1989).

J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1980) and references therein.
P. Cvitanovi¢, in Non-linear Evolution and Chaotic Phenomena, eds. P. Zweifel, G.
Gallavotti and M. Anile (Plenum, New York, 1987).

H. G. E. Hentschel and L. Procaccia, Physica D8, 435 (1983).

B. Dorizzi, B. Grammaticos and Y. Pomeau, J. Stat. Phys. 37, 93 (1984); D. Shep-
elyansky, Physica D28, 103 (1987).

M. Kohmoto, J. Phys. Soc. Jap. 60, 2876 (1991).

R. Artuso, E. Aurell and P. Cvitanovié, Nonlinearity 3, 361 (1990).

1. Guarneri and G. Mantica, “On the asymptotic properties of quantum dynamics in
the presence of a fractal spectrum”, preprint (Universitd di Milano, Sede di Como,
1993).

B. V. Chirikov, F. M. Izrailev and D. L. Shepelyansky, Sov. Sci. Rev. C2, 209 (1981).
T. Geisel and J. Nierwetberg, Z. Phys. B56, 59 (1984); I. S. Aranson, M. I. Rabinovich
and L. S. Tsimring, Phys. Lett. A125, 523 (1990); L. S. Tsimring, Physica D63, 41
(1993).

B. Simon, Comm. Math. Phys. 134, 209 (1990).

D. Levin, J. Comput. Math. Sect. B3, 371 (1973); N. Osada, SIAM J. Numer. Anal.
27, 178 (1990); R. Artuso, J. Phys. A21, L923 (1988).

F. Izrailev and D. Shepelyansky, Theor. Mat. Fiz., 43, 417 (1980).

F. Borgonovi and L. Rebuzzini, “Translational invariance in the kicked harmonic oscil-
lator”, preprint FNT/T-92/19 (Universita di Pavia, 1992), submitted to Nonlinearity.

. D.
R
A



