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Analysis of the quantum kicked harmonic oscillator in the condition of resonance (w,T=2m/q) is ap-
proached in this paper. We extend the results found in Berman, Rubaev, and Zaslavsky [Nonlinearity 4,
543 (1991)] by relating the translational invariance of the gth power of the quasienergy operator with
the spreading of the mean energy in time. These results are then confirmed by numerical simulations.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

In the last decade a lot of work has been done on the
classical harmonic kicked oscillator [1], and more recent-
ly, much attention has been devoted to its quantum ver-
sion [2,3]. This system has an unexpected feature: the
phase space is spanned by a stochastic web for certain
values of the ratio between the frequency of the oscillator
(wy) and the frequency of the kicks (w;), so that a slow
diffusion is possible for any value (however small) of the
perturbation strength. This is a kind of Arnol’d diffusion
in a system having 11 degrees of freedom. At a more de-
tailed level, it is possible to show that the web exists only
if the two frequencies are in a rational ratio and it can
have both translational and rotational symmetry (crystal)
for wy/w,=1/q, g€q,={1,2,3,4,6}. In all the other ra-
tional cases it displays so-called quasisymmetry (quasi-
crystal). We remind the reader that the values of g be-
longing to g. represent the way to fill completely the
two-dimensional plane with regular polygons having ¢
sides, even if ¢ = 1,2 are degenerate cases (g =3 are trian-
gles; g =4 are squares; g =6 are hexagons).

As a consequence [1] of the connected web, the classi-
cal model has a diffusive behavior both in the crystal and
in the quasicrystal case, even for small values of the per-
turbation strength (for any small value in the crystal
case). However, when the frequency of free motion and
that of kick have an irrational ratio, different features are
present, which can be summarized as follows [1]: (a) a
threshold in the perturbation strength k. (E) exists for
each initial value of energy, or (b) a threshold in the ini-
tial value of energy E_. (k) exists for each perturbation
strength such that for k >k, or E > E_,, the growth of
the unperturbed average energy is possible in a
diffusivelike way.

Typical pictures of the phase space surfaces of section
show invariant tori close to the origin [1]; thus conditions
(a) and (b) merely state that we need to increase the
separatrix widths or to avoid the disconnected integrable
region in order to have unbounded growth of the average
energy.

The quantum version of the kicked harmonic oscillator

1063-651X/95/52(3)/2302(8)/$06.00 52

(QKHO) was analyzed in [2] where a suitable and quite
involved operator that commutes with the evolution
operator itself was found in resonance condition. In this
way the quasienergy eigenfunctions have an additional
symmetry, which becomes translational invariance for
q €q.. Therefore the possibility of extended states has
been suggested, giving an unbounded growth of the aver-
age energy in time. In this paper we make this point
more precise by deriving the classical resonance condi-
tion for the crystal case as the most general property of
commutation of the gth power of the quasienergy opera-
tor with the translation operators in the phase plane (the
Weyl operators).

Our results can be summarized as follows: we found
analytically that the g power of the evolution operator for
the resonant case (g € q,) always commutes with a one or
two parameter group of commuting translation opera-
tors. Numerically these behaviors show a mean energy
spreading in time, respectively, in a diffusive or ballistic
way. A suggestive stationary phase argument makes this
point clearer, giving an intuitive, although not rigorous,
interpretation of the phenomenon.

What happens if the system has no translational invari-
ance? One may argue that the traditional localization
picture takes place [4—6] and the energy growth will stop
after a break time 75. This is really what our computa-
tions show, for example, for w,/w, irrational or
wo/w,=1/q with g € q.. These results were also found in
[3] for wy/w;=1, together with a transition from local-
ized to delocalized states for k >k,. A check of this
transition is outside the reliability of our computer pro-
gram. In any case, there is no contradiction with our pic-
ture: results from [3] only mean that some other mecha-
nism acts for large k, which is not connected with
translational properties.

The paper is organized as follows: in Sec. II we remind
the reader of a few fundamental facts about the classical
model; in Sec. III we prove that the g power of the evolu-
tion operator commutes with the translation operators in
the phase space if and only if ¢ Eq,; then we study the
commutation properties of the translation operators
themselves and find the conditions under which we may
have a one or two parameter groups of independent
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translation in the phase space. Section IV is devoted to
numerical calculations that confirm our previous results.

II. CLASSICAL RESULTS

We review some classical results from [2]. The classi-
cal Hamiltonian

2
H= 22— + %mozxz—kST(t) cosx
describes a harmonic oscillator kicked with a potential
k cosx, 81 being the usual periodic 8 function and T the
period of the kicks.
From the Hamiltonian (2.1) the map over a period T
follows:

2.1

. k . .
xX= £ sina — — sinx sina+x cosa ,
@q g
(2.2)

P =p cosa—xw,sina—k sinx cosa ,

where a=wyT. This map can be written by using the
variables u =p /w, and v = —x, so that the classical pa-
rameters are ko=k /w, and a=w,T. Consequently, the
classical mean energy at time ¢ is given by

E(0)=(p2+wix?),/2=wi{v?+u?),/2 . (2.3)

If a resonance condition is assumed (a=2w/q, q €EZ),
then for any k value the phase plane is filled with a con-
nected stochastic web. Inside the web the motion is
chaotic and diffusion is possible even for small k. This
web has both translational and rotational symmetry for
q€q.={1,2,3,4,6}.

Under the resonance condition and for small perturba-
tion, the Hamiltonian can be written as [1]

H=H,+V,,
where
q .
Hq=—i—k-2 cos(R -€;) ,
q @ ;=
(2.4)
2 k g — i 2mm |t
V,=—=—T cos(R-€;) cos —_—
! q “’Oj§1 ! m2=1 [ q T
and
fiE(v,u) ,
€= cos—zij sin—%zj j=1 q
J q ’ q ’ b b

This form will be useful later.

III. QUANTUM APPROACH

The Floquet operator (the evolution operator over a
period 7) is given by (#i=1)
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i, T
’

cuT(k)=eikcos(i’)e_' (3.1)

where H,=p?/2+w»3x?/2 is the harmonic oscillator
Hamiltonian (“free Hamiltonian”). Let us introduce the
translation operators in the phase space:

T,

sr

Zei(si>+rﬁ) , (3.2)

expressing the translation of a quantity » along the x axis
and s along the p axis (r and s are two real numbers), and

the usual creator and annihilation operators, @,a ',
a=v"1 20y 0 +ip) , 33
a'=1v1/204we% —ip) , .

with the commutation rule [a,aT]= 1. In terms of @ and
a*, (3.2) becomes

T, =e® "' =T(z) (3.4)
where
172
W9 is
z={r|— —— (3.5)
2 \/ @q

and z* is the usual complex conjugate.
p . g . .
By using standard commutation rules it is easy to show
that
i —ifl,T
‘Ts,r(llT(k)z Ts,relk cos(®), Ho
—eikcs RN —ifl,T

. —ifl,T,
=ik cos(x+r), ~Ho Ty (3.6)

where r’ and s’ are given by (a=wyT),

s .
r'=r cosa+— sina ,
)
0 (3.7)

s'=s cosa—wyr sina ,
and

Ty ,=T(z")=T(ze '®) . (3.8)

By applying g times (3.6) we obtain

ik cos(R+ry) —iB,T
e TOT,

— —1
‘Tso,rowg'(k)_e sl,rl‘ll%" (k)

ik cos(R+r;)

—1
— . =qH [e U0 T ., (3.9)
j=0 q’q

where the parameters s;,7; are given by

S
r;=ro cos(ja)+;)g sin(ja) ,
0 (3.10)
s;=sqgcos(ja)—wgrg sin(ja) , j=1,...,q .

Equation (3.9) can also be written as

g—1
‘T(ZO) H [ezk cos(i)cuT(O)]
Jj=0
ik cos(R+r;)

—1 .
=qn [e PUH0)]T(zge M%), (3.11)
j=0
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where z,=ry\/ wy/2+isy/V/ 2w, Therefore the opera-
tors commute if and only if

=2nl;, j=0,...,9—1, (3.12)
ga=2ml , LL,€EZL. (3.13)
[Note that from (3.13) and (3.10) we obtain r,=r, and

5, =50, as we should.] We would like to remark that if
we put / =1 in Eq. (3.13) we recover the classical reso-
nance condition.

By coupling Egs. (3.10), (3.12), and (3.13), we obtain

27j 1

cos———L , hj,m;EZ (3.14a)
m;
So s1n%1———21rwok k;€Z (3.14b)

for j=1,...,(g—1)/2 if ¢q is odd, and

j=1,...,9/2—1 if g is even. Equations (3.14a) are
satisfied if and only if
cos%” €Q. (3.15)

In fact, if cos(27w/q) is irrational, Eq. (3.14a) for j =1
cannot be true. Conversely, suppose that cos(27/g) EQ;
then we have

cos % =2/"1cos/ | == | —j2/ 3cos/ 2 2m
J=3 . .
+L L |2 Peos’ T 2
2 q
j—4 . .
+% 2 2/ "7 cos/ 76 | ==
+ -, (3.16)

which is evidently rational.

On the other side, cos(27/q)EQ if and only if [7]
g€q.,={1,2,3,4,6]. We can then summarize the previ-
ous result as follows: for g Egq, it is possible to find some
ro and s, such that the gth power of the one period evolu-
tion operator does commute with TSo”o' In this case the

eigenstates of %7 are invariant for translations in the
phase space so that they have to be extended.

We would like to stress that (3.15) exactly corresponds
to the invariance of the classical Hamiltonian (2.4) under
translations in both directions in the phase space. Our
result show that the classical phase space invariance is
reflected in the quantum model by a property of the evo-
lution operator over g periods.

As defined in Eq. (3.2), translation operators in phase
space are generally dependent on two parameters. Nev-
ertheless the requirement of independence of different
translations forces one to take into account the commut-
ing group of translations. Imposing the property of com-
mutation, we find a one- or two-parameter group depend-
ing on wy, that is, on #.

The cases ¢ =1 and g =2 are trivial because the evolu-
tion operator becomes e % and —e™* ®% respectively;
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the spectrum is then absolutely continuous, and the ener-
gy (E=p?/2+w3x?/2) grows quadratically in time
(ballistic motion).

The g =4 case is very interesting since Egs. (3.12) and
(3.14b) read ro=2Iym, so =27l g, so that

2l @ +1oP)

‘Tl‘,lo_ N Io,IIEZ . (317)

For arbitrary n,,n, EZ, one has
_ 41r2iw0(n110—n01|)

T, 1y Tryng ™= Tyung Tiy10€ . (3.18)
Then they commute only if

nllo noll=’lo/ll_no/n1—S€Q (3.193)
or

2rwy,=n€L . (3.19b)

Let us mention that since wy=1/4#, this means that
#i=2m/n, namely, a particular kind of rational #/27.
Condition (3.19a) gives VsE€Q fixed, a one-parameter
commuting group

TO=c""" TP (g, (3.202)
while (3.19b) gives a two-parameter group:
T, ="+ nl€Z. (3.20b)

(By a suitable choice of the free variables n,/ it is possible
to assign a group structure such that
nll1 Tnzz nl+n21 +12)
Despite the appearance, the case g =3 is very close to
q =4, since from

2mifwy/V 3 — 1R+ (1) +1,)
7.11,12=e 7”[(0() ! 2 ! 2?] N 11,12€Z 5 (321)
imposing the commutation property, we obtain

Vs=1,/1,€Q fixed, n €Z, the one-parameter group

2minlwy/V3(s — )& +(s +1)p)
Tl =™ P, (3.22a)

and if 4w,/ V3=n €Z, a two-parameter group

—plhr/2¥2mp)
1’12

T, y 1LLEZ. (3.22b)
The case ¢ =6 is analogous to g =3.

In this was we have found that the gth power of the
evolution operator in the “crystal” resonant condition
(g€ {q,}) commutes with a one-parameter group or a
two-parameter group of commuting translational opera-
tors in the phase plane. In the next section we show both
numerically and analytically that these conditions corre-
spond to an algebraic growth of the mean energy in time
with an exponent equal to 1 or 2.

Can we extrapolate from the above conclusions any re-
sult about the rational (¢ &gq.) or the irrational case?
The answer is no. Any search for more involved commu-
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[T, U?]]1=0, gave a nega-

tation rules, e.g., [T, ny05y?

151’
tive answer, and the simple invariance of the gth power of
the evolution operator for rotations of angles of 27 /q
does not imply simple relations with the growth of the
average energy. However, our numerical computations
enforce the usual picture of localization, even if the relia-
bility of the numerical procedure does not allow the in-
vestigation of the model for wide ranges of k.

J

@9

g 9T; ,70 il YT
(6, T;5x",0) 27ri sin(wyT)

172
. )
cxp ” 2 sin(w,T)

By discretizing a length L in N small intervals A, this
propagator becomes a N XN matrix; the request of uni-
tarity imposed A =1/27|sin(w,T)| /& N .

We set the parameters in such a way as to realize a
translational invariance along one or two directions in
the phase space. The relevant quantities under investiga-
tion are the mean energy

)

as a function of the discrete time ¢ for the classical and
the quantum model, and the contour plot of the Husimi
distribution, defined as

FH(q,p,1)={ @, ¢, ) ?

where @, is the coherent state peaked at the point (g,p)
in the classical phase space, and 1, is the evoluted wave
function at time ¢.

Numerically meaningful quantum results are obtained
by choosing the parameters corresponding to non-fully-
chaotic classical phase space. To obtain an effective
diffusion, we therefore put the initial classical distribution
along the separatrix web or centered around some unsta-
ble fixed point. As initial quantum state we take a
coherent state peaked inside the classical separatrix.

2
E(n=<¢, Bt 2o

A 280
w [
V240 F
2oo§-
160 |
120 F
80 F

40 F

Classical

0 L it b : b aribvads

0 100 200 300

FIG. 1. Average energy versus time for wy,/w;= %, wo=2/1,
and k =0.5 (ballistic behavior). Full line, quantum; dashed line,
classical.

[(x"?+x?)cos(woT)—2xx'] | .

2305

IV. RESULTS

We use the configurational space approach for the con-
struction of the one-period evolution operator:
Yx, T)=e** [ G(x, T,x",00(x",0)dx" ,  (4.1)

where § is the Feynman propagator of the harmonic os-
cillator

4.2)

[
In the first set of pictures we present the quantum reso-

nant case wy/w, =4, wop=2/7. For these parameters the
condition of commutation with a two-parameter group
(3.19b) is satisfied. Figure 1 shows the quadratic growth
of the quantum mean energy compared with the classical
one. The contour plot of the Husimi distribution is com-
pared in Fig. 2 with the classical distribution in the phase
space (dots). The isotropic spread of the Husimi distribu-
tion suggests the following interpretation (as in [8]).

Because of the presence of two Bloch indices we can
decompose the time-evoluted wave function in the follow-
ing way:

ik (a,B)t

vx=73 [da[dBe™ P4 apx), 43
k=1

where ¢, (a,B,x) are obtained by decomposing the initial
wave function in Bloch waves, and k indicates a possible
summation over n bands. By applying the stationary
phase method to # we obtain

Qo
eaada

&)
Q
layaal

-10F 1
; = &
—-20 .Q;c@' 4 = N 2
[ o ,ﬁ
L < .

i

FIG. 2. Contour plot of the Husimi distribution at the time
t =300 for the same data as in Fig. 1. Dots (in the center of the
picture) are the classical distribution function at the same time.
As initial quantum state we take a coherent state peaked at the
point (0,) in the phase plane, and as initial classical distribu-
tion we take N =200 points.
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Hgpt)=|3 [dx o%x) [da [dBe™ " ¢ (a,Bx)
k=1
2
z;l? kzellk(ak’ﬁk)t -_—2—1:——— fdx (I);p(x)(ﬁk(&k’ﬁk,x) , (4.4)

’\/“@Ak(akygk)

where @Ak(&k,ﬁk) is the Hessian of A, (a,B) evaluated at

the stationary point (&, B} ).
From the normalizing condition of the Husimi distri-
bution

[ dq dp #H(q,p.)=1,

it follows that the phase space area significantly occupied
by the Husimi distribution grows like #2. But then (x?2)
and {p?), and consequently the energy, follow the same
behavior.

The application of the stationary phase can be justified
for sufficiently well behaved functions ¢,. This can be
done since the presence of two Bloch phases reduces the
problem to a finite dimensional one (and ¢; become ana-
lytic functions).

Explicitly, suppose ¢ =4 (a=m/2). Then

(4.5)

4 —if,
; iH, T
c&l‘t.._n(exkcos(’x)e 0

j=1

), (4.6)

i i T
zHOT=e —iwyT(@ a+1/2)=e —iaf+1/2)
b

where e which can

be written as

3
ca4=e —2iae —4iaf H ei(4—j)aﬁe ik cos(’x)e —i(4—jlaf

j=0
3. . . .
iy —4i ik cos[® cos(4— jla+P /wysin(4— jla]
=¢ 2agTHalTT e 0 . @4
j=0
Since a =1 /2 this becomes
Ut = — ¢ ~2miRg ik cos(i’)eik cos(p /“’O)e ik cos(%), ik cos(p /wg)
=—¢ “2‘"‘"’7@[%{ , (4.8)
/\ F
w 35F
\% 30 E Quantum

25t
20
15
10f

Classical

0 100 200 300 400 500
t

FIG. 3. Average energy versus time for wy/w;=1%, k /0,=2,

and @w,=0.1 (diffusive behavior). Full line, quantum; dashed
line, classical.

where Uy is the well known one period evolution opera-
tor for the kicked Harper model (KHM) on the plane
with parameters K =L =k and #i=1/w, This operator
was theoretically investigated in [8], and it was proved
that for #/27=n/m m,n €Z it can be written as the
product of four m Xm matrices. This means that even
the case with two Bloch phases can be reduced to a finite
dimensional problem. Indeed one has wy=m /2w, name-
ly, Ai=2m/m.

Consider now the case with one Bloch phase. Figures 3
and 4 represent the crystal case w,/w,=+. Figure 5 is
for the triangular crystal case wy,/w;=+. Parameters
have been chosen to satisfy, respectively, (3.20a) (Figs. 3
and 4) and (3.22a) (Fig. 5), namely, commutation with a
one-parameter group. The observed energy spread is
roughly linear in time { E ) ~ Dt (see Figs. 3 and 5). Even
in these cases the Husimi distribution (Fig. 4) spreads
roughly isotropically in the phase space. The stationary
phase approach would give, in this case, 7~ 1/t since
the decomposition involves just one Bloch phase (and
only one integral). Adopting the same line of reasoning
one would obtain a phase area AxAp ~t and, since the
propagation remains isotropic, {x?) and {p2) grow like
t for large times. Of course, in this case the stationary
phase approach is hardly justified since we cannot assume
smooth expansion functions.

Our results can be summarized as follows: given a
one-dimensional (1D) system invariant along one or two
directions in the phase plane, the phase area grows in

FIG. 4. Comparison between the classical (dots) and the
Husimi distribution (contour plot) at the time ¢=50 for
wo/w1=%,k/a)o=2, and w,=1.
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G 141 Quantum
\V4 L
12 F
10 F
8
6L
4 +
F .....
z ? """"""""""""""""""""" éi-zassical
Q B

1 1) L 1 .
0 100 200 300 400 500
t
FIG. 5. Average energy versus time for wy/w,= %, k/wy=2,
and wy=0.1 (diffusive behavior). Full line, quantum; dashed
line, classical.

time, respectively, as t or t2. How are these results con-
nected with the standard ones, regarding, for instance, a
particle in a periodic potential? Is it possible to general-
ize them?

Consider a 3D potential periodic along one direction:

V(x,y,z)=V(x +a,y,z) 4.9)

without any further specification. Then Bloch’s theorem
holds and the eigenfunctions are extended within Bloch’s
bands. This in turn implies Ax(z)~¢ with a constant
momentum Ap, (¢)~const.

If the invariance is along two directions x,y (which are
independent since they are commuting variables),

V(x,y,z2)=V(x +a,y +b,z) , (4.10)

then we have Ax(t)~t, Ay(t)~t, and Ap,(1)
~Ap,(t)~const. In both cases, the projection of the
phase space volume along the invariant directions grows
in time as t", where n is the number of translations.

More precisely
Ax(t)Ap, (t)~t 4.1

in the former case, and

A 700
L F Classical
V 600 F

500 E
400 F
300 b
200

T T

100 Quantum

0E ‘ : :
0 250 500 750

1000
t
FIG. 6. Average energy versus time for the parameters
wo/®1=1%, k/wy=2, and wy=1 (localization). Full line, quan-
tum; dashed line, classical.
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Q [ T 3
20F 5
[ ]
~ ]
10 F .
o
-10F ]
[
_.20_
: T L [
-20 -10 O 0 20
q

FIG. 7. Comparison between the classical and the Husimi
distribution at the time ¢ =100 for the same data as in Fig. 6.

Ax(t)Apx(t)Ay(t).ISApy(t)~t2 (4.12)
for the potential (4.10).

It is important to stress that this result does not hold
for the coordinate area. Indeed, while it is possible to
state that the area in the x-y plane behaves quadratically
in time

Ax()Ay(t)~1? (4.13)

for the potential (4.10), nothing can be said in the case
(4.9). In this last case Ay(z) is determined only by the
knowledge of the potential.

In any case this is well known. What happens now if
the invariance in the usual coordinate space is substituted
by the invariance in the phase space?

First, since x and p do not commute, it is necessary to
require that the translations be independent [see (3.18)].
Let us consider a 2D system (since its coordinate space is
equivalent to the phase space of our 1D system). In the

AN
L\‘}] 140 F Classi@}nw
120 WWW’M”&%;@/'W*A
{W Quantum
100
80+t
60

0 200 400

600 800 1000
t

FIG. 8. Average energy versus time for wy/w,=2/(V5+1),
k/wy=1, and wy=1 (localization). Full line, quantum; dashed
line, classical. The initial classical and quantum distributions
are peaked around the point (0,15) in the classical phase plane.
For smaller energy, the web is not connected and the classical
diffusion is forbidden.
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FIG. 9. Comparison between the classical and the Husimi
distribution at the time # =300 for the same data as in Fig. 8.

presence of two Bloch phases, the standard results (4.13)
would predict an area growing as t?, as we have
(Ax(t)Ap,(t)~1t?). In the other case (one translation) no
prediction can be done about Ax(z)Ay(z) while we found
Ax(t)Ap, (t)~t. This apparent disagreement [justified on
the basis of (4.11)] is related to the fact that x and p, are
not independent variables.

It is also important to remark the different propagation
of the phase area for the kicked harmonic oscillator com-
pared with the 1D particle in a periodic potential (or 1D
free particle). Despite the fact that Ax(#)Ap,(¢#)~¢ in
both cases, we have Ax(t)~Apx(t)~t1/ 2 in the former
model (due to the isotropic propagation) and Ax(t)~t¢,
Ap,(t)~const in the latter one. One can imagine a
homogeneous propagation in a square or inside a tube
(with the same phase area growth), respectively.

This important result has been obtained for the
QKHUO. As explained before [see Eq. (4.8)] this model can
be put in close correspondence (when g =4 and
K =L =k) with the KHM on the plane, which has been
considered in [8]. A general relation between the QKHO
and the KHM has also been considered quite recently in
[9]. For this model diffusive and ballistic behaviors have
been found when # /27 is irrational or rational, respec-
tively [8]. However, a lot of work has been reported in
the literature for the KHM on the cylinder (see, for in-
stance, [10]). Among these results we mention the anom-
alous diffusion (with an exponent different from 1) ob-
served in [11] for K =L and irrational #/27w. We are
then left with two possibilities:

(i) The models are different and there is no way to con-
nect spreading on the cylinder with that on the plane.
(i) Suppose one is able to prove that the energy
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spreading has the same power law for both models. This
would imply that the stationary phase argument cannot
be applied for the one-parameter group.

In any case these points deserve future investigation.

Is it possible to extrapolate a general theorem from the
previous results? Probably only in the weak formulation:
if the stationary phase argument can be applied, then the
results follow. In some sense the applicability of the sta-
tionary phase method is crucial. The opposite is certain-
ly not true, in the sense that diffusion and anomalous
diffusion can be found even in models without transla-
tional invariance, and it is known that these kinds of
propagations are related to the spectral properties of the
Hamiltonian [12].

We also made a few additional calculations for fre-
quencies ratios wy/w,=1/q, with g #gq,., and ©y/w, irra-
tional. These cases were not taken into account in our
theoretical scheme. In both cases we observe quantum
localization despite the classical diffusion. These results
are shown in Figs. 6 and 7 for wo/@,=1 and in Figs. 8
and 9 for wy/w;=2/(V'5+1). However, evidence was
found [3] for a transition from localized to delocalized
states for wy/w,=+. We may therefore assert that this
effect is not connected with the translational invariance
of the quasienergy operator.

V. CONCLUSIONS

We have studied the quantum version of the kicked
harmonic oscillator in the crystal case, where its classical
version is known to exhibit diffusive motion [1]. We have
found that the corresponding quantum system behaves
diffusively or ballistically in the phase plane. This is quite
surprising in the study of kicked systems; see, e.g., the
prototype: the kicked rotator [13], where the quantum
analogue of classical diffusion was localization or ballistic
motion. While ballistic motion, as in the kicked rotator
example, can be obtained by a peculiar combination of
the parameters (quantum resonance [14]), quantum
diffusion is a feature of this model. These behaviors can
both be traced back to the translational properties of the
system itself by using numerical suggestions as well as
analytical estimates.

Future investigations will regard the quasicrystal quan-
tum model: in such a case the translational invariance is
destroyed but a new symmetry related to the spectral
properties of the Floquet operator appears.
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