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Lecture 1: Closed PDEs for observables for quantum nonlinear Hamiltonians: 
• Coherent states for bosonic systems and expressions for observables. 
• PDF for  observables in a closed form. 
• Simple example of PDE, and characteristic parameters. 

Lecture 2: Quantum effects as  a singular perturbations: 
• Properties of equations for observables. 
• A singular character of quantum effects, and characteristic time-scales for quantum dynamics. 

Lecture 3: Quantum dynamics in the vicinity of elliptic and hyperbolic points: 
• The peculiarities of dynamics for observables in the vicinities of elliptic and hyperbolic points. 
• Analysis of solutions by using exact examples. 

Lecture 4: Influence of the thermal bath: Quantum effects after decoherence and relaxation: 
• Interaction of quantum system with the thermal bath. 
• Effects of decoherence and relaxation.
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Some Motivations
Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)
DARPA/DSO SOL, DARPA Mathematical Challenges, BAA 07-68; BAA CLOSING 
DATE: 9/8/08; TECHNICAL POC: Dr. Benjamin Mann, DARPA/DSO, Ph: (571) 218- 
4246, Email: BAA07-68@darpa.mil; CFDA#: 12.910; URL: 
http://www.darpa.mil/dso/solicitations/solicit.htm; 
Website Submission: http://www.sainc.com/dsobaa/
I. Funding Opportunity Description
DARPA is soliciting innovative research proposals in the area of DARPA Mathematical 
Challenges, with the goal of dramatically revolutionizing mathematics and thereby 
strengthening the scientific and technological capabilities of DoD. To do so, the agency 
has identified twenty-three mathematical challenges, listed below, which were 
announced at DARPA Tech 2007. 
DARPA seeks innovative proposals addressing these Mathematical Challenges. 
Proposals should offer high potential for major mathematical breakthroughs associated 
to one or more of these challenges. Responses to multiple challenges should be 
addressed individually in separate proposals. Submissions that merely promise 
incremental improvements over the existing state of the art will be deemed unresponsive. 

mailto:BAA07-68@darpa.mil
http://www.darpa.mil/dso/solicitations/solicit.htm
http://www.sainc.com/dsobaa/
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DARPA Challenges
• Mathematical Challenge One: The Mathematics of the Brain 

Develop a mathematical theory to build a functional model of the brain that is mathematically consistent and 
predictive rather than merely biologically inspired. 

• Mathematical Challenge Two: The Dynamics of Networks 
Develop the high-dimensional mathematics needed to accurately model and predict behavior in large-scale 
distributed networks that evolve over time occurring in communication, biology, and the social sciences. 

• Mathematical Challenge Three: Capture and Harness Stochasticity in Nature 
Address Mumford's call for new mathematics for the 21st century. Develop methods that capture persistence 
in stochastic environments. 

• Mathematical Challenge Four: 21st Century Fluids 
Classical fluid dynamics and the Navier-Stokes Equation were extraordinarily successful in obtaining quantitative 
understanding of shock waves, turbulence, and solitons, but new methods are needed to tackle complex fluids 
such as foams, suspensions, gels, and liquid crystals. 

• Mathematical Challenge Five: Biological Quantum Field Theory 
Quantum and statistical methods have had great success modeling virus evolution. Can such techniques be 
used to model more complex systems such as bacteria? Can these techniques be used to control pathogen 
evolution? 

• Mathematical Challenge Six: Computational Duality 
Duality in mathematics has been a profound tool for theoretical understanding. Can it be extended to develop 
principled computational techniques where duality and geometry are the basis for novel algorithms? 

• Mathematical Challenge Seven: Occam's Razor in Many Dimensions 
As data collection increases can we do more with less by finding lower bounds for sensing complexity in 
systems? This is related to questions about entropy maximization algorithms. 

• Mathematical Challenge Eight: Beyond Convex Optimization 
Can linear algebra be replaced by algebraic geometry in a systematic way? 
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• Mathematical Challenge Nine: 
What are the Physical Consequences of Perelman's Proof of Thurston's Geometrization Theorem? 
Can profound theoretical advances in understanding three dimensions be applied to construct and manipulate 
structures across scales to fabricate novel materials? 

• Mathematical Challenge Ten: Algorithmic Origami and Biology 
Build a stronger mathematical theory for isometric and rigid embedding that can give insight into protein folding. 

• Mathematical Challenge Eleven: Optimal Nanostructures 
Develop new mathematics for constructing optimal globally symmetric structures by following simple local 
rules via the process of nanoscale self-assembly. 

• Mathematical Challenge Twelve: The Mathematics of Quantum Computing, Algorithms, and Entanglement 
In the last century we learned how quantum phenomena shape our world. In the coming century we need to 
develop the mathematics required to control the quantum world. 

• Mathematical Challenge Thirteen: Creating a Game Theory that Scales 
What new scalable mathematics is needed to replace the traditional Partial Differential Equations (PDE) 
approach to differential games? 

• Mathematical Challenge Fourteen: An Information Theory for Virus Evolution 
Can Shannon's theory shed light on this fundamental area of biology? 

• Mathematical Challenge Fifteen: The Geometry of Genome Space 
What notion of distance is needed to incorporate biological utility? 

• Mathematical Challenge Sixteen: What are the Symmetries and Action Principles for Biology? 
Extend our understanding of symmetries and action principles in biology along the lines of classical 
thermodynamics, to include important biological concepts such as robustness, modularity, evolvability, 
and variability. 
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• Mathematical Challenge Seventeen: Geometric Langlands and Quantum Physics 
How does the Langlands program, which originated in number theory and representation theory, explain 

the fundamental symmetries of physics? And vice versa? 
• Mathematical Challenge Eighteen: Arithmetic Langlands, Topology, and Geometry 

What is the role of homotopy theory in the classical, geometric, and quantum Langlands programs? 
• Mathematical Challenge Nineteen: Settle the Riemann Hypothesis 

The Holy Grail of number theory. 
• Mathematical Challenge Twenty: Computation at Scale 

How can we develop asymptotics for a world with massively many degrees of freedom? 
• Mathematical Challenge Twenty-one: Settle the Hodge Conjecture 

This conjecture in algebraic geometry is a metaphor for transforming transcendental computations 
into algebraic ones. 

• Mathematical Challenge Twenty-two: Settle the Smooth Poincare Conjecture in Dimension 4 
What are the implications for space-time and cosmology? And might the answer unlock the secret of 
"dark energy"? 

• Mathematical Challenge Twenty-three: What are the Fundamental Laws of Biology? 
Dr. Tether's question will remain front and center in the next 100 years. I place this challenge last as 

finding  these laws will undoubtedly require the mathematics developed in answering several of the 
questions listed above. 
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Quantum experiments exist independently of the theory

Entanglement:

Double-slit experiment

Discrete energy levels:

Superpositions:

Uncertainty principle in measurement:

 1 ground state excited state
2
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Superpositions and entanglement

10

11


20

21


1 1 1 1 10 1   

Superpositional states

1 2;   

2 2 2 2 2

1 0
0 1 ;  0 ,  1

0 1
  

   
      

   

   1 2
T n n n

n

Tr w     

       

       

1 1 2 2 1 2 3 1 2 4 1 2

1 2 3 4

1 2 1 2

1 2 1 2 1 2 1 2

0 0 ,   0 1 ,  1 0 ,  11
1 1,  0,  0,  
2 2

Corresponding quantum density matrix
1 0 1 0 0 0 0 01 1 ,  
0 0 0 0 0 1 0 12 2

1 10 0 0 0 ,  11 11 ,  all other=0
2 2

A A A A

P A P A P A P A



 

   

   

       
          

       

 

 1 2 1 2
1 0 0 11
2

  

Entangled states

-Example of entangled state—strong quantum correlations

Classical correlations in a similar system (Andrey Kolmogorov’s approach)

1903-1987
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http://en.wikipedia.org/wiki/File:Kolmogorov-m.jpg
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Problems with the Quasi-Classical Asymptotic

In quasi-classical region the wave function has the form:  
 ,

,
S x t

i
x t e 

where  ,
1,   is the action of the system,  is a characteristic energy level

S x t I n I n  
 

The wave function (density matrix, Wigner function)
oscillates very fast, and it is difficult: 

(i)   to separate fast and slow variables,
(ii)  to separate physical effects from mathematical 

corrections, 
(iii) to get a convergence for asymptotic behavior, and
(iv) to derive the expressions for  expectation values.

Our approach is based on PDEs for observable values
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Heisenberg Uncertainty Relation and 
Coherent States

 2
2
A

ˆ average (expectation value, observable value);  

ˆ standard deviation (variance, valatility)

A A

A A

   

    

  can depend on time (then: ( ))t A A t  

In what follows I will be mainly untested in the so-called quasi-classical regime. 
So, I will need quantum states which are closest  to the classical ones in a 
certain sense. One choice of such states is based on minimizing the well-known 
Heisenberg uncertainty relation:

1 ˆ ˆˆ ˆ, ,  where  and  are Hermitian operators,
2

ˆ ˆ ˆˆ ˆ ˆ,  commutator

A B A B A B

A B AB BA
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Proof of the Heisenberg Uncertainty Relation:
1 ˆ ˆ,
2A B A B      

ˆDefine a state: ,  where 
ˆˆ ˆ  is non-Hermitian, and  is a real number
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ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆSubstitute: ,  ,  , , , and use: , , .

We have: 
1ˆ ˆˆ ˆ,  Heisenberg uncertaity relation
4
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Coherent States

 

ˆ ˆˆ ˆ ˆLet ,   (in the coordinate representation:  / ),  

ˆ ˆthen: , ,  and: .
2

Let find a state  which minimizes the uncertaity. 

Additionally we requere a normalization condition: 
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Introduce a functional: 
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ˆ ˆwhere: ,  ,   is a Lagrange multiplier. 
The minimization problem for U reduces to the PDE:
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Coherent States and Quantum Linear Oscillator

2 2 2
† †

†

1 4
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Some Properties of Coherent States

   2
2

2 2

1) In   the uncertainty is minimal :  / 2.

2) The CS is normalized: 1.
3) The physical meaning of complex  is the following:

Introduce the probability:  Poissonian
! !
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4) The CSs with different  and  are not orthogonal: exp .
2 2

ˆ ˆ5) The CS   can be constructed using a shift operator: , exp .
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6) The CSs form a complete system/basis

 2 21 ,  Re Imd I d d d     


  
7) For any quadratic Hamiltonians quantum and classical dynamics coincide 
(up to renormalization of coefficients) 

 2† † 2 †

†

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆˆ ˆ ˆas the operator equation for  is a linear one: , ;

ˆ ˆ ˆ8) Consider an arbitrary operator function ( , ) 
of bosonic operators that posesses 

H A t a A t a B t a a C t a C t a

a i a a H

f a a
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a formal power series axpansion.
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Why CSs are Useful:                                 
CSs remain CSs for Linear Oscillator
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Examples of Coherent States
Laser radiation: He-Ne laser; Power: P=10mW, 0.63 ,m 

3 7 1 6 2
16

27 10 1

10 10 10 sec 1sec 0.63 10 10 3 10  
2 10 sec 3 10 sec 6.28 sec

nP

P P P erg cm photonsn
ck c erg cm ond



  
 

  

 

 

      
     

    



  

Cell phone station: Power: P=3W, 2 800 ;MHz   246 10
sec
photonsn

ond
 

Cantilever: quantum cooling and above

BEC: 

Radio waves: amplitude and phase are good defined

3 610 10  atomsn  

Resonators
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Exact C-Number Equation for Quantum Expectation Values

f

Time-independent Hamiltonian with one degree of freedom  † ,H a a

Introduce the operator function:  † ,f a a

We write the Heisenberg equation for:    † †, , ,
H Hi t i t

f a a t e f a a e


  

 ,if H f


We derive a closed PDE for the expectation value:

†( , , ) ( , , ) .f t f a a t     We have from the Heisenberg equation:

 if Hf fH    


Present the Hamiltonian and the function        in the normal-ordered form 

      † †
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H H a a f t f t a a   Then, we have:
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Presentation of  † kna a 

Using: 
2 2

,z zQ z af z e e f
z





 


we have:
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We derive the closed form expression:
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Closed Equation for Observable Value
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Quantum Nonlinear Oscillator 
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Action-angle variables
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Behavior of observables for quantum nonlinear oscillator

Initial condition:

Solution:

   , ,0
m qf     

          
   22

, , 1 1
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m q
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Classical limit:

1 1
J n

   


Introduce classical action of linear oscillator:
2 ,J n n a a     

Quasi-classical parameter:
Classical Hamiltonian:

Classical equations of motion:
      2;   / 2cl cl clH J J J J dH J dJ J        

 20,  ,  J const  

     2 ;   0,  1i J t
cl t e m q     

   2 2 ;cl cl clf i J f i J f     
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Characteristic time scale at  which 
quantum corrections become significant

1
2Et  




Ehrenfest time scale:

2 22( ) ( ) Et t
clt t e  

          
    2 222 2 2 3 3 3

, , , , 1 1 1

exp 2

clf t f t i t m m q q O t

t m q O t

     

   

          

  

 

 

Assuming: 1;  ;t m q   we get:

1 ,             

  

In particular by the time quantum corrections are of the same order

as classical solution
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Characteristic parameters

 21 J
J

   
 Quasi-classical parameter:

Classical parameter of nonlinearity:
4

2 ;cl
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Quantum parameter of nonlinearity: ;
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General remarks on quasi-classical behavior 
of mesoscopic systems 

Equation for quantum averages has the form

 ˆ ˆ
cl q

f K K f



 




Includes only first order derivatives

Includes high order derivatives

For quantum nonlinear oscillator this equation has the form
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1 2 2 ;
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Two dimensionless parameters, 
quantum and classical
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i cleif a t e e
   

  
Solution
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Demonstration of quantum dynamics

0.05, 0.05  

 
  

2

0

0

( ) exp 1 ;  

0

i ie e   


  

    

 

 1 2

0

( ) clicl e   


 

2.27, 62.8, 2.09E R cl    
R E cl   

• Quantum dynamics is characterized by Ehrenfest time E ;
• Quantum recurrence time is  very large in quasiclassical limit.
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Fourier Spectrum
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Fourier Spectrum

G.P. Berman and D.A.R. Dalvit, Theoretical Division, Los Alamos National Laboratory, USA

F. Borgonovi, Dipartimento di Matematica e Fisica, Universit´a Cattolica, Italy
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Relation to the Navies Stokes Equation

Reynolds number

1 1
ReL Vk

    Small parameter for 
large

Term with viscosity is a singular perturbation
Re 1L 
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Geometrical Issues

 ˆ ˆ
cl qdf K K fd 

The equation can be written in the form ˆ ˆ
cl q

f K K f



 




First order derivatives Higher order derivatives

Differential
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We consider a time-independent Hamiltonian

Generalization for Many Degrees of Freedom
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Coherent states

 2 2
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Quantum observables for arbitrary operator
Heisenberg equations of motion for arbitrary operator

( , ) ( ) , ( ) iHt iHtf t F t F t e Fe      

We want to derive a closed equations for 

( , ) ( )f t F t  

1 2 N    
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Closed equations for quantum observables 
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Introduce a polynomial

A closed equation for quantum observable F has a form

Solution:

Initial condition:
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We introduce a non-linear evolution 
inside the interferometer
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Mathematical Model
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Results

  00:0or  0g case  tt 
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Green line: (analytical)
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There is a recurrence time when the system recovers the initial condition:

Ehrenfest time
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Long time evolution of quantum averages for 
unstable classical dynamics (N=1; 1D case)

[G. Berman, M. Vishik, Phys Lett. A 319, 351 (2003)]

Consider 1D Hamiltonian

Introduce operators of coordinate and momentum

In    and    operators Hamiltonian has the form

Evolution of operators    and    :

x̂ p̂

x̂ p̂
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Unstable classical dynamics

P
0 0

0 0

(2 8 )
0

(2 8 )
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Equation for quantum observables

Solution:
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Collapse of quantum averages

Solution for n=2:

Times of collapses:
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Under conditions: 2

Average quantum coordinate:

Classical coordinate:

At logarithmically small time               the quantum corrections 
become at least of order of 1.

1log
cl

C


Time dependence of quantum corrections
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Comparison of quantum and classical dispersion

Quantum dispersion vanishes when =0 (classical limit)

Conclusion
• For nonlinear oscillator quantum dynamics is characterized by 
three time scales: (i) classical period cl , (ii) Ehrenfest time E , (iii) 
quantum recurrence time R .
• In the quasi-classical region R is usually large:                        .  
• To observe quantum effects one should measure the quantum 
features related to Ehrenfest time scale E .
• For stable classical dynamics                  ; for unstable classical 
dynamics                 .
• Time scale E can be extracted from the frequency spectrum.
• Quantum collapses should be investigated in more detail.

R E cl   

1E cl  

 log 1 clC 
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Asymptotic theory for quantum Bose systems with 
many degrees of freedom

[M. Vishik, G. Berman, Phys Lett. A 313, 37 (2003)]

We start with the closed equation for quantum averages

Initial condition:
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This Hamilton-Jacobi equation is real and therefore the 
classical Hamilton-Jacobi theory applies.
• The expansion (*) describes Laplace asymptotics unlike WKB 
asymptotics for Schrödinger equation describing the evolution 
of wave function

Quasi-classical asymptotic theory for quantum averages

(*)
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Effective Hamiltonian

We introduce momenta p and p* and the effective Hamiltonian 
associated with
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Example for N=1,
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Solution

To solve the problem with the initial conditions

Additional study requires to apply the theory to concrete systems
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Quantum nonlinear oscillator interacting with environment (exact solution)

Joint observable of system+bath:

Exact PDE for joint evolution:

Hamiltonian of quantum nonlinear oscillator:

Hamiltonian of thermal bath:

Interaction Hamiltonian:
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Initial state: System (coherent state)       Environment (thermal state)

Exact solution:

Reduced observable:

Decoherence factor

D.A.R. Dalvit, G.P. Berman, M. Vishik, Phys. Rev. A.; 2006; v.73, p.013803 
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Open system: Nonlinear quantum oscillator- bath:

BEC as a non-linear oscillator

set of harmonic oscillators

position-position coupling

Five time-scales:

Period of classical linear oscillator

Revival time

Ehrenfest time

Relaxation time

Decoherence time

We showed that when one can still observe quantum effects for observables 
(width of revival bumps given by       ). Decoherence is 
insufficient for recovering quantum-classical 
correspondence in nonlinear systems

“Survival  of quantum effects for observables after decoherence”, G.P. Berman, A.R. Bishop, F. 
Borgonovi, and D.A.R. Dalvit, Phys. Rev. A 69, 062110 (2004).

1 ( )
2

x a a 

1 ( )
2j j jq b b 
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Quantum dynamics in Fermi Pasta Ulam Problem
G.P. Berman (LANL), N. Tarkhanov (U. of Potsdam)

Hamiltonian:

Periodic boundary conditions:

un (t), pn (t)

k

k
N/2

k0

k

Classical limit: 
new canonical 
variables: ak , ak *
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Narrow packet approximation (NPA): Classical limit

0 0 01, , 2k k k k k k N    
Hamiltonian in NPA:
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Narrow packet approximation (NPA): Classical limit

Classical equations of motion 
for four wave interactions:

Solution for finite amplitude wave:

Introduce: ( , ) ( ) ( 2 , )iJ
j

j
t A t e t      

Equation for (,t):
2

2
02i V

t 
  

   
 



- envelope

- NS or GP equation
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Stability of the finite amplitude wave 
with respect to the decay in the neighboring modes

Assume that

The linearized system of equations:

(

The amplitudes of small 
waves grow exponentially 
with the increment:

Condition for instability:                      or  
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Quantum equations of decays

Quantum observables:

Heisenberg equations:

Effective quantum Hamiltonian:
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Equations for quantum observables

Exact solution in the form of finite amplitude wave:

2(1 )k k q   
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Solutions for quantum observables in the form of expansion in j

Initial conditions:

Equations for observables:
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Equations for observables for small waves

Transformation to new functions f and g:

Equations for f and g:
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Equations for f and g

Quantum parameter:

Numerical simulations for BEC are described in
G.P. Berman, A. Smerzi, A.R. Bishop, Phys. Rev. Lett. 88, 120402 (2002)

Mathematical theory was developed by N. Tarkhanov (2004)
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1 2 3 4 1 2 3 4

1 2 3 4

2
,0

, , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2eff k k k k k k k k k k

p k k k k
H k a a a a a a 


  

  


  

4 0    Ra
S

  

Ring geometry R

Stability of the Quantum Dynamics of a Bose-Einstein Condensate Trapped 
in a One-Dimensional Toroidal Geometry

(G.P. Berman, A.R. Bishop, D.A.R. Dalvit, G.V. Shlyapnikov, 
N. Tarkhanov, E.M. Timmermans, Int. J. Theor. Phys., 2008)

S

   
2

†
2

ˆ 1ˆ ˆ ˆ ˆ ˆ2 ,   ,
2

ij
j

j
i a e    

  





  
          



BEC

Quantum Hamiltonian

Equation for quantum field operator
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Quantum Perturbation Theory
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Periodic Quantum Wave and 
Small Perturbations

Quantum wave

Classical wave

Validity of classical (GP) solution

Quantum revivals
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Equations for quantum dynamics
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Results on Convergence of 
Quantum Solution to GP

Stable case (Repulsive interaction)

Unstable case (Attractive interaction)


Due to quantum tunneling
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Some Properties of Spin Coherent States

Spin ½ operators

Commutation relations

Spin coherent state is a superposition 

of spin states ,S M with

generated from the ground state
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Some properties of spin coherent states

expansion of the CS in the basis of states  ,S M

coefficients of expansion

two CSs are non-orthogonal

     

     

2
2

22

2 !
,

1 ! !

S M

M S

S
P S M

S M S M


 





 
  

probability to find the projection M in CS  

expectation value of ˆ zS
two parameters

We are interested in the distribution 
function of p under  the condition

Poisson distribution
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Single spin in coherent state
( 1 2)S 

     
1
2

1 1
1 2 2
2

2 2

1 1 1 1 1 1, , , ,
2 2 2 2 2 2

1

1 1

M

M

U M U U   
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Length of a single spin
       

 

2 2 22

2, , , , , ,

3 1 ;  
4

1 ;  1;
2

0 1 0 1 1 0 1 0
,  ,  ,  ,  ;

1 0 1 0 0 1 0 1

x y z

x y z x y z x y z

x y z

S S S S S S

S

i

 

  

     

 

         
                        



Say, we have: 21 1 3;  ;  But: ;
0 2 4

z
z z z z zS S    

 
   
 



In classical case it would be:
2 1 ,

4clS 


because in classical case:
, 0,x y

clS  but in quantum case:

2† 0 1 01 1 1 10;  0,  ;  ;  0
1 0 12 22 2

x x
z z z x z x z xS S       
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Two spins in coherent state

       

     

       

1

1 0 1
1

2

2 2 2

2

1 2 1 2 1 2 1 22 2 2
1 2

,1 ,1 1,1 0,1 1,1

1 21,1 0,1 1,1
1 1 1

1 2 1 1 1, ,
2 221 1 1

M
M

U M U U U    

 

  

   
  




     

   
  

                



Prove this for N spins!
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Some expressions
 

           

22 2 2
1 2 1 2 1 2

2 2 2 2 2 2

1 1 1 2 2 2 1 2 1 2

2 2
1 2 1 2 1 2 1 2 1 2 1 2

2
1 2

2

1 3 1 ;  
2 2 2

0 1 0 1 1 0 1 0
,  ,  ,  ,  ;

1 0 1 0 0 1 0 1

;  ;

1
2

x y z x y z

x y z

S S S S S S S

S S S S S S

i

S S

S

   

  

     

       

         
                        

               

 

      

   

 

        

   

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 12 1 ;
2 2

1 1;  0
2 2

z z z z

S S

S S S S
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Some properties of spin coherent states
Spin CS minimize the Heisenberg 
uncertainty condition 

Spin CSs represent a complete set

The following relations take place 
similar to bosonic CSs
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Closed PDE for Spin Observables in CSs
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Closed PDE for Spin Observables in CSs
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Example of Spin CS PDF
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Example of Spin CS PDF

Quasi-classical solution   J t 
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Additional Averaging over the Distribution Function

classical limit
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Time-dependent Hamiltonian
Suppose that we have a time-periodic Hamiltonian

(1)

and  as before                      are the thermal bath and the interaction .
Let’s write instead of (1) the following effective time-independent Hamiltonian
.                                                               

 0 0

0

cos ,

,

x
T ST

z

H H S t H H

H S

  



    

 





  T STH and H

 † †
0

0

†

,
2

, 1.

x
eff T STH H b b b b S H H

b b




     

   



(2)

b

  
2

0 2 0
0 0 0 0

1
,  0 .

!

n

n
e n b

n
    






 

Suppose that initially the -field in in the coherent stateb

(3)
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Suppose that the initial energy of the       -field is large enoughb
2

0 max{ , }   
The equation for     has the formb

0

, .
2

x
effi b b H b S


    

 

(4)

Under the condition (4) we can neglect the last term in (5). 
So, the solution for the operator b Is

   0 .i tb t b e 

So, using (3) we have

(5)

    0
0 0 0 0 0 00 .ii t i t i tb t b e e e e            

(6)
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Let’s substitute (6) into (2). We have

        † †
0

0

0 0 0 0 .
2

i t i t x
eff T STH H b b b e b e S H H 


     



If we average (7) over ,                        , we get the Hamiltonian (1).0 0... 

(7)
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Time-Dependent Hamiltonians



82

Quantum trajectories in 
“action-angle” representation

As a rule, the process of  evolution of a quantum system in the 
Wigner representation is described in the “coordinate- 
momentum” variables. However, in the classical limit there are 
some advantages to describe the dynamics of the nonlinear 
system in the “action-angle” variables ensuring the separation of 
the motion into the fast (phase) and slow (e.g. diffusion in 
action). Therefore in the quantum analysis of such systems in 
Wigner representation it is useful to generalize it for the case of 
“action-angle” variables. We demonstrate this approach using a 
simple example of a quantum kicked  rotator. We show that the 
quantum dynamics is reduced to a classical discrete map with a 
quasi-random force. In the quasi-classical region of parameters 
the influence of the quasi-random force is small, and the 
dynamics of observables can be described by the discrete 
trajectories. 

Gennady Berman, T-4, LANL
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Schrödinger Equation for Kicked Rotator

  cosf  For kicked rotator: 

   
2ˆˆ ˆ,    

2 t

TnH f Tt n i    







    



2
T r

q



 


For rational: the quantum resonances exist with 

  2E t t when t 
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Wigner Representation for Quantum Rotator
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Classical Limit
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Quantum Case
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Invariant Sets in the Phase Space
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Explicit Form of Wigner Function
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Quantum Equations of Motion
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Quantum Trajectories
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Numerical Results on Quantum Diffusion

1. Quantum chaos and peculiarities of diffusion in Wigner 
representation. BERMAN, GP; KOLOVSKY, AR; 
IZRAILEV, FM; Physica A; 1988; vol.152, no.1-2, p.273-86.

2. Dynamics of classically chaotic quantum systems in Wigner 
representation. Berman, GP; Kolovsky, AR;  Physica D, 1985; 
vol.17D, no.2, p.183-97.

3. Quantum chaos in the Wigner representation. 
Berman, GP; Kolovskii, AR; Izrailev, FM; Iomin, AM 
Source: Chaos; 1991; vol.1, no.2, p.220-3
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Decoherence in Spin Systems (by G.M. Palma et al. 
Proc. R. Soc. Lond. A 452 (1996) 567)
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Problems with spin quantum computer
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Decoherence of a single qubit

Palma, Suominen & Ekert, P.Roy.Soc.Lond., A, 452, 567, 1996

Solution:
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Initial condition:
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