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Preface

Magnetic resonance force microscopy (MRFM) is a rapidly evolving field,

which originated in 1990s and recently achieved the first detection of a single

electron spin below the surface of a non-transparent solid. Further develop-

ment of MRFM techniques may have a great impact on many areas of science

and technology including physics, chemistry, biology, nanotechnology, spin-

tronics, and even medicine. Scientists, engineers, and students with many

backgrounds may be interested in learning about MRFM.

The objective of our book “Magnetic Resonance Force Microscopy and

a Single-Spin Measurement” is to describe the basic principles as well as

the advanced theory of MRFM. To the best of our knowledge it is the first

book on MRFM. Also, it is a “multilevel” book. Even a reader who is not

familiar with quantum mechanics and magnetic resonance can understand

and appreciate the basic principles of MRFM. Scientists, who work in the

field of quantum physics or magnetic resonance, can obtain interesting and

important information about MRFM theory and its applications.

Our book does not cover all techniques and theoretical methods used in

MRFM and its applications. We describe the results, which are important

for understanding the basic principles of MRFM and its applications. The

main attention is paid to the oscillating cantilever-driven adiabatic reversals

(OSCAR) technique in MRFM, which has been used for the experimental

detection of a single electron spin. The book is written by authors who took

part in the exciting development of the MRFM theory, and it is based on their

own research. The book may be interesting for a wide range of readers from

undergraduate students to experienced scientists, who wish to be familiar

with this new promising field of science.

We are especially thankful to G. Chapline, G. D. Doolen, S. A. Gurvitz,

P. C. Hammel, D. Rugar, J. A. Sidles, for many useful discussions and to

S. Wolf of DARPA (now at the University of Virginia) for his interest in our

work and his encouragement. We are grateful to B. M. Chernobrod, G. Chap-

line, H. S. Goan, P. C. Hammel, D. I. Kamenev, G. V. Lopez, D. V. Pelekhov,

D. Rugar and A. Sutter with whom many of the results discussed in this
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Chapter 1

Introduction

The remarkable progress in magnetic resonant imaging (MRI) naturally raises

the question about the ultimate opportunity for the atomic scale MRI res-

olution (single spin detection). However, the MRI techniques are based on

the phenomenon of electromagnetic induction, which implies the detection

of a macroscopic number of spins. The minimum amount of nuclear spins

detected by MRI techniques is about 1012 [1], and the minimum amount of

electron spins detected in the electron spin resonance (ESR) techniques is

about 107 [2]. To resolve the problem of a single spin detection Sidles [3, 4]

suggested using the force detection techniques like those used in the atomic

force microscopy (AFM). However, the magnetic force is much smaller than

the electric force detected in AFM. In order to overcome this problem Sidles

proposed a combination of magnetic resonance techniques for a single spin

with the mechanical resonance of the ultrasensitive cantilever.

According to this idea, the ferromagnetic particle attached to the can-

tilever tip (CT) will experience a magnetic force produced by a single spin.

If the frequency of the spin oscillations matches the resonant frequency of

the cantilever vibrations the spin will drive the cantilever vibrations, which

can be detected, for example, by optical methods. The suggested method of

a single spin detection was called the magnetic resonance force microscopy

(MRFM).
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2 1. INTRODUCTION

The idea of MRFM quickly attracted attention of the experimentalists.

Soon, the MRFM techniques have been implemented by Rugar et al. in

ESR [5] and nuclear magnetic resonance (NMR) [6], and by Zhang et al.

in ferromagnetic resonance (FMR) [7]. Finally, in 2004, 13 years after the

origination of MRFM, Rugar et al [8] have announced about the first detec-

tion of a single electron spin below the surface of a nontransparent material

(vitreous silica), using a modified MRFM technique.

The authors of this book believe that MRFM may find bright applications

in physics, chemistry, biology and medicine. That is why we decided to write

a book which could explain the basics ideas of MRFM and some theoretical

approaches used to describe the MRFM techniques for readers with different

backgrounds. We were lucky to take part in the development of the MRFM

theory, and our book is based mainly on the works in which we directly

participated.

The book is organized as following. In Chapters 2-4 we give the basic in-

formation about the classical and quantum description of magnetic resonance

and quantum theory of a simple harmonic motion. These chapters are writ-

ten for a reader who is not familiar with the magnetic resonance or coherent

states in quantum mechanics but wants to understand the theoretical ap-

proaches used in MRFM. In Chapters 5 and 6 we consider a possible detec-

tion of a single spin in magnetic force microscopy (MFM) with no magnetic

resonance. The experimental implementation of a single spin MFM is ques-

tionable. However, from the theoretical point of view the MFM is much

simpler than the MRFM. In particular it allows us to obtain the exact an-

alytical solution for the master equation which is impossible for MRFM.

Thus, the theory of a single-spin MFM allows one a better understanding

of the spin-cantilever system. In Chapter 7 we describe one of the simplest

MRFM techniques, which could be used for a single-spin measurement. In

this technique the periodic sequence of the rf π−pulses drives the periodic

spin reversals, which, in turn, drive the cantilever vibrations. In Chapter 8

we describe a more sophisticated technique, where the cyclic adiabatic spin

reversals are driven by the frequency modulated rf field. This technique
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has been widely used in MRFM experiments with macroscopic ensembles of

electron and nuclear spins. Three Chapters 8,9 and 11 are devoted to the

oscillating cantilever driven adiabatic reversals (OSCAR) technique, which

has been actually used in [8] for a single-spin detection, In this technique

the spin cyclic adiabatic reversals are driven by the cantilever vibrations in

the presence of the rf field. In turn, spin reversals cause the frequency shift

of the cantilever vibrations, which can be detected with high precision. In

Chapter 11, Section 4, we suggest a new experiment for measuring the char-

acteristic time-scale for the collapse of the spin-cantilever wave function. In

Chapter 12 we discuss possible applications of MRFM to the measurement

of the spin entangled states and to the quantum computation. In Chapter

13 we consider the application of highly nonuniform magnetic fields used in

MRFM techniques for the suppression of the spin diffusion and relaxation.

Our book has a multi-level structure. Even a reader who is not famil-

iar with magnetic resonance and quantum mechanics may understand the

basic principles of the MRFM if he or she will read Chapter 2 (the quasi-

classical theory of the magnetic resonance) and skip all “quantum sections”

of the book. The next level includes the readers who are familiar with the

magnetic resonance but did not study quantum mechanics. They may skip

Chapter 2 and all “quantum sections” of the book. The readers who are not

familiar with the master equation may skip the corresponding sections but

still understand the quantum theory of MRFM.

We would like to mention that besides MRFM there exist other ap-

proaches to the single-spin measurement in condensed matter. One of them

relies on the optical detection of magnetic resonance (see, for example, the re-

view by Köhler [9] and the recent paper of Jelezko et al. [10]). As an example

in the fluorescence-detected magnetic resonance (FDMR) technique a single

molecule is excited with a laser to a metastable paramagnetic state. The

magnetic resonance in the metastable state under the action of the rf field

is detected via the change of the fluorescence intensity. Another approach

utilizes the scanned tunneling microscopy (STM). As an example, Manassen

et al. [11] reported modulation of the tunneling current with the Larmor
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frequency of the localized spin of an individual iron atom in silicon in the

presence of a small permanent magnetic field. Recently, Elzerman et al. [12]

demonstrated the electrical measurement of the spin state of an individual

electron spin in a semiconductor quantum dot. They used spin-to-charge

conversion of a single electron in the dot, and detected the single-electron

charge using a quantum point contact. Xiao et al. [13] reported the elec-

trical detection of the magnetic resonance under the action of the rf field

for a structural single electron paramagnetic defect near the Si/SiO2 inter-

face. They also used spin-to-charge conversion. The electric charge has been

measured using a silicon field-effect transistor.

We do not intend here to give the full list of articles. All of the single-spin

measurement approaches may find (or already found) important application

in science and technology. However, so far, MRFM is the only approach

which has a potential to detect spin and to measure the state of the spin

localized below the surface of a non-transparent material.



Chapter 2

Spin Dynamics - Quasiclassical

Description

While a spin is a quantum object, in many cases its dynamics can be success-

fully described in the scope of the quasiclassical theory. The main property

of an electron or nuclear spin is the following: the spin’s magnetic moment ~µ

is parallel to the spin ~S. We can write ~µ = ±γ~S, where γ is the magnitude

of the gyromagnetic ratio. The positive sign in this equation corresponds to

the proton’s spin and many other nuclear spins. The negative sign corre-

sponds to the electron’s spin and also some nuclear spins. We will consider

an electron spin with the negative gyromagnetic ratio. The direction of the

electron magnetic moment is opposite to the direction of the spin.

It is well known that the uniform magnetic field ~B does not produce a

net force on the magnetic moment: the force acting on the positive North

pole is balanced by the force acting on the negative South pole. The torque

~τ produced by the magnetic field is given by:

~τ = ~µ× ~B. (2.1)

The rate of change of the spin direction is equal to the torque:

~̇S = ~τ = ~µ× ~B. (2.2)

5



6 2. SPIN DYNAMICS - QUASICLASSICAL DESCRIPTION

Now, multiplying both sides of this equation by (-γ), we derive the quasi-

classical equation of motion for the magnetic moment:

~̇µ = −γ~µ× ~B. (2.3)

We will write this equation in terms of cartesian components:

µ̇x = −γ (µyBz − µzBy) ,

µ̇y = −γ (µzBx − µxBz) , (2.4)

µ̇z = −γ (µxBy − µyBx) .

Let ~B = ~Bext, where ~Bext is the permanent external magnetic field, which

points in the positive z−direction. Then Eqs.( 2.4) can be rewritten as:

µ̇x = −γµyBext,

µ̇y = γµxBext, (2.5)

µ̇z = 0.

There are two equilibrium directions for the vector ~µ: positive z−direction

and negative z−direction. The first case µz = µ corresponds to the minimum

magnetic energy

Um = − ~Bext · ~µ = −Bext µ. (2.6)

Consider the case when the transversal component of ~µ is not equal to

zero:

µ⊥ =
(
µ2
x + µ2

y

)1/2
6= 0. (2.7)

We will multiply the second equation in (2.5) by the imaginary units i and

add left and right sides of the first and second equations. Using the notation:

µ± = µx ± iµy, (2.8)

we obtain the equation

µ̇+ = iγBext µ+. (2.9)

The solution is obvious

µ+(t) = µ+(0) exp(iγBextt). (2.10)
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Note, that the real and imaginary parts of µ+ are the x− and y− components

of the vector ~µ. Solution (2.10) describes the counterclockwise precession of

the magnetic moment ~µ about the magnetic field. This is the well known

Larmor precession of the magnetic moment.

B ext

dµ

τ

µ

Figure 2.1: Larmor precession of the magnetic moment ~µ about the magnetic

field ~Bext.

The reason for the Larmor precession can be explained with Fig. 2.1. When

the vectors ~Bext and ~µ are in the plane of the paper, the torque ~τ = ~µ× ~Bext

points out of the paper. Thus, the vector d~µ = −γτ dt has a direction oppo-

site to the direction of torque and points into the paper along the tangential

to the circle shown in Fig. 2.1. Note, that the z−component of the magnetic

moment, i.e. the component of ~µ along the direction of the magnetic field
~Bext is an integral of motion. The other integral of motion is the magnitude

of the magnetic moment:

µ =
(
µ2
x + µ2

y + µ2
z

)1/2
. (2.11)
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It is easy to check it, taking the derivative from µ2:

d

dt
µ2 = 2~µ · ~µ = 2~µ · (−γ~µ× ~Bext) = 0. (2.12)

Next, we will consider the motion of the magnetic moment in the presence

of the radiofrequency (rf) field ~B1.

Let ~B1 be a circularly polarized field in the x − y plane in the counter-

clockwise direction relative to the z−axis:

B1x = B1 cosωt, B1y = B1 sinωt. (2.13)

This expression implies that at t = 0 the rf field points in the positive

x−direction. Now, in Eqs.(2.3) and (2.4) we should put ~B = ( ~Bext+ ~B1). We

will rewrite Eqs.(2.4) in terms of complex quantities µ± and B± = Bx± iBy:

µ̇+ = iγ(Bzµ+ −B+µz),

µ̇z =
iγ

2
(B+µ− −B−µ+). (2.14)

Using Eq.(2.13) and Bz = Bext we rewrite (2.14) in the form:

µ̇+ = iγ(Bextµ+ −B1µze
iωt),

µ̇z =
iγ

2
(B1µ−e

iωt −B1µ+e
−iωt). (2.15)

To simplify these equations we should transfer to the rotating system of

coordinates (RSC). Rotating the coordinate system by the angle ϕ about the

z−axis we obtain for any vector ~A:

Ax = A′
x cosϕ− A′

y sinϕ,

Ay = A′
y cosϕ+ A′

x sinϕ, (2.16)

where “prime” refers to RSC. We take ϕ = ωt which means that the axis x′

points in the direction of the rf field. In terms of the complex variables A±

we obtain:

A± = A′
±e

±iωt. (2.17)
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Thus, in the RSC Eqs.(2.15) take the form:

µ̇′+ = i(γBext − ω)µ′+ − iγB1µz,

µ̇z =
i

2
γB1(µ

′
− − µ′+). (2.18)

These equations describe the motion of the magnetic moment in the effective

field ~Beff :

~Beff =

{
B1, 0, Bext −

ω

γ

}
. (2.19)

Note that the effective field in the RSC is a permanent field, which lies

in the x′ − z plane (see Fig. 2.2). Thus Eqs.(2.18) describe the Larmor

ext

eff

1

B µ

B

B

z

x

Figure 2.2: Magnetic moment in the RSC precesses about the effective mag-

netic field.

precession of the vector ~µ about the effective field. In the “laboratory” system

of coordinates (LSC) we have a complicated motion of ~µ: a precession about

the effective field, which itself rotates about the z−axis with frequency ω.
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The frequency ωeff of the precession in the RSC is, obviously :

ωeff = γ

B2
1 +

(
Bext −

ω

γ

)2
1/2

. (2.20)

µ

B
eff

z

x

Figure 2.3: Resonance case. The magnetic moment ~µ precesses about the

x′−axis.

Below we consider some important special cases.

1. The magnetic moment is parallel to the effective field. There are two

equilibrium directions of ~µ in the RSC: in - and opposite - to the direction

of ~Beff . In this case, in the LSC, the vector ~µ precesses about the z−axis

with frequency ω.

2. Resonance case: ω = ωeγBext, where ωe = γBext is the electron spin

resonance (ESR) frequency. In this case the effective field points in the

positive x−direction (see Fig. 2.3), and Beff = B1. The magnetic moment

precesses about the x′−axis with the frequency ωeff = ωR = γB1. The

frequency ωR = γB1 is called the Rabi frequency. If the magnetic moment

is perpendicular to the x′−axis it executes periodic reversals that are called



11

Rabi oscillations. Note, that in any case the component of the vector ~µ along

the effective magnetic field is an integral of motion in both the RSC and the

LSC.

z

x

B

Figure 2.4: The magnetic field ~B rotates in the x−z plane with the frequency

Ω.

Next, we consider the case when the permanent magnetic field Bext = 0,

and the magnetic moment experiences the rotating magnetic field ~B:

~B = {B sin Ωt, 0, B cos Ωt} , (2.21)

see Fig. 2.4.

To describe the motion of the magnetic moment we should transfer to

the system of coordinates (x′, y, z′) rotating with the magnetic field ~B. Let

z′ points in the direction of ~B. In this RSC the effective magnetic field ~Beff

has components:

~Beff =

{
0,

Ω

γ
, B

}
. (2.22)

The equations of motion in the RCS describe the precession about the ef-



12 2. SPIN DYNAMICS - QUASICLASSICAL DESCRIPTION

BB

µ

Ω/γ

eff

y

z

x

Figure 2.5: Precession of the magnetic moment ~µ in the case of rotating

magnetic field shown in Fig. 2.4. We assume that at t = 0 the vector ~µ

points in the positive z−direction.

fective field (see Fig. 2.5). The frequency of the precession is,

ωeff = [Ω2 + (γB)2]1/2. (2.23)

Note that the magnetic moment periodically returns to the direction of the

magnetic field ~B.

We will consider two extreme cases for the rotating magnetic field.

1. The frequency Ω is much greater than γB (fast rotation of the magnetic

field). In this case the effective magnetic field points approximately in the

y−direction in Fig. 2.5. The vector ~µ in the RSC precesses in the plane x′−z′

with frequency ωeff ≈ Ω. In the LSC it means that the magnetic moment
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does not change its direction. It points in the positive z-direction while the

magnetic field rotates in the x− z plane with frequency Ω. One cas conclude

that in the case Ω � γB the magnetic moment does not “feel” the quickly

rotating magnetic field, which “averages to zero”.

2. The frequency Ω is small compared to γB (adiabatic rotation of the

magnetic field). In this case the effective field in the RSC (see Fig. 2.5)

points approximately in the positive z′-direction. Thus, the vector ~µ does

not change its direction. In the LSC it means that the magnetic moment

rotates together with the magnetic field ~B and executes periodic “adiabatic

reversals”. Periodic adiabatic reversal play an important role in Magnetic

B

B

ext

1

∆B

Figure 2.6: Modulation of the external field ∆ ~B, which provides the cyclic

adiabatic reversals.

Resonance Force Microscopy (MRFM). To implement adiabatic reversals one

does not have to rotate the net magnetic field. One of the simplest implemen-

tations is the slow modulation of the external magnetic field in the presence

of the resonance rf field (see Fig. 2.6).

In this case, in the RSC connected to the rotating rf field ~B1, the effective
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magnetic field is time dependent:

~Beff =

{
B1, 0, Bext −

ω

γ
+ ∆B cos Ωt

}
. (2.24)

Under the resonance condition ω = γBext, the effective field exhibits periodic

B∆
z

B 1
x

B eff

Figure 2.7: Oscillations of the effective field in the x′ − z plane.

oscillations in the x′ − z plane (the x′−axis points in the direction of the rf

field). Fig. 2.7 shows the effective magnetic field for the case when ∆B � B1.

Let the magnetic moment points initially in the positive z−direction. If

∆B � B1 the direction of the vector ~µ is close to the direction of ~Beff .

If ~Beff adiabatically changes its direction, as it is shown in Fig. 2.7, then

the magnetic moment follows ~Beff implementing the cyclic adiabatic rever-

sals. The condition for the adiabatic motion can be derived from simple

considerations:

The rate of change of the effective field is given by:

d ~Beff

dt
= {0, 0, −Ω∆B sin Ωt} . (2.25)
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Clearly, this vector has the maximum magnitude when Ωt = π(n+ 1/2),

n = 0, 1, 2, . . ., i.e. when the polar angle of the effective field θeff = π/2.

The frequency of the precession in the RSC, ωeff = γBeff , has minimum

at the same polar angle θeff = π/2. If the angular speed of the effective

field near the polar angle θeff = π/2 is small compared to the precession

frequency, then the condition of adiabatic motion is satisfied for any angle

θeff . For θeff = π/2 the angular displacement of the effective field is dθeff =

|d ~Beff |/B1. The condition for the adiabatic reversals can be formulated as:

dθeff
dt

� γB1, (2.26)

or ∣∣∣∣∣∣d
~Beff

dt

∣∣∣∣∣∣� γB2
1 . (2.27)

Note that, instead of the modulation of the external field, one can mod-

ulate the rf frequency ω (see Eq.(2.24)).
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Chapter 3

Spin Dynamics - Quantum

Description

The main distinction between the quantum and quasiclassical descriptions of

the spin is the following: in quantum mechanics the component of the spin ~S

along any axis may take only two values ±1/2 (in units of the Planck’s

constant h̄). In the Sz-representation the operator corresponding to the

z−component of the spin is a diagonal matrix with the matrix elements

±1/2:

Ŝz =
1

2

(
1 0

0 −1

)
. (3.1)

The operators, which correspond to the x− and y− components of the spin

are the non-diagonal matrices,

Ŝx =
1

2

(
0 1

1 0

)
, Ŝy =

i

2

(
0 −1

1 0

)
. (3.2)

The operator corresponding to the spin component along the unit vector ~n

is ~̂S · ~n:

~̂S · ~n =
1

2

(
nz n−
n+ −nz

)
, (3.3)

17
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where n± = nx ± iny. Using the relation

n+n− = n2
x + n2

y, (3.4)

one can easily prove that the eigenvalues of the operator (3.3) are ±1/2.

The wave function χ of the spin is a spinor:

χ =

(
c1
c2

)
= c1α+ c2β, (3.5)

where α and β are the eigenfunctions of the operator Ŝz corresponding to

the two values of Sz:

α =

(
1

0

)
, β =

(
0

1

)
. (3.6)

Solving the equation:

1

2

(
nz n−
n+ −nz

)(
c1
c2

)
= ±1

2

(
c1
c2

)
. (3.7)

one can find the normalized eigenfunctions of the operator ~̂S · ~n, which can

be written as

χ 1
2

=
1√
2

(√
1 + nz α+

n+√
1 + nz

β

)
,

χ
− 1

2

=
1√
2

(√
1− nz α−

n+√
1− nz

β

)
. (3.8)

The subscript ±1/2 refers to the eigenvalues of the operator ~̂S · ~n. It is

easy to verify that the eigenfunctions χ±1/2
are orthogonal to each other:

χ†1/2χ−1/2
= 0, where “†” means Hermitian conjugate:

(
c1
c2

)†
= (c∗1, c

∗
2) . (3.9)

Putting nx = 1, ny = nz = 0, we will get the eigenfunction for the

operator Ŝx:

χ 1
2

=
1√
2
(α+ β),
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χ
− 1

2

=
1√
2
(α− β). (3.10)

In a similar way we can get the eigenfunctions for the operator Ŝy:

χ 1
2

=
1√
2
(α+ iβ),

χ
− 1

2

=
1√
2
(α− iβ). (3.11)

According to the measurement postulate of quantum mechanics, if an

experimentalist measures the component of the spin along the unit vector ~n

he will always transform the spin wave function to the function χ 1
2

or χ
− 1

2

,

which corresponds to the two possible values of the spin component.

The spin operators Ŝx, Ŝy and Ŝz do not commute:

[Ŝx, Ŝy] = iŜz, [Ŝy, Ŝz] = iŜx, [Ŝz, Ŝx] = iŜy. (3.12)

It means that the components Sx, Sy and Sz cannot have definite values

simultaneously. In other words, if an experimentalist has measured the value

Sz he cannot predict what will be the result of the measurement of the

component Sx or Sy.

In the Sz-representation the coefficient c1 in (3.5) is the probability am-

plitude for Sz = 1/2 and c2 is the probability amplitude for Sz = −1/2.

The corresponding probabilities are given by the square of modulus |c1|2 and

|c2|2. As an example, if the component of spin along the unit vector ~n has a

definite value Sn = 1/2, then the wave function of the spin is given by the

first equation in (3.8). If an experimentalist will measure the Sz-component

for this state, he will obtain the value Sz = 1/2 with probability (1 + nz)/2,

or the value Sz = −1/2 with probability (n2
x + n2

y)/2(1 + nz). The average

value 〈Sz〉 of the spin z−component can be found as:

〈Sz〉 = χ†
1/2
Ŝz χ1/2

=
1

2

(
|c1|2 − |c2|2

)
=

1

2
nz =

1

2
cos θn, (3.13)

where θn is the polar angle of the unit vector ~n. Thus, the average value 〈Sz〉
equals to the quasiclassical value of the spin z−component if the spin points
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in the direction of the unit vector ~n. The same conclusion is valid for the x−
and y− components of the spin, pointing in the ~n−direction:

〈Sx〉 = χ†
1/2
Ŝxχ1/2

= 1
2 (c1c

∗
2 + c∗1c2) = 1

2nx =
1

2
sin θn cosφn,

〈Sy〉 = χ†
1/2
Ŝyχ1/2

= i
2 (c1c

∗
2 − c∗1c2) = 1

2ny =
1

2
sin θn sinφn, (3.14)

where φn is the azimuthal angle of the vector ~n.

The rotation of the coordinate system by the angle θ about the axis j

(j = x, y, z) can be described by the unitary rotational operator R̂j:

R̂j = exp(−iθŜj) = Ê + (−iθŜj) +
1

2!
(−iθŜj)2 +

1

3!
(−iθŜj)3 + . . . (3.15)

where Ê is the unit matrix,

Ê =

(
1 0

0 1

)
. (3.16)

Using the relations:

Ŝ2
x = Ŝ2

y = Ŝ2
z =

1

4
Ê, (3.17)

we can rewrite the unitary operator R̂j in the finite form:

R̂j = cos
θ

2
Ê − 2i sin

θ

2
Ŝj. (3.18)

We may use the rotational operators in order to transfer, for example, to

the Sx-representation. Taking operator R̂y (rotation about the y−axis) and

putting θ = π/2, we obtain:

Ŝ ′x = R̂†
y Ŝx R̂y =

= 1
2

(
cos θ/2 sin θ/2

− sin θ/2 cos θ/2

)(
0 1

1 0

)(
cos θ/2 − sin θ/2

sin θ/2 cos θ/2

)
(3.19)

= 1
2

(
sin θ cos θ

cos θ − sin θ

)
= 1

2

(
0 1

0 −1

)
,
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where “prime” refers to the Sx−representation. In the same way we may

find the operator Ŝ ′z:

Ŝ ′z = R̂†
y Ŝz R̂y =

1

2

(
cos θ − sin θ

− sin θ − cos θ

)
= −1

2

(
0 1

1 0

)
. (3.20)

Naturally, the operator Ŝ ′x in the Sx−representation has the same form as

the operator Ŝz in the Sz-representation. The operator Ŝ ′z, within the sign,

has the same form as Ŝx. The operator Ŝy does not change its form as Ŝy
commutes with R̂y.

Next, we consider the spin dynamics for the same cases as in Chapter 2.

1. Larmor precession about the external permanent magnetic field ~Bext =

{0, 0, Bext}. Note that, in fact, we use a “half-quantum” theory as we treat

magnetic field classically. The spin Hamiltonian H has the form:

H = γh̄ ~B · ~̂S = γh̄BextŜz. (3.21)

The corresponding Schrödinger equation is

ih̄χ̇ = Hχ. (3.22)

In terms of probability amplitudes c1 and c2 we have from (3.5):

iċ1 = 1
2γBext c1,

iċ2 = −1
2γBext c2. (3.23)

The solution of these equations is obvious:

c1 = c1(0) exp(−iωet/2),

c2 = c2(0) exp(iωet/2), (3.24)

where ωe = γBext is the ESR frequency.

Note the important quantum effect: the Larmor period 2π/ωe is not the

period of the oscillations for the wave function. Indeed, for example, for

t = 0, the wave function

χ(0) =

(
c1(0)

c2(0)

)
, (3.25)
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and for t = 2π/ωe

χ
(

2π

ωe

)
= −

(
c1(0)

c2(0)

)
. (3.26)

The period of motion for the wave function is 4π/ωe instead of 2π/ωe. From

the other side the average values of the spin components behave like their

quasiclassical counterparts. As an example, if 〈Sy(0)〉 = 0, then

〈Sx(t)〉 =
1

2
(c1c

∗
2 + c∗1c2) = 〈Sx(0)〉 cosωet,

〈Sy(t)〉 =
i

2
(c1c

∗
2 − c∗1c2) = 〈Sx(0)〉 sinωet,

〈Sz(t)〉 = 〈Sz(0)〉. (3.27)

The z−component of the spin is an integral of motion, as it was in the

quasiclassical theory, and the period of precession is 2π/ωe.

2. Spin dynamics in the presence of the rf field. Taking ~B = ~Bext + ~B1

with ~B1 = B1{cosωt, sinωt, 0} we start from the following Hamiltonian:

H = γh̄(BextŜz +B1xŜx +B1yŜy). (3.28)

We will rewrite this Hamiltonian in terms of the operators Ŝ± = Ŝx ± iŜy:

H = γh̄
[
BextŜz +

1

2

(
B+Ŝ− +B−Ŝ+

)]
, (3.29)

where B± = B1 exp±iωt. It is natural to transfer to the RSC with the

x′−axis pointing along the rf field ~B1. Using “prime” for the quantities in

the RSC we make the following transformation:

H′ = R̂†
zHR̂z, R̂z = exp(−iωtŜz) = cos

ωt

2
Ê − 2i sin

ωt

2
Ŝz. (3.30)

Operators Ŝ+ and Ŝ− have a very simple form

Ŝ+ =

(
0 1

0 0

)
, Ŝ− =

(
0 0

1 0

)
. (3.31)
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It is easy to check that

ŜzŜ± = ±1

2
Ŝ±, Ŝ±Ŝz = ∓1

2
Ŝ±. (3.32)

Using these relations we obtain

R̂†
zŜ±R̂z = exp(±iωt)Ŝ±. (3.33)

Thus, the spin Hamiltonian in the RSC takes the form:

H′ = γh̄(BextŜz +B1Ŝx). (3.34)

This Hamiltonian describes the spin, which experiences the constant mag-

netic field ~B′ = {B1, 0, Bext}.
In order to write the Schrödinger equation in the RSC we will use the

following relations for the wave function χ′ in the RSC:

χ′ = R̂†
z χ,

d
dt χ

′ =
d

dt
(R̂†

z) χ+ R̂†
z

dχ

dt
, (3.35)

d
dt R̂

†
z = (iωŜz)R̂

†
z.

Thus, the Schrödinger equation in the RSC has the form:

ih̄
d

dt
χ′ + h̄ωŜzχ

′ = H′χ′, (3.36)

or

ih̄χ̇′ = H′
effχ

′,

H′
eff = γh̄(Bext −

ω

γ
)Ŝz +B1Ŝx. (3.37)

The latter equation describes the spin dynamics in the effective field ~Beff ,

which we have introduced in Chapter 2 (see Eq.(2.19)).
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Next, we transfer to another RSC x′′y′z′′ with the z′′−axis pointing in

the direction of the effective field ~Beff . For this transformation we use the

unitary operator R̂y, which now describes the rotation about the y′−axis.

We have computed already the matrix products R̂†
yŜxR̂y and R̂†

yŜzR̂y (see

Eqs.(3.19) and (3.20). Using these expressions and putting

cos θ = (Bext −
ω

γ
)/Beff ,

sin θ = B1/Beff , (3.38)

Beff =

B2
ext −

(
ω

γ

)2

+B2
1

1/2

,

we obtain the equation for the effective Hamiltonian in our new RSC:

H′′
eff = γh̄Beff Ŝz. (3.39)

The solution of the Schrödinger equation for this Hamiltonian is given in

(3.24), where we have to change ωe to ωeff . Thus, in the RSC the wave

function oscillates with the frequency ωeff/2. In the S ′′z -representation con-

nected to the second RSC the operators Ŝx, Ŝy, and Ŝz describe the spin

components along the axes x′′, y′, z′′. Thus, the average spin in the second

RSC precesses about the effective field ~Beff like the quasiclassical magnetic

moment. The z′′−component of the spin, i.e. its components along the effec-

tive magnetic field in an integral of motion in our system. Similar analysis

can be conducted also for the rotating magnetic field (2.21).

Using the Heisenberg representation generated by the unitary operator

U = exp(−iHt/h̄), we can prove that the average spin in any magnetic field

evolves like a quasiclassical magnetic moment. In the Heisenberg represen-

tation the wave function

χ′ = U †χ ≡ χ(0), (3.40)

does not change, while the operator Ŝ ′j

Ŝ ′j = U †Ŝ ′jU, (3.41)
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evolves according to the Heisenberg equation of motion:

d

dt
Ŝ ′j = − i

h̄
[Ŝ ′j,H]. (3.42)

We putH = γh̄ ~B· ~̂S
′
and use the commutation relations for the spin operators

(3.12). Then, we obtain

d

dt
Ŝ ′x = −iγBy[Ŝ

′
x, Ŝ

′
y]− iγBz[Ŝ

′
x, Ŝ

′
z] = −γ(Ŝ ′yBz − Ŝ ′zBy). (3.43)

In the same way we obtain

d

dt
Ŝ ′y = −γ(Ŝ ′zBx − Ŝ ′xBz),

d

dt
Ŝ ′z = −γ(Ŝ ′xBy − Ŝ ′yBx). (3.44)

These three equations can be written in the vector form:

d

dt
~̂S ′ = −γ ~̂S ′ × ~B. (3.45)

Obviously, the same equation describes the evolution of the average spin 〈~S ′〉,
which does not depend on the representation: 〈~S ′〉 = 〈~S〉. If we multiply the

equation for 〈~S〉 by −γ, we will get the quasiclassical equation of motion for

the magnetic moment ~µ (see Eq.(2.3)). Thus, for any magnetic field ~B = ~B(t)

the average magnetic moment −γ〈~S〉 evolves exactly as the quasiclassical

magnetic moment ~µ.
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Chapter 4

Mechanical Vibrations of the

Cantilever

A cantilever used in MRFM is a tiny beam, which is fixed at one end and free

to vibrate at the other end. A small ferromagnetic particle is attached to the

cantilever tip (CT). The force produced by a single spin on the ferromagnetic

particle affects the parameters of the mechanical vibrations of the CT, which

are to be measured in MRFM experiments. The motion of the CT with a

ferromagnetic particle with no magnetic force can be described as a simple

harmonic motion. The Hamiltonian of the corresponding effective harmonic

oscillator can be written in the usual form:

H = − 1

2m∗ p̂
2
c +

1

2
kcx

2
c , (4.1)

where xc is the coordinate of the CT (i.e. the coordinate of the center of

mass of the ferromagnetic particle), m∗ is the mass of the effective harmonic

oscillator, p̂c = −ih̄∂/∂xc is its momentum and kc is its spring constant.

Experimentally kc can be found using the equipartition theorem

1

2
kc〈x2

c〉 =
1

2
kBT, (4.2)

where 〈x2
c〉 is the variance for the thermomechanical random vibrations of

the CT and T is the cantilever temperature. The mass m∗ can be found

27
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from the equation for the experimentally measured oscillator frequency ωc:

ω2
c = kc/m

∗. The parameters kc and m∗ can be also computed theoretically

using the elasticity theory.

It is convenient to use the operators of annihilation â and creation â† in

the theory of the harmonic oscillator:

â =

√
m∗ωc
2h̄

(
xc +

i

m∗ωc
p̂c

)
,

â† =

√
m∗ωc
2h̄

(
xc −

i

m∗ωc
p̂c

)
. (4.3)

The commutator of these operators is: [â, â†] = 1. The Hamiltonian of

the harmonic oscillator (4.1) can be written in terms of the creation and

annihilation operators as:

H = h̄ωc

(
â†â+

1

2

)
. (4.4)

The product of the operators â†â has the eigenvalues n = 0, 1, 2, . . .. The

corresponding eigenfunctions un(xc) can be expressed in terms of the Hermite

polynomials Hn:

un(xc) =
(

1

2nn!

)1/2 (m∗ωc
πh̄

)1/4

exp

(
−m

∗ωcx
2
c

2h̄

)
Hn

√m∗ωc
h̄

xc

 ,
Hn(p) = (−1)n exp(p2)

dn

dpn

[
exp(−p2)

]
. (4.5)

In Dirac notation the eigenfunctions of the harmonic oscillator Hamiltonian

can be denoted as |n〉. The annihilation operator transforms the eigenstate

|n〉 into the eigenstate |n− 1〉:

â|n〉 =
√
n |n− 1〉,

â|0〉 = 0. (4.6)

The creation operator transforms the state |n〉 into |n+ 1〉:

â†|n〉 =
√
n+ 1 |n+ 1〉. (4.7)
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The eigenfunctions of the operator â are called coherent states. An arbi-

trary complex number α is the eigenvalue of the operator â. The normalized

eigenfunction uα(xc) corresponding to the eigenvalue α can be written as:

uα(xc) =
(
m∗ωc
πh̄

)1/4

exp

−
√m∗ωc

2h̄
xc − α

2

+
α2 − |α|2

2

 . (4.8)

The complex number α is connected to the average values of 〈xc〉 and 〈pc〉:

α =
(
m∗ωc
2h̄

)1/2
(
〈xc〉+ i

〈p̂c〉
m∗ωc

)
. (4.9)

The coherent states (4.8) have important properties which allow using them

to describe the quasiclassical motion of the CT. First, the variances of the

coordinate and momentum of the coherent state are given by:

〈α|(xc − 〈xc〉)2|α〉 =
h̄

2m∗ωc
,

〈α|(p̂c − 〈pc〉)2|α〉 =
h̄m∗ωc

2
, (4.10)

where we use the Dirac notation |α〉 for the state which is described by the

eigenfunction uα(xc), and for any operator Â we have

〈α|Â|α〉 =
∫ +∞

−∞
u∗α(xc)Â uα(xc) dxc.

Thus, the product of two variances has the minimum possible value (h̄/2)2,

which does not depend on the value of α. Moreover, in natural quantum

units for the length (h̄/m∗ωc)
1/2 and momentum (h̄m∗ωc)

1/2 the coordinate

and momentum have equal dimensionless uncertainties 1/2. This is what we

may expect for the quasiclassical oscillator.

Second, it follows from the Schrödinger equation, ih̄ψ̇ = Hψ, that the

evolution of the coherent state is given by:

ψ(xc, t) =
(
m∗ωc
πh̄

)1/4

exp

−iωct2
−

√m∗ωc
2h̄

xc − α(t)

2

+
α(t)2 − |α(t)|2

2

 ,
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α(t) = α(0) exp(−iωct), (4.11)

where ψ(xc, t) is the wave function of the harmonic oscillator, α(0) is the

value of the parameter α in the initial coherent state which is described by

the wave function ψ(xc, 0). It follows that the harmonic oscillator remains

in the coherent state in the process of its motion. The average values of the

coordinate and momentum evolve like their classical counterparts:

〈xc(t)〉 = 〈xc(0)〉 cosωct+
〈pc(0)〉
m∗ωc

sinωct,

〈pc(t)〉 = 〈pc(0)〉 cosωct−m∗ωc〈xc(0)〉 sinωct. (4.12)

Again, this is what we may expect for the quasiclassical harmonic oscillator.

Thus, the coherent states look like a perfect tool for the description of the

quasiclassical motion of the CT.

We will also note the formula for the expansion of the coherent state in

terms of the eigenstates of the harmonic oscillator Hamiltonian:

|α〉 = exp(−|α|2/2)
∞∑
n=0

αn√
n!
|n〉. (4.13)

This formula is convenient for the numerical simulations of the CT motion.

The value of |α|2 is equal to the average value of n̂: 〈n〉 = 〈α|â†â|α〉 = |α|2.
The quasiclassical motion of the CT corresponds to values |α| � 1. For

α = 0 the coherent state coincides with the ground state of the harmonic

oscillator.

A spin interacting with the ferromagnetic particle on the CT affects the

motion of the CT. In order to write down the operator describing the spin-CT

interaction, we will consider the expression for the interaction between the

quasiclassical magnetic moment of the spin and the ferromagnetic particle.

The magnetic energy Um of a spin magnetic moment ~µ in a magnetic field ~B

is, as usual, Um = −~µ · ~B. The back action of the spin on the CT appears

because the magnetic field on the spin depends on the CT coordinate xc. As

a result, the spin exerts a force ~F on the CT, which is equal in magnitude
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and opposite in direction to the force ~F ′ produced by the CT on the spin.

We assume that the spin is localized, and we ignore the force ~F ′, while the

force ~F is a key quantity in any MRFM technique. To express the magnetic

energy Um in terms of xc we first approximate the magnetic field near the

spin location ~r0 as

Bj = Bj(~r0) +
∂Bj

∂~r
· (~r − ~r0), j = x, y, z. (4.14)

Thus, the magnetic energy Um can be written as:

Um = U0 −
(
µx
∂Bx

∂~r
+ µy

∂By

∂~r
+ µz

∂Bz

∂~r

)
· (~r − ~r0) , (4.15)

where U0 = ~µ· ~B(~r0) does not depend on ~r. The magnetic force ~F ′ experienced

by the spin is:

~F ′ = −∂Um
∂~r

= µx
∂Bx

∂~r
+ µy

∂By

∂~r
+ µz

∂Bz

∂~r
. (4.16)

The magnetic force experienced by the CT is ~F = −~F ′. If, for example, the

CT oscillates along the x−axis, the only important component of the force
~F is the x-component:

Fx = −
(
µx
∂Bx

∂x
+ µy

∂By

∂x
+ µz

∂Bz

∂x

)
. (4.17)

The corresponding energy of the CT is:

Uc =

(
µx
∂Bx

∂x
+ µy

∂By

∂x
+ µz

∂Bz

∂x

)
xc. (4.18)

Note, that using the Maxwell equation ~∇ × ~B = 0, we can rewrite the

expression for the j−th component of the force ~F ′ as following:

F ′
j = µx

∂Bx

∂rj
+ µy

∂By

∂rj
+ µz

∂Bz

∂rj
= µx

∂Bj

∂x
+ µy

∂Bj

∂y
+ µz

∂Bj

∂z
, (4.19)

where rx = x, ry = y, and rz = z. In vector notation the last expression can

be written as
~F ′ = (~µ · ~∇) ~B. (4.20)
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Correspondingly, the expression (4.18) for Uc can be rewritten as:

Uc =

(
µx
∂Bx

∂x
+ µy

∂Bx

∂y
+ µz

∂Bx

∂z

)
xc = xc (~µ · ~∇)Bx. (4.21)

Note that the gradient of the magnetic field is taken at the spin location ~r0.

Finally, the magnetic energy of the spin-CT system is:

Um = −~µ · ~B(~r0) + xc (~µ · ~∇)Bx. (4.22)

The corresponding quantum operator is

Ûm = γh̄~̂S · ~B(~r0)− γh̄xc ( ~̂S · ~∇)Bx. (4.23)

We use this operator when we consider the quantum theory of MRFM.

x

z

l t
wc

c c

Figure 4.1: Rectangular cantilever with length lc, width wc and thickness tc,

fixed at x = 0.

Next, we will give some basic information about the vibrations of a uni-

form rectangular cantilever which is fixed at one end. We assume that the

length lc of the cantilever is much greater than its width wc which, in turn,

is much greater than the cantilever thickness tc : lc � wc � tc. Let the axis

of the cantilever be parallel to the x−axis, the cantilever end fixed at x = 0,

and consider cantilever vibrations in the z−direction (see Fig. 4.1).
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The Hamiltonian of the cantilever can be represented in the form

H =
1

2

∫ lc

0
dx

ρS (∂zp
∂t

)2

+ Y I

(
∂2zp
∂x2

)2
 . (4.24)

Here zp = zp(x, t) is the cantilever displacement at a point x, S = wctc is

the cross-sectional area of the cantilever, ρ is its density, Y is its Young’s

modulus, I = wct
3
c/12. The equation for the cantilever motion with no

external force and damping is given by:

ρS
∂2zp
∂t2

− Y I
∂4zp
∂x4

. (4.25)

The boundary conditions for the function zp(x, t) are:

zp(x = 0) =
∂zp
∂x

(x = 0) =
∂2zp
∂x2

(x = lc) =
∂3zp
∂x3

(x = lc) = 0. (4.26)

The cantilever eigenfunctions fj(x) and the eigenfrequencies ωj, satisfy

the equation

ρS ω2
j fj(x) = Y I

∂4fj
∂x4

(x). (4.27)

The eigenfunctions fj(x) are orthogonal to each other and can be normalized

to the cantilever length lc:∫ lc

0
dx fj(x)fm(x) = δjm lc. (4.28)

The lowest eigenfrequency of the cantilever vibrations is given by:

ωc = ω1 ' 1.04

(
tc
l2c

)(
Y

ρ

)1/2

. (4.29)

The other frequencies can be described by the formula (j > 1) :

ωj ' [π(j − 0.5)]2
(
tc
l2c

)(
Y

12ρ

)1/2

. (4.30)

The CT amplitude for any mode is twice the amplitude of the mode. As a

result, the effective mass m∗ = mc/4, where mc = ρlcωctc is the cantilever

mass.
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More detailed informations about the cantilever vibrations can be found

in textbooks on the theory of elasticity (e.g. in the book of Landau and

Lifshitz [14]).



Chapter 5

Single-spin Detection in

Magnetic Force Microscopy

(MFM)

In this and next chapters we consider the theory of a single-spin MFM with

no magnetic resonance [15, 16]. While the experimental implementation of a

single-spin MFM is unlikely, the theoretical description for MFM is simpler

than for MRFM and therefore may help to understand the more complicated

MRFM techniques. Below we estimate the static CT displacement caused

by a single spin and the decoherence time in MFM.

5.1 Static displacement of the cantilever tip

We will consider the MFM setup shown in Fig. 5.1. A small ferromagnetic

particle having magnetic moment ~m is attached to the CT and interacts

with a single spin ~S in a sample. The equilibrium position of the CT must

depend on the spin direction. One may expect that the equilibrium position

of CT may accept two values corresponding to the two values of the spin

z−component Sz = ±1/2.

Let assume that the external permanent magnetic field Bext is large

35
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cantilever

d

sample

ferromagnetic 
particle

B

x

z

m

ext

S

Figure 5.1: MFM setup. ~m is the magnetic moment of the ferromagnetic

particle, ~S is a single spin, d is the distance between the bottom of the

ferromagnetic particle and the spin.

enough: kBT � 2µBBext, where µB is the Bohr magneton. Thus, the spin

is in its ground state: the spin magnetic moment ~µ points in the positive

z−direction (even without taking into consideration the magnetic field pro-

duced by the ferromagnetic particle). We should note that the external

magnetic field ~Bext as well as the dipole magnetic field ~Bd produced by the

ferromagnetic particle induce a dipole magnetic moment ~md in the diamag-

netic sample containing a single spin. The polarization of the diamagnetic

atoms weakens the attraction between the spin magnetic moment and the

CT.

Let the ferromagnetic particle have a spherical shape with a radius R0 =

15 nm. Suppose that the distance d between the particle and the spin, unlike

the case shown in Fig. 5.1, is three times less than the radius of the particle:
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d = 5 nm. We take the ratio R0/d = 3 because for the fixed value of d this

ratio provides the maximum attraction between the ferromagnetic particle

and the magnetic moment of the spin.

The dipole magnetic field produced by the ferromagnetic particle on the

spin is

Bd =
2

3
µ0M

(
R0

R0 + d

)3

, (5.1)

where µ0 = 4π × 10−7H/m is the permeability of the free space, and M is

the magnetization (magnetic moment per unit volume) of the ferromagnetic

particle. Taking, for example, µ0M = 1 T , we obtain Bd ≈ 0.28 T . To

B

z

0

0

ext

Figure 5.2: An expected dependence of the CT equilibrium position z0 on

the external magnetic field, Bext. The origin is placed at the CT equilibrium

position with no spin.

estimate the magnetic moment of the diamagnetic sample effectively inter-

acting with the ferromagnetic particle, we consider a rectangular solid with

an area (2R0)
2 and a depth 5.2 nm (the dipole magnetic field, Bd, halves

at this depth). Assuming that the magnetic susceptibility of the sample is

3 × 10−7 (as in silicon), we obtain for the magnetic moment of the sample
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that effectively interacts with the ferromagnetic particle:

md ≈ 3.6× 10−25 J/T for Bext +Bd = 0.28 T,

md ≈ 6× 10−24 J/T for Bext +Bd = 5 T. (5.2)

Changing the external magnetic field from zero to approximately 5T one can

vary the magnetic moment, md, from md � µB up to a value comparable

with µB ≈ 9.4× 10−24 J/T . Fig. 5.2 demonstrates the expected dependence

of the CT equilibrium position, z0, on the external magnetic field Bext.

Now we can estimate the value of the static CT displacement, z0. The

magnetic force ~F , produced by the spin magnetic moment on CT, points in

the negative z−direction and has a magnitude

F = µB
∂Bd

∂z
= 2µB

µ0M

R0 + d

(
R0

R0 + d

)2

≈ 390 aN (5.3)

The corresponding static displacement of the CT is z0 = −F/kc, where

kc is the CT spring constant. Taking the value kc = 6.5 µN/m reported

by Stowe et al. in Ref. [17], we obtain z0 ≈ −60 pm. This value should

be compared with the thermal vibrations f the CT. The root-mean-square

vibration amplitude at temperature T , can be estimated as

zrms ≈
(
kBT

kc

)1/2

. (5.4)

This is smaller than the displacement of the cantilever, z0, at temperatures

T < F 2/kBkc ≈ 1.7 mK. (5.5)

When estimating zrms we assume that the bandwidth of the measuring device,

ωb, is larger than the cantilever frequency, ωc, as the noise spectral density

has a maximum at ω = ωc.

A more serious assumption is that the system is in thermodynamic equi-

librium. This assumes that we neglect slow relaxation processes that causes

“1/f noise”. Generally, 1/f noise, originated, for example, from the tip-

sample electrostatic interaction, can be more important than the thermody-
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namic noise considered above. More detailed information about the thermal

noise one can find, for example, in the book of Kogan[18].

To reduce noise, we can consider the opportunity of decreasing the band-

width, ωb, of the measuring device. The price for reducing ωb is the increase

in measurement time. If ωc/Q � ωb � ωc (where Q is the quality factor of

the CT vibrations) one cannot observe oscillations of the CT near its equi-

librium position. In this case, one can observe only the relaxation of the

cantilever to its equilibrium position.

We would like to note that the MFM setup considered here allows detec-

tion of single-spin flips caused by the relaxation process. Let assume that

the coercivity of the ferromagnetic particle is larger than the value of the

dipole field Bd at the spin. We also assume that a single-spin relaxation time

is much larger than the relaxation time (time constant) Tr of the CT vibra-

tions. The CT relaxation time can be found from the formula Tr = Q/ωc.

For the cantilever reported in Ref. [17], the frequency ωc/2π = 1.7 kHz, the

quality factor Q = 6700, so the relaxation time Tr = 630 ms.

Suppose that an experimentalist reverses the direction of the external

magnetic field ~Bext and reduces its magnitude to a value less than Bd. In

this case the direction of the magnetic moment ~m does not change due to

the coercivity of the ferromagnetic particle. Thus, the direction of the dipole

field, ~Bd, on the spin does not change, either. Next, suppose that the total

magnetic field on the spin, (Bd−Bext), is reduced to the value which satisfies

the inequality:

2µB(Bd −Bext) < kBT. (5.6)

As an example, for T = 1 mK the difference (Bd − Bext) must be less than

or of the order of 200 µT . In this case a single-spin will randomly change

its direction. The average time between jumps will determine the spin re-

laxation time. After each jump, the equilibrium position of the CT changes.

Thus, each spin flip generates damped oscillations of the cantilever near the

new equilibrium position. In this case, an experimentalist might observe a

sequence of short-time CT oscillations such as that shown in Fig. 5.3. If the
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z
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z

t

c

0

0

Figure 5.3: Damped oscillations of the CT caused by random jumps of the

spin. z0 and z′0 are the equilibrium positions of the CT for two directions of

the spin.

bandwidth, ωb, of the measuring device is less than ωc (ωc/Q � ωb � ωc),

one can observe a smooth change of the equilibrium position of the CT with

characteristic time Tr = Q/ωc rather than the damped oscillations shown in

Fig. 5.3. We should note that the experimental observation of the single-spin

flips is possible only if the spectral density of this “spin noise” is greater than

the spectral density of the 1/f noise.

5.2 Decoherence time

Let assume that our spin is placed initially into a superposition of two sta-

tionary states: one state corresponds to the positive z−direction, the other

corresponds to the negative z−direction (Fig. 5.4). Due to the interaction

between the spin and the ferromagnetic particle the cantilever will transform

into a superpositional state, which describes two positions (trajectories) of
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spin 

Figure 5.4: The Schrödinger cat state of the spin-cantilever system.

the cantilever at the same time (Fig. 5.4). Since the cantilever is a quasiclas-

sical object, such a state is commonly called a Schrödinger cat state. The

considered case is typical in quantum mechanics: a quantum system (spin)

interacting with a quasiclassical system (cantilever) generates a Schrödinger

cat state of the quasiclassical system.

Typically, the Schrödinger cat state cannot be observed experimentally

due to the strong interaction between the quasiclassical system and its envi-

ronment. This interaction causes the process which is called “decoherence”.

It means that the coherence (quantum connection) between the two distin-

guished macroscopic states (two positions of a cantilever) disappears. In

other words the Schrödinger cat wave function of the spin-CT system col-

lapses: the cantilever acquires one of the two possible trajectories, and the

spin acquires one of the two possible stationary states.

Normally, the decoherence time is very short. That is why the experimen-

tal detection of the Schrödinger cat state is so difficult. Below we estimate

the decoherence time Td for the parameters used in Section 5.1.

Our rough estimate of the decoherence time is based on the uncertainty

relation. We will consider a particle of mass m in a thermal environment
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at temperature T . Let initially the particle simultaneously occupies two

positions separated by the distance ∆z (the Schrödinger cat state). We will

consider the random motion of the particle along the z−axis. We assume

that a Schrödinger cat wave function collapses when the diffusion in the

momentum space 〈δp2(t)〉 becomes close to the “Schrödinger-cat momentum

uncertainty”: ∆p2 ∼ (h̄/∆z)2.

For a particle interacting with a thermostat, the characteristic fluctua-

tion of energy, δE, during the characteristic time of the fluctuations can be

estimated as kBT . If the particle is in equilibrium with the thermostat, the

average value of momentum is zero, so δE = δp2/2m. Thus, δp2 ∼ mkBT .

The characteristic duration of the particle’s fluctuations in the equilibrium

position can be estimated as the relaxation time Tr. The diffusion coefficient

in the momentum space is D = δp2/Tr ∼ mkBT/Tr.

After the creation of a Schrödinger cat state (at t = 0), the diffusion,

〈δp2(t)〉 can be estimated as

〈δp2(t)〉 ∼ Dt ∼ mkBT

Tr
t. (5.7)

Decoherence occurs when

〈δp2(t)〉 ≈ ∆p2 ∼
(
h̄

∆z

)2

. (5.8)

It happens at time

t = Td ∼ Tr
h̄2

mkBT∆z2
. (5.9)

Setting the value of separation ∆z = 2|z0| = 1.2× 10−10 m, the mass of the

particle m = m∗ = kc/ωc = 6 × 10−14 Kg, the temperature T = 1 mK we

obtain from (5.9) Td/Tr ∼ 9×10−10. Thus, the decoherence time is negligible

compared to the relaxation time. This is a typical situation for quasiclassical

systems.



Chapter 6

Transient Process in MFM -

The Exact Solution of the

Master Equation

Transient process in MFM is one of a few non-trivial problems in the the-

ory of quantum measurement, which allows exact analytical solution. In

this chapter we will derive and discuss the analytical solution for the MFM

transient dynamics.

6.1 Hamiltonian and master equation for the

spin-CT system

In mechanics the transient process for a single harmonic oscillator under

the action of a constant external force is described as damped oscillations

with the frequency ωc(1− 1/4Q2)1/2 and the relaxation time (time constant)

Tr = Q/ωc. In order to describe the thermal fluctuations of the oscillator

one has to consider the classical distribution function, in our case f(zc, vc, t).

The distribution function describes the probability for the oscillator to have

the coordinate zc and the velocity vc at the time t. If the oscillator starts

from a fixed initial position and velocity then the probability function eventu-

43
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ally spreads due to the thermal fluctuations. This process is called thermal

diffusion. For the ensemble of identical oscillators starting from the same

initial conditions the distribution function describes the real distribution of

oscillators in the plane zc − vc.

In quantum mechanics, instead of the distribution function one can use

the density matrix ρ(zc, z
′
c, t). If an oscillator is in the coherent quasiclassical

state its density matrix is given by

ρ(zc, z
′
c, t) = ψ(zc, t) ψ

∗(z′c, t), (6.1)

where the wave function ψ of the coherent state is defined in (4.11). The

diagonal elements of the density matrix ρ(zc, zc, t) describe the probability

density to find the oscillator at the point zc. The density matrix modulus

|ρ| in (6.1) describes roughly the narrow peak which oscillates along the

diagonal zc = z′c in the zc − z′c plane (see Fig. 6.1a). If the oscillator is in

Figure 6.1: Density matrix modulus : a) for the coherent quasiclassical state,

b) for the Schrödinger cat state.

the superposition of two coherent quasiclassical states (the Schrödinger cat
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state) then the density matrix modulus describes roughly two diagonal peaks,

which correspond to two positions of the cantilever (see Fig. 6.1b). Besides,

the density matrix describes the two off-diagonal peaks. These peaks reflect

the coherence between the two oscillator positions. They signal that the

oscillator occupies two distinct positions at the same time.

The interaction with the thermal environment causes the decoherence of

the Schrödinger cat state: the off-diagonal peaks in Fig. 6.1b disappear. It

means that the Schrödinger cat wave function collapses, and the oscillator

chooses one of the two possible trajectories (Fig. 6.1b corresponds to the

equal probabilities for two trajectories). In the ensemble of identical oscil-

lators half of them “chooses” the first trajectory and the other half chooses

the second trajectory. The classical effect of thermal diffusion will cause

the stretching of the diagonal peaks along the z = z′ diagonal. Finally, at

times t � Tr the density matrix will describe a single peak centered at the

oscillator equilibrium position (the origin) and stretched along the diagonal

by the value (kBT/kc)
1/2 which corresponds to the thermal vibrations of the

oscillator.

The equation which describes the evolution of the density matrix in the

thermal environment is called the master equation. The effect of the envi-

ronment depends on its “spectral density”, i.e. the density of environmental

oscillators at a given frequency ω. Probably the simplest model of the envi-

ronment is the “ohmic” model, where the spectral density is proportional to

the frequency ω for ω < Ω, where Ω is the cutoff frequency for the environ-

ment.

For the ohmic model, the simplest master equation has been obtained

by Caldeira and Legget [19]. This equation is valid in the high temperature

limit kBT � h̄Ω. The master equation derived by Unruh and Zurek [20] is

valid for an arbitrary temperature. Hu et al. [21] showed that both equations

([19] and [20]) fail at times shorter than or close to h̄/kBT , and derived the

master equation for the non-ohmic environment. In our book we will use the

simplest master equation by Caldeira and Legget [19].

We will consider the same setup as in the previous chapter (see Fig. 5.1).
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For numerical estimations we will use the same values of parameters as in

the previous chapter. The density matrix of the spin-cantilever (spin-CT)

system will be function of zc, z
′
c, s, s

′ and t, where the variables s = Sz
ans s′ = S ′z take the values ±1/2. We will take into account the interaction

between the cantilever and its environment, and ignore the direct interaction

between the spin and its environment.

The Hamiltonian of the spin-CT system is the sum of the oscillator Hamil-

tonian (4.1), of the spin Hamiltonian in the external magnetic field (3.21),

and the spin-CT interaction (4.23). For the setup shown in Fig. 5.1, the

Hamiltonian takes the form:

H =
p̂c

2

2m∗ +
1

2
kcz

2
c + γh̄B0Ŝz − γh̄

∂Bd

∂z
Ŝzzc. (6.2)

Here B0 = Bext+B
(0)
d is the total magnetic field on the spin when zc = 0, the

origin corresponds to the equilibrium position of the CT with no spin, the

gradient of the dipole field ∂Bd/∂z is taken at the spin location when zc = 0.

We may eliminate the third term in the Hamiltonian (6.2) transferring to the

RSC rotating with the frequency γh̄B0 (see Chapter 2). Next, we will use

the dimensionless Hamiltonian choosing the natural quantum units of length

(h̄ωc/kc)
1/2, energy h̄ωc, momentum (h̄ωcm

∗)1/2, and force (h̄ωckc)
1/2. Using

the same notation for the coordinate and momentum as before we obtain:

H =
1

2
(p̂c

2 + z2
c )− 2ηzcŜz, (6.3)

where the parameter of the spin-CT interaction η is equal to the magnetic

force F (5.3) produced by the spin on the CT in the units of (h̄ωckc)
1/2:

η =
µB√
h̄ωckc

∂Bd

∂z
. (6.4)

Using the dimensionless time τ = ωct we will write the master equation

for the spin-CT system
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∂ρs,s′
∂τ =

[
i
2 (∂zz − ∂z′z′)− i

2(z2
c − z′2c )− 1

2β(zc − z′c)(∂z − ∂z′)

−Dβ(zc − z′c)
2 − 2iη(z′cs

′ − zcs)

]
ρs,s′ .

(6.5)

Here β = 1/Q, D = k
B
T/h̄ωc, ∂zz = ∂2/∂z2

c , ∂z = ∂/∂zc. Using new

coordinates

r = zc − z′c, R =
1

2
(zc + z′c), (6.6)

Eq. (6.5) can be written as:

∂ρs,s′(R, r, τ)
∂τ =

{
i∂Rr − iRr − βr∂r −Dβr2 − iη

[
(2R− r)s′ − (2R + r)s

]}
ρs,s′(R, r, τ).

(6.7)

Performing a Fourier transformation of this equation with respect to the

variable “R”, one obtains, after re-arrangements,

∂ρ̂s,s′

∂τ
+ (βr− k)

∂ρ̂s,s′

∂r
+
[
r + 2η(s′ − s)

]
∂ρ̂s,s′

∂k
=
[
−Dβr2 + iηr(s′ + s)

]
ρ̂s,s′ ,

(6.8)

where

ρ̂s,s′(k, r, τ) =
∫ +∞

−∞
eikRρs,s′(R, r, τ) dR. (6.9)

We can study separately the spin diagonal case (s = s′) and the off–

diagonal case (s 6= s′). For s′ = s (up-up or down-down spins), we have the

following equation:

∂ρ̂s,s
∂τ

+ (βr − k)
∂ρ̂s,s
∂r

+ r
∂ρ̂s,s
∂k

=
(
−Dβr2 + 2iηrs

)
ρ̂s,s, (6.10)

and for s′ 6= s (up-down or down-up spins):
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∂ρ̂s,−s
∂τ

+ (βr − k)
∂ρ̂s,−s
∂r

+ (r + 4ηs)
∂ρ̂s,−s
∂k

= −Dβr2 ρ̂s,−s. (6.11)

We will derive the exact solution of the master equation (6.5) for the case

when the spin is “prepared” initially in the superposition of two states with

s = 1/2 and s = −1/2, while the CT is in the quasiclassical coherent state

ψ(zc, s, 0) =
1

(π)1/4
exp

[
i〈pc(0)〉zc −

1

2
(zc − 〈zc(0)〉)2

]
·


a

b

 , (6.12)

where the amplitudes a and b correspond to the values of s = 1/2 and

s = −1/2, respectively. The corresponding density matrix can be written as

ρs,s′(zc, z
′
c, 0) = ψ(zc, s, 0)⊗ ψ†(z′c, s

′, 0), (6.13)

where we use notation ⊗ for the tensor product.

Note, that we consider here an ensemble of spin-CT systems with the

same initial state. This implies that the experimenter can detect the po-

sition and momentum of a point on the CT with quantum limit accuracy

〈(δpc)2 (δzc)
2〉 = 1/4. (In our gedanken experiment, this corresponds to an

uncertainty of 300 fm for position and 300 nm/s for velocity.) Based on

the master equation, we can predict the average position of the CT for its

given initial state, depending on the spin state. If the double uncertainty

of the position is smaller than the separation between two possible average

positions, the cantilever will measure the state of the spin.

After Fourier transformation, the “cantilever part” of the initial density

matrix is represented by

ρ̂s,s′(k, r, 0) ∝ exp
[
i〈pc(0)〉r + ik〈zc(0)〉 − r2/4− k2/4

]
. (6.14)
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6.2 Solution for spin diagonal matrix elements

The equations for the characteristics of Eq. (6.10) are

dτ =
dr

βr − k
=
dk

r
=

dρ̂s,s(
−Dβr2 + 2iηsr

)
ρ̂s,s

, (6.15)

or, explicitly
dr
dτ = βr − k,

dk
dτ = r,

dρ̂s,s
dτ =

(
−Dβr2 + 2iηsr

)
ρ̂s,s.

(6.16)

From the first two equations in (6.16), one obtains

d2k

dτ 2
− β

dk

dτ
+ k = 0,

which has the following general solution

k = eβτ/2
(
c1 cos θτ + c2 sin θτ

)
, (6.17)

where θ =
√

1− β2

4
. Here we are considering the case β < 2, so θ is a real

number. Using the second equation in (6.16) one obtains:

r = eβτ/2
[(
β

2
cos θτ − θ sin θτ

)
c1 +

(
β

2
sin θτ + θ cos θτ

)
c2

]
. (6.18)

Inverting Eqs. (6.17) and (6.18) as functions of c1 and c2 one obtains the

characteristic curves:

c1 = e−βτ/2(q1k + q2r), (6.19)

and

c2 = e−βτ/2(p1k + p2r), (6.20)



50
6. TRANSIENT PROCESS IN MFM - THE EXACT SOLUTION OF THE

MASTER EQUATION

where the time dependent constants q1, q2, p1 and p2 have been defined as

q1 = 1
θ

(
β
2 sin θτ + θ cos θτ

)
,

q2 = −1
θ sin θτ,

p1 = 1
θ

(
−β2 cos θτ + θ sin θτ

)
,

p2 = 1
θ cos θτ.

(6.21)

Substituting (6.18) into the third equation of (6.16) and integrating in time,

one obtains:

ρ̂s,s(k, r, τ) ∝ A(c1, c2) exp
[
i2ηs(c1g1 + c2g2)−Dβ(c21f1 + 2c1c2f3 + c22f2)

]
,

(6.22)

where the functions f ′is and g′is are defined as

f1(τ) = eβτ

8

[(
β + 4θ2

β

)
+ β cos 2θτ − 2θ sin 2θτ

]
,

f2(τ) = eβτ

8

[(
β + 4θ2

β

)
− β cos 2θτ + 2θ sin 2θτ

]
,

f3(τ) = eβτ

8

[
2θ cos 2θτ + β sin 2θτ

]
,

g1(τ) = eβτ/2 cos θτ ,

g2(τ) = eβτ/2 sin θτ .

(6.23)

The arbitrary function A(c1, c2), which depends on the characteristics, is
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determined by the initial density matrix ρ̂s,s(k(0), r(0), 0),

A(c1, c2) = ρ̂s,s

(
c1,

1
2
βc1 + θc2, 0

)
exp [−2iηs(c1g10 + c2g20)]

× exp
[
Dβ(c21f10 + 2c1c2f30 + c22f20)

]
,

(6.24)

where fi0 = fi(0) and gi0 = gi(0). From the initial density matrix (Eq.

(6.14)), we obtain

ρ̂s,s(k, r, 0) ∝ exp
{
i
[(

1
2〈pc(0)〉β + 〈zc(0)〉

)
c1 + 〈pc(0)〉θc2

]}

× exp
{
−
[(
β2

16 + 1
4

)
c21 + βθ

4 c1c2 + θ2

4 c
2
2

]}
.

(6.25)

Substituting (6.24) and (6.25) into (6.22) one obtains:

ρ̂s,s(k, r, τ) ∝

exp
{
i
[(

1

2
〈pc(0)〉β + 〈zc(0)〉+ 2ηsG1

)
c1 + (〈pc(0)〉θ + 2ηsG2) c2

]}

× exp

{
−
[(
β2

16
+

1

4

)
c21 +

βθ

4
c1c2 +

θ2

4
c22

]}

× exp {−Dβ(F1c
2
1 + 2c1c2F3 + F2c

2
2)},

(6.26)

where Fi and Gi are defined as

Fi(τ) = fi(τ)− fi0, Gi(τ) = gi(τ)− gi0.

Substituting in (6.26) the values of characteristics as functions of k and r

(Eqs.(6.19) and (6.20)), one obtains:

ρ̂s,s(k, r, τ) ∝ exp
[
−r2C1 + irC2 + (iB2 − rB1) k − σ2

∗k
2
]
, (6.27)
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where

σ2
∗ = e−βt

[(
β2

16
+

1

4

)
q2
1 +

βθ

4
q1p1 +

θ2

4
p2

1 +Dβ(F1q
2
1 + 2q1p1F3 + F2p

2
1)

]
,

(6.28)

B1 = e−βt
{(

β2

16 + 1
4

)
2q1q2 + βθ

4 (q1p2 + q2p1) + θ2

4 2p1p2

+2Dβ[F1q1q2 + (q1p2 + q2p1)F3 + F2p1p2]
}
,

(6.29)

B2(s) = e−βt/2
[(

1

2
〈pc(0)〉β + 〈zc(0)〉+ 2ηsG1

)
q1 + (〈pc(0)〉θ + 2ηsG2) p1

]
,

(6.30)

C1 = e−βt
[(
β2

16
+

1

4

)
q2
2+

βθ

4
q2p2+

θ2

4
p2

2+Dβ(F1q
2
2+2q2p2F3+F2p

2
2)
]
, (6.31)

C2(s) = e−βt/2
[(

1

2
〈pc(0)〉β + 〈zc(0)〉+ 2ηsG1

)
q2 + (〈pc(0)〉θ + 2ηsG2) p2

]
.

(6.32)

Note, that in Eqs. (6.30) and (6.32) the coefficients B2 and C2 depend

on s. Performing the inverse Fourier transform one obtains

ρ1/2,1/2(R, r, τ) =
|a|2

2
√
π σ∗

exp
[
−r2C1 + irC2(1/2)

]
× exp [(−rB1 + iB2(1/2)− iR)2/4σ2

∗],

ρ−1/2,−1/2(R, r, τ) =
|b|2

2
√
π σ∗

exp
[
−r2C1 + irC2(−1/2)

]
× exp [(−rB1 + iB2(−1/2)− iR)2/4σ2

∗].

(6.33)

Eqs. (6.33) represent two squeezed Gaussians with modulus
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|ρ1/2,1/2(R, r, τ)| =
|a|2

2
√
π σ∗

exp
[
−r2(C1 −B2

1/4σ
2
∗)
]

× exp [−(B2(1/2)−R)2/4σ2
∗],

|ρ−1/2,−1/2(R, r, τ)| =
|b|2

2
√
π σ∗

exp
[
−r2(C1 −B2

1/4σ
2
∗)
]

× exp [−(B2(−1/2)−R)2/4σ2
∗].

(6.34)

Z
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∆d

σ

σd

d

M
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σd

M_ _
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c
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Figure 6.2: Schematic view of the Gaussians representing the diagonal

elements |ρ−1/2,−1/2| and |ρ1/2,1/2| (seen from the top) in the (zc, z
′
c) plane.

We show the centers M−− and M++, the variances σ′d (transverse) and σd
(parallel), and the distance between the centers ∆d.

Fig. 6.2 shows schematically two peaks (seen from the top as ellipses)

corresponding to the two matrix elements |ρ1/2,1/2| and |ρ−1/2,−1/2|. We de-

note the centers of the ellipses, which lie on the diagonal z = z′, by M++

and M−−, the semi-major axis by σd, the semi-minor axis by σ′d and the

distance between the centers by ∆d. The |ρmax1/2,1/2| is located at M++ =
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(r = 0, R = B2(1/2)) or zc = z′c = B2(1/2), while the |ρmax−1/2,−1/2| is at

M−− = (r = 0, R = B2(−1/2)) or (zc = z′c = B2(−1/2)). The distance ∆d is

given by

∆d = B2(1/2)−B2(−1/2). (6.35)

From Eqs. (6.34), we obtain σd =
√

2 σ∗, and

2σ′d
2

=
4σ2

∗
4σ2

∗C1 −B2
1

. (6.36)

For a single spin measurement, the two peaks corresponding to |ρmax1/2,1/2| and

|ρmax−1/2,−1/2| must be well separated. It follows that the condition ∆d > 2σd
must be satisfied.

First, we consider the case βτ � 1 or t � Q/ωc, where Q/ωc is the

time constant for the CT vibrations. In this case, we obtain two equilibrium

positions for the cantilever, when the transient process is over. We have ∆d =

2η and σd =
√
D. The value σd =

√
D is the thermodynamical uncertainty in

the CT position caused by the thermal noise. The two equilibrium positions

can be distinguished if η >
√
D or T < F 2/k

B
kc, where F = µ

B
|∂Bd/∂z|

is the magnetostatic force between the ferromagnetic particle and the spin.

The inequality for temperature T exactly coincides with formula (5.5).

Next, we consider the initial transient process after the instant t = 0. For

βτ � 1, we have

∆d = 4η sin2 τ

2
, σd =

[
1

2
+Dβτ −Dβ cos τ sin3 τ

]1/2
. (6.37)

The expression for ∆d describes the oscillating distance between the two

peaks. It corresponds to initial vibrations of two classical oscillators near

their equilibrium positions zc = η and zc = −η. The distance between them

is given by ∆d. For our gedanken experiment the maximum value of ∆d

is 0.24 nm. The formula for σd contains three terms. The first term, 1/2,

corresponds to the quantum dispersion of the initial wave function. The
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second term, Dβτ , describes the initial thermal diffusion of an ensemble of

oscillators. Formally, setting τ ∼ 1/β, we can estimate the final disper-

sion σd =
√
D, which corresponds to thermal vibrations of the cantilever.

The third term describes insignificant oscillations with small amplitude, Dβ.

Note, that the condition for distinguishing two cantilever positions at the

beginning of the transient process is much less restrictive than the corre-

sponding condition for the equilibrium positions at βτ >> 1. Indeed, after

the first half-period (τ = π), we have ∆d = 4η and σd = (1/2 + πDβ)1/2.

Taking into account that β � 1, the condition for distinguishing two posi-

tions, η > (1/2 + πDβ)1/2, is much easier than η >
√
D. In our gedanken

experiment the condition for distinguishing the two positions for the transient

process is

T < Tmax =
4

π

QF 2

k
B
kc

= 14 K. (6.38)

This estimate seems to be too optimistic. It is connected with the very

small distance (5 nm) between the ferromagnetic particle and the spin. If

we increase this distance to 50 nm, the temperature Tmax drops from 14 K

to 1.1 mK.

The condition ∆d > 2σd is satisfied for the first time at

τ = τ0 ≈
21/4

√
η
. (6.39)

This expression is valid if η >> 1 and η >> (Dβ)2/
√

8. For our parameters

we have η = 144, D = 1.25 × 107 T (T is the temperature in Kelvin),

β = 1.5× 10−4, and τ0 = 0.1. Thus, the above conditions are both satisfied.

The value of t0 = ωcτ0 is approximately 9.3 µs.
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6.3 Solution for spin off-diagonal matrix

elements

The equations for the characteristics are now given by

dτ =
dr

βr − k
=

dk

r − 4ηs
=

dρ̂s,−s
−Dβr2 ρ̂s,−s

, (6.40)

or

dr
dτ = βr − k,

dk
dτ = r − 4ηs,

dρ̂s,−s
dτ = −Dβr2 ρ̂s,−s.

(6.41)

The solutions of the first two equations of (6.41) are

k = eβτ/2
(
c1 cos θτ + c2 sin θτ

)
+ 4βηs,

r = eβτ/2
[(
β
2 cos θτ − θ sin θτ

)
c1 +

(
β
2 sin θτ + θ cos θτ

)
c2

]
+ 4ηs.

(6.42)

Following the same steps as above we obtain for the Fourier transform:

ρ̂1/2,−1/2(k, r, τ) ∝ A(c1, c2) exp
{
−Dβ

[
f1c

2
1 + 2c1c2f3 + f2c

2
2

]}

× exp
{
−Dβ

[
4η(g1c1 + g2c2) + 4η2τ

]}
,

(6.43)

where we fix s = 1/2 (changing sign of s corresponds to a change of sign

of η, see Eqs.(6.41), therefore the case s = −1/2 can be easily obtained).

The functions fi and gi have been defined as above, and c1 and c2 are new
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characteristic curves given by

c1 = e−βτ/2(q1k + q2r + ηq3),

c2 = e−βτ/2(p1k + p2r + ηp3).
(6.44)

Here, q1, q2, p1, p2 are defined by Eqs. (6.21) and q3, p3 are given by

q3 = 2
θ

[
−β

(
β
2 sin θτ + θ cos θτ

)
+ sin θτ

]
,

p3 = 2
θ

[
β
(
β
2 cos θτ − θ sin θτ

)
− cos θτ

]
.

(6.45)

With the same initial condition, Eq. (6.14), we can determine the function

A(c1, c2) and obtain

ρ̂1/2,−1/2(k, r, τ) ∝ ρ̂1/2,−1/2

(
c1 + 2βη, 12βc1 + θc2 + 2η, 0

)

× exp
{
−Dβ

[
F1c

2
1 + 2c1c2F3 + F2c

2
2 + 4η(G1c1 +G2c2) + 4η2τ

]}
,

(6.46)

where Fi(τ) and Gi(τ) are defined as above. By substituting the initial

condition (6.14) we have

ρ̂1/2,−1/2(k, r, τ) ∝ exp
[
−r2C12 − rηC11 − η2C10 + irC21 + iηC20

]
× exp [(iB20 − rB11 − ηB10) k − σ2

∗k
2],

(6.47)

where σ∗ is given by Eq. (6.28) and

C12 = e−βτ
[(
β2

16
+

1

4
+DβF1

)
q2
2+

(
βθ

4
+ 2DβF3

)
q2p2+

(
θ2

4
+DβF2

)
p2

2

]
,
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C11 = e−βτ
[(
β2

16
+

1

4
+DβF1

)
2q2q3 +

(
βθ

4
+ 2DβF3

)
(q2p3 + p2q3)

]

+e−βτ
[(
θ2

4
+DβF2

)
2p2p3

]
+4e−βτ/2

[(
3β

8
+DβG1

)
q2 +

(
θ

4
+DβG2

)
p2

]
,

C10 = e−βτ
[(
β2

16
+

1

4
+DβF1

)
q2
3 +

(
βθ

4
+ 2DβF3

)
q3p3 +

(
θ2

4
+DβF2

)
p2

3

]

+4e−βτ/2
[(

3β

8
+DβG1

)
q3 +

(
θ

4
+DβG2

)
p3

]
+ 4

(
1

4
+
β2

4
+Dβτ

)
,

C21 = e−βτ/2
[(〈pc(0)〉β

2
+ 〈zc(0)〉

)
q2 + 〈pc(0)〉θp2

]
,

C20 = e−βτ/2
[(〈pc(0)〉β

2
+ 〈zc(0)〉

)
q3 + 〈pc(0)〉θp3

]
+ 2 (〈pc(0)〉+ 〈zc(0)〉β) ,

B11 = e−βτ
[(
β2

16
+

1

4
+DβF1

)
2q2q1 +

(
βθ

4
+ 2DβF3

)
(q1p2 + q2p1)

]

+e−βτ
[(
θ2

4
+DβF2

)
2p2p1

]
,

B10 = e−βτ
[(
β2

16
+

1

4
+DβF1

)
2q3q1 +

(
βθ

4
+ 2DβF3

)
(q1p3 + q3p1)

]
+

e−βτ
[(
θ2

4
+DβF2

)
2p3p1

]
+ 4e−βτ/2

[(
3β

8
+DβG1

)
q1 +

(
θ

4
+DβG2

)
p1

]
,

B20 = e−βτ/2
[(

1

2
〈pc(0)〉β + 〈zc(0)〉

)
q1 + 〈pc(0)〉θp1

]
. (6.48)

Performing the inverse Fourier transform and taking the modulus we ob-

tain,

|ρ1/2,−1/2(R, r, τ)| =
|ab∗|√
πσ∗

eξη
2

e−(r + r0η)
2/2σ̃2

e−(B20 −R)2/4σ2
∗ ,

|ρ−1/2,1/2(R, r, τ)| =
|a∗b|√
πσ∗

eξη
2

e−(r − r0η)
2/2σ̃2

e−(B20 −R)2/4σ2
∗ ,

(6.49)

where
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σ̃2 =
2σ2

∗
4σ2

∗C12 −B2
11

,

r0 =
2σ2

∗C11 −B11B10

4σ2
∗C12 −B2

11

,

ξ =
B2

10

4σ2
∗
− C10 −

r2
0

2σ̃2 .

(6.50)

The maxima are located at (R = B20, r = −ηr0) for |ρ1/2,−1/2|) and at

(R = B20, r = ηr0) for |ρ−1/2,1/2|. In (zc, z
′
c) coordinates this corresponds

to M+− = (zc = B20 − ηr0/2, z′c = B20 + ηr0/2) for |ρ1/2,−1/2| and

M−+ = (zc = B20 + ηr0/2, z′ = B20 − ηr0/2) for |ρ−1/2,+1/2|, so that

the distance between them is given by ∆nd =
√

2η|r0|. Next, we consider

the quadratic form (r ± r0η)/2σ̃
2 + (B20 − R)2/4σ2

∗ in the zc − z′c plane.

Straightforward calculations show that this is an ellipse whose semi-axes are

respectively given by σ̃ (across the diagonal) and 2
√

2σ∗ (along the diago-

nal). The centers of the peaks M+−,M−+ are symmetric with respect to the

diagonal line zc = z′c.

The most remarkable difference compared with the diagonal case, is the

presence of irreversible decoherence. Indeed, the heights of the peaks are ex-

ponentially reduced in time by the damping factor ∼ exp(−4η2Dβτ). This,

in turn, defines a characteristic time scale of decoherence: τd = 1/4η2Dβ.

This formula exactly coincides with the expression (5.9) based on a semi-

qualitative analysis. The value of the decoherence time Td = τd/ωc is very

small. In our gedanken experiment Td ≈ 60 ps at the temperature T = 1mK.

At time τ = τ0, when two diagonal peaks are clearly separated, the

damping factor is 4η2Dβτ0. We expect to observe the coherence between

the two peaks if this factor is not much more than one unit. Thus, using

the expression for τ0 from Eq. (6.39), we can estimate the condition for the

quantum coherence as Dβη3/2 < 1, or



60
6. TRANSIENT PROCESS IN MFM - THE EXACT SOLUTION OF THE

MASTER EQUATION

T < T ′
max =

Q

k
B

(h̄ωc)
7/4k3/4

c

F 3/2
. (6.51)

For our parameters the value of T ′
max is approximately 3× 10−7 K.

Now, we will check the validity of our estimate. Eq. (6.39) is valid if

η >> (Dβ)2/
√

8. Setting T = T ′
max or Dβη3/2 = 1, we obtain η4 >> 1/

√
8,

which is definitely true, assuming η >> 1. Next, the condition of the validity

of the high temperature approximation is D >> 1. For T = T ′
max, it follows

that η3/2 << Q. This inequality is roughly satisfied (η3/2 = 1700, Q = 6700).

Finally, as we mentioned previously, the master equation fails at times t ≤
h̄/k

B
T . Thus, the time considered, τ0 = 21/4/

√
η, must be much greater than

1/D, which is definitely wrong. Thus, our condition (6.51) for the creation

of the macroscopic quantum superposition (the Schrödinger cat state) is not

justified for the parameters considered.

However, the tenfold increase of Q (Q = 67000) would increase the max-

imum temperature T ′
max to 3 µK. At this temperature we obtain τ0 ≈ 0.1

and 1/D ≈ 0.027. Thus, in this case, τ0 � 1/D, and all conditions of

applicability of our equations are satisfied.



Chapter 7

π−Pulses Driven Periodic Spin

Reversals in Magnetic

Resonance Force Microscopy

(MRFM)

Now we transfer to the main topic of our book - the theory of MRFM. In this

chapter we will consider a simple (from the theoretical point of view) MRFM

technique: application of a sequence of resonant π-pulses, which drive the

periodic reversals of the spin. In turn, the spin periodic reversals drive the

cantilever vibrations, which are to be detected (Berman and Tsifrinovich

[22]).

We will consider the same setup as in Chapters 5 and 6 (see Fig. 5.1).

In addition to the external magnetic field ~Bext we assume a transversal rf

rotating field ~B1, (see formulas (2.13)). Let assume that the spin magnetic

moment ~µ points initially in the positive z−direction. The total magnetic

field on the spin contains three parts. The first one is the permanent external

field ~Bext. The second one is the dipole field ~Bd produced by the CT, i.e. by

the ferromagnetic particle on the CT. The third one is the rf field ~B1. The

dipole field can be represented as a sum of two terms

61
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~Bd = ~B
(0)
d + ~B

(1)
d , (7.1)

where ~B
(0)
d corresponds to the equilibrium position of CT with no spin, and

~B
(1)
d is associated with the driven CT vibrations caused by the spin. We

assume here that ~B
(1)
d is small compared to ~B

(0)
d and ~B1. We also choose the

value of the rf frequency ω:

ω = γ
(
Bext +B

(0)
d

)
. (7.2)

It means that the rf field is resonant to the spin if we ignore the small

B1

µ

µ z

µB

B
_

a)

b)

t

t

π /ωR

Figure 7.1: Action of the rf π-pulse: a) amplitude of the rf field. b) change

of µz.

contribution of ~B
(1)
d . Let us transfer to the RSC, which rotates about the

z−axis with frequency ω. As we have shown in Chapter 1 the effective

magnetic field ~Beff in the RSC is the permanent field of magnitude B1, which

lies in the transversal plane. The spin magnetic moment ~µ will precess about

the effective field ~Beff with the Rabi frequency ωR = γB1. Let one applies,
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instead of the continuous rf field a rf pulse of duration π/ωR. Such a pulse is

called the π−pulse: it reverses the direction of the magnetic moment ~µ (see

Fig. 7.1). If one applies a periodic sequence of π−pulses then the direction

of the magnetic moment changes periodically with the period equal to the

double time interval between the π-pulses. When the magnetic moment ~µ

points in the positive z−direction it attracts the ferromagnetic particle. If ~µ

points in the negative z−direction it repels the ferromagnetic particle. Thus,

the periodic sequence of π-pulses generates the periodic magnetic force on

the CT. If the period of this force matches the cantilever period Tc = 2π/ωc,

then the resonant magnetic force will drive the resonant CT vibrations. If the

amplitude of the driven CT vibrations exceeds the amplitude of the thermal

CT vibrations it is possible to detect experimentally a single spin.

Below we estimate the amplitudes of the driven and thermal vibrations

of the CT. We assume that the cantilever frequency ωc is much smaller than

the Rabi frequency ωR. In this case the duration of the π-pulse π/ωR is

small compared to the time interval between the pulses Tc/2. Thus, we can

approximate the z−component of the magnetic force Fz(t) on the CT with a

periodic rectangular function of amplitude F . Let us choose, for example,

−T TT /2

F (t)

t

−F

F

c c c

z

c−T /2

Figure 7.2: Periodic force Fz(t) generated by a single spin.

the even function (see Fig. 7.2):
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Fz(t) =


F for − Tc

4 < t < Tc
4

−F for − Tc
2 < t < −Tc4 , or Tc4 < t < Tc

2 .

(7.3)

The Fourier component of Fz(t) on the CT frequency, ωc, is Fω cosωct, where

Fω is

Fω =
2

Tc

∫ Tc/2

−Tc/2
F (t) cosωct dt =

4

π
F. (7.4)

This component drives the resonant vibrations of the CT.

For the harmonic magnetic force Fω exp(iωt), the CT displacement is

given by:

zc =
Fω/m

∗

ω2
c − ω2 + iω2/Q

eiωt. (7.5)

If we take into considerations only the resonant Fourier component of the

magnetic force then, putting ω = ωc, we obtain:

zc = −iQ(Fω/kc) e
iωt. (7.6)

To estimate the amplitude of the driven CT vibrations we will take the

magnetic field gradient ∂Bd/∂z = 100 kT/m. Then the magnetic force:

F = µB
∂Bd

∂z
= 940 zN. (7.7)

Further we will use the parameters from Ref. [17], as we did in the previous

two chapters. Taking Q = 6700, kc = 6.5 µN/m we obtain the amplitude A

of the driven vibrations:

A =
4

π

QF

kc
= 1 nm. (7.8)

Next, we will estimate the root-mean-square (rms) amplitude, zrms of the

thermal CT vibrations. We will use the fluctuation-dissipation theorem (see,

for example, the textbook of Landau and Lifshitz [23]). According to this

theorem the value of zrms is given by the expression

zrms =

[
2h̄Im(χ) coth

(
h̄ωc

2kBT

)
∆f

]1/2

, (7.9)
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∆f =
ωb
2π
,

where χ is the resonant susceptibility of the CT and ωb is the bandwidth of

the measuring device. It follows from (7.6) that the resonant susceptibility

is

χ = i
Q

kc
. (7.10)

Assuming h̄ωc � kBT we simplify the formula (7.9):

zrms '
(

4kBTQ∆f

kcωc

)1/2

. (7.11)

Note that putting ∆f = (π/2)(fc/Q) we will obtain the estimate zrms =

(kBT/kc)
1/2 which follows from the equipartition theorem. Using the value

∆f = 0.4Hz from Ref. [17] we obtain the value zrms ≈ 1.5
√
T (nm), where

the temperature T is taken in kelvins. The rms amplitude of the thermal

vibrations is to be compared with the rms amplitude of the driven vibrations

Arms ≈ 0.71nm. It follows that for our parameters the single spin detection

is possible for T < 0.2K.

The same result can be obtained if we compare the effective thermal force

acting on the oscillator with the resonant component of the magnetic force

Fω. According to the fluctuation-dissipation theorem the rms force is given

by:

Frms =

{
2h̄Im(χ)

|χ|2
coth

(
h̄ωc

2kBT

)
∆f

}1/2

, (7.12)

Taking h̄ωc � kBT we obtain

Frms ≈
(

4kBTkc∆f

Qωc

)1/2

=

(
kc
Q

)
zrms. (7.13)

Since the resonant component of the magnetic force is

Fω =

(
kc
Q

)
A, (7.14)

comparing Fω/
√

2 with Frms will result in the same condition of the single-

spin detection T < 0.2 K.
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Note that we ignored the direct interaction between the spin and its en-

vironment, which will cause the quantum jumps - random change of the spin

direction. Clearly, quantum jumps will prevent the observation of the driven

CT vibrations if the characteristic time interval between two consecutive

jumps is smaller than the cantilever time constant Tr = Q/ωc.



Chapter 8

Oscillating Adiabatic Spin

Reversals Driven by the

Frequency Modulated rf Field

In this chapter we consider a technique, which has been widely used in MRFM

experiments (see, for example, Rugar et al. [6]). This technique is based on

the frequency modulation of the rf field. To explain the idea we will consider

the same setup as in the previous chapters (see Fig. 5.1) with an additional

rotating transversal rf field. As we mentioned in Chapter 6 the frequency

modulation of the rf field causes the change in the direction of the effective

field in the RSC. If the frequency ω of the rf field matches the frequency ωL
of the Larmor precession (ω = ωL) the z−component of the effective field

is zero, and the effective field in the RSC equals the rf field: ~Beff = ~B1.

If the frequency ω deviates from the value ωL, the effective magnetic field

acquires the z−component (ωL − ω)/γ. Now, let the value of ω change

periodically from ωL+∆ to ωL−∆, and ∆ � ωR = γB1. Then, the effective

magnetic field experiences the cyclic reversals, (see Fig. 2.7). If the condition

(2.27) for the adiabatic reversals is satisfied, then the spin component along

the effective magnetic field is an approximate integral of motion (adiabatic

invariant). It means that the spin being initially directed along the effective

67
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magnetic field will experience adiabatic reversals together with the effective

field. If the period of the spin adiabatic reversals matches the CT period

Tc = 2π/ωc, then the periodic magnetic force produced by the spin on the

CT forces the driven cantilever vibrations in the same way as in the case of

action of the periodic sequence of π-pulses described in the previous chapter.

Note, that our reasoning is valid if the oscillating dipole field B
(1)
d , associated

with the CT vibrations, is small compared to B1, so that we can ignore the

oscillations of the dipole field. However, in our theoretical analysis we take

into consideration the oscillations of the dipole field. Below, in Section 8.1 we

consider the entire CT-spin system within the framework of the Schrödinger

equation (Berman et al. [24]).

In Section 8.2 we discuss the decoherence and the thermal diffusion caused

by the interaction between the cantilever and its environment (Berman et al.

[25]).

8.1 Schrödinger dynamics of the CT-spin sys-

tem

The transversal frequency modulated rf field acting on the spin system is

represented as

B1x = B1 cos(ωt+ φ(t)),

B1y = B1 sin(ωt+ φ(t)), (8.1)

where φ(t) describes a smooth change in phase required for cyclic adiabatic

reversals of the spins: |dφ/dt| � ω.

The Hamiltonian of the spin-oscillator system in the RSC has the form:

H =
1

2m∗ p̂
2
c +

1

2
kcz

2
c + h̄

(
ωL − ω − dφ

dt

)
Ŝz + h̄ωRŜx − γh̄

∂Bd

∂z
Ŝzzc, (8.2)

where

ωL = γB0, ωR = γB1. (8.3)
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If we put B1 = 0 and ω = dφ/dt = 0 the Hamiltonian (8.2) will transfer to

the MFM Hamiltonian (6.2).

We will rewrite Hamiltonian (8.2) in the dimensionless form using the

natural quantum units for energy, coordinate and momentum, introduced in

Chapter 6:

H′ =
1

2

(
p̂2
c + z2

c

)
− φ̇Ŝz + εŜx − 2ηŜzzc, (8.4)

where

φ̇ = dφ/dτ, τ = ωct, ε = ωR/ωc, (8.5)

and the parameter of the spin-CT interaction η is defined in (6.4).

The dimensionless Schrödinger equation can be written in the form,

Ψ̇ = HΨ, (8.6)

where,

Ψ =

(
Ψ1(zc, τ)

Ψ2(zc, τ)

)
, (8.7)

is a dimensionless spinor, and Ψ̇ = ∂Ψ/∂τ . Next, we expand the functions,

Ψ1(zc, τ) and Ψ2(zc, τ), in terms of the eigenfunctions, un, of the unperturbed

oscillator Hamiltonian, (p̂2 + z2)/2,

Ψ1(zc, τ) =
∞∑
n=0

An(τ)un(zc), Ψ2(zc, τ) =
∞∑
n=0

Bn(τ)un(zc),

un(zc) = π1/42n/2(n!)1/2e−z
2
c/2Hn(zc), (8.8)

where Hn(zc) is the Hermite polynomial. Substituting (8.8) in (8.6) we derive

the coupled system of equations for the complex amplitudes, An(τ), and

Bn(τ),

iȦn = (n+ 1
2 + φ̇

2 )An − ( η√
2
)(
√
nAn−1 +

√
n+ 1An+1)− ( ε2)Bn

iḂn = (n+ 1
2 + φ̇

2 )Bn + ( η√
2
)(
√
nBn−1 +

√
n+ 1Bn+1)− ( ε2)An. (8.9)
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To derive Eqs. (8.9), we used (4.6), (4.7) and the following expressions for

creation and annihilation operators,,

1

2
(p̂2
c + z2

c ) = â†â+
1

2
,

ẑc =
1√
2
(â† + â), p̂c =

i√
2
(â† − â), (8.10)

[â, â†] = 1.

Below we describe the results of numerical simulations of the spin-oscillator

dynamics, for the value of the spin-CT interaction parameter η = 0.3.

The initial state of the CT was chosen as a coherent state |α〉, see Chapter

4, in the quasiclassical region of parameters |α| � 1. Using formula (4.13),

the initial conditions can be represented as

Ψ1(zc, 0) =
∞∑
n=0

An(0)un(zc),

Ψ2(zc, 0) = 0, (8.11)

An(0) = (αn/
√
n!) exp

(
−|α|2/2

)
.

The initial averages 〈zc(0)〉 and 〈pc(0)〉 can be expressed in terms of α using

(4.9):

〈zc(0)〉 =
1√
2
(α∗ + α), 〈pc(0)〉 =

i√
2
(α∗ − α). (8.12)

The value of α was cosen to be α = −
√

2 ·10, which corresponds to the initial

average value 〈n〉 = |α|2 = 200.

Note that the values of |α| cannot be significantly reduced if one simulates

a quasiclassical cantilever. At the same time, increasing |α| one increases the

number of states, n, involved in the dynamics which makes the simulations

of quantum dynamics more complicated. The system of equations (8.9) was

integrated numerically using a standard Runge-Kutta fourth order method.

The stability of the results has been checked by increasing the dimension of
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Figure 8.1: Probability distribution of the CT coordinate , zc for ε = 400 and

η = 0.3. The initial conditions 〈zc(0)〉 = −20, 〈pc(0)〉 = 0, (α = −
√

2× 10),

and the average spin is in the direction of the effective field. Times for

(a,b,c,d,e,f) are respectively τ = 0, 20, 64.8, 104, 160, 221.6.

the oscillator basis (up to 3000 levels) and by decreasing the time integration

step. Fig. 8.1 shows the typical probability distribution

P (zc, τ) = |Ψ1(zc, τ)|2 + |Ψ2(zc, τ)|2, (8.13)

obtained from the numerical simulation of Eqs.(8.9) for six different instants

of time, τ , and for the parameters η = 0.3 and ε = 400 (the dimensionless pe-

riod τc = 2π corresponds to the dimensional period Tc = 2π/ωc.) This figure

reveals that the cantilever can be found in two different positions. Indeed,

near τ = 80, the probability distribution (8.13) splits into two asymmetric

peaks. After this, the separation between the peaks varies periodically in
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time. The ratio of the peak amplitudes is about 1000 for chosen parameters.

(Hence, the amplitudes are shown in the logarithmic scale.)
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τ
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∆(
τ)
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τ
-50

0

50

<z
c(τ
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Figure 8.2: CT dynamics. (a) Average CT coordinate as a function of τ and

(b) its standard deviation ∆(τ) = [〈z2
c (τ)〉− 〈zc(τ)〉2]1/2. Parameters are the

same as in Fig. 8.1.

The cyclic adiabatic inversion parameters were chosen,

φ̇ =

 −6000 + 300τ, if τ ≤ 20,

A sin(τ − 20), if τ > 20.
(8.14)

where A = 1000, so that the standard condition for the adiabatic motion

(2.27), which in our parameters can be written as |φ̈| � ε2, is satisfied.

The chosen parameters in Eq. (8.14) allow one to “catch” the spin, initially

oriented in the positive (or negative) z−direction, by the effective magnetic

field, and to put it approximately in the positive (or negative) x−direction

at τ = 20. For times τ > 20, the spin oscillates in the x− z-plane, together

with the effective magnetic field. It is clear that the small peak does not

significantly influence the average CT coordinate. Fig. 8.2 shows the average
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CT coordinate, 〈zc(τ)〉, and the corresponding standard deviation, ∆(τ) =

[〈z2
c 〉 − 〈zc〉2]1/2. One can see a fast increase of the average amplitude of

the CT vibrations, while the standard deviation still remains small. This,

in fact, is related to the initial conditions of the spin, which was taken in

the direction of the z−axis. For instance, if the spin initially points in the

x−axis (Ψ1(zc, 0) = Ψ2(zc, 0)), the calculations show two large peaks with

equal amplitudes. The two peaks in the probability distribution, shown in

Fig. 8.1 indicate two possible trajectories of the cantilever (similar to the

Stern-Gerlach effect). The two peaks are well-separated for shown instants of
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100

P(
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100
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Figure 8.3: Probability distributions, P1(zc, τ) = |Ψ1(zc, τ)|2 (solid curves),

and P2(zc, τ) = |Ψ2(zc, τ)|2 (dashed curves) for nine instants of time: τk =

92.08 + 0.8k, k = 0, 1, ..., 8.

time. When the probability distribution splits into these peaks, the distance,

d, between them initially increases. Then, d decreases so that the two peaks

eventually overlap. After this, the probability distribution splits again so

that the position of the minor peak is on the opposite side of the major

peak. Again, the distance, d, first increases, then decreases until the two

peaks overlap. This cycle repeats for as long as the simulations are run.
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Figure 8.4: Integrated probability distributions of the spin z−components:

P11(τ), for Sz = 1/2 (•); and P22(τ), for Sz = −1/2 (◦), as functions of time.

Vertical arrows show the time instants, τk = 92.08 + 0.8k, k = 0, 1, ..., 8

depicted in Fig. 8.3.

One might expect that the two peaks are associated with the functions

Pn(zc, τ) = |Ψn(zc, τ)|2, n = 1, 2. In fact, the situation is more subtle: each

function, Pn(zc, τ) splits into two peaks. Fig. 8.3, shows these two functions

for nine instants of time: τk = 92.08 + 0.8k, k = 0, 1, ..., 8 during one period

of the cantilever vibration. One can see the splitting of both P1(zc, τ) and

P2(zc, τ); the two peaks of the function P1(zc, τ) have the same position as the

two peaks of P2(zc, τ), but the amplitudes of these peaks differ. For instance,

for k = 1 (τ = 92.88) the left-hand peak is dominantly composed of P1(zc, τ),

while the right hand peak is mainly composed of P2(zc, τ). Fig. 8.4 shows

the spatially integrated probability distributions: P11(τ) =
∫
P1(zc, τ)dzc and
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P22(τ) =
∫
P2(zc, τ)dzc, as “truly continuous” functions of time, τ . (Vertical

arrows show the time instants, τk.) The crucial problem is the following: Do
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Figure 8.5: “Wave functions” belonging to “big” and “small” peaks. a)

circles: Re(−κΨs
1), solid line: Re(Ψs

2); b) circles: Im(−κΨs
1), solid line:

Im(Ψs
2); c) circles: Re(κΨb

2), solid line: Re(Ψb
1); d) circles: Im(κΨb

2), solid:

Im(Ψb
1), where κ(τ = 76) = −2.9.

the two peaks of the CT distribution correspond to the definite spin states?

To answer this question the structure of the wave function of the CT-spin

system has been studied. As was already mentioned, both functions, Ψ1(zc, τ)

and Ψ2(zc, τ), contribute to each peak (see Fig. 8.3). When the two peaks

are clearly separated one can represent each of these functions as a sum of

two terms, corresponding to the “big” and “small” peaks,

Ψ1,2(zc, τ) = Ψb
1,2(zc, τ) + Ψs

1,2(zc, τ). (8.15)

It was found that with accuracy up to 1% the ratio, Ψs
2(zc, τ)/Ψ

s
1(zc, τ) =

−Ψb
1(zc, τ)/Ψ

b
2(zc, τ) = κ(τ), where κ(τ) is a real function independent of zc.
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Results are shown in Fig. 8.5, for the same parameters as in Fig. 8.1, and for

τ = 76 with κ(τ) = −2.9 obtained by a best fit procedure.

As a result, the total wave function can be represented in the form,

Ψ(zc, s, τ) = Ψb(zc, τ)χ
b(s, τ) + Ψs(zc, τ)χ

s(s, τ), (8.16)

where χb(s, τ) and χs(s, τ) are spin wave functions, which are orthogonal to

each other. Eq. (8.16) shows that each peak in the probability distribution of

the CT coordinate corresponds to a definite spin wave function. It was found

that the average spin, 〈χb|~S|χb〉, corresponding to the big peak points in the

direction of the vector (ε, 0,−dφ/dτ), whereas the average spin, 〈χs|~S|χs〉,
corresponding to the small peak, points in the opposite direction. Note, that

up to a small term, 2ηz, the vector,(
ε, 0,−dφ

dτ

)
,

is the effective field acting on the spin in units of ωc/γ.

Fig. 8.6, demonstrates the directions of the effective field (thick solid

arrow); the direction of the average spin calculated using the χb(s, τ) spin

function (thin arrow); and the direction of the average spin calculated using

the χs(Sz, τ) wave function (thin dashed arrow). This can only be done

when the probability distributions corresponding to the small and big peaks,

Ψb and Ψs, are well separated in space. This is not the case in Figs 8.3(c)

and 8.3(g). Figs 8.6(c) and (g) represent the total average spin only (as

a thin line). One should also take into account that the “lengths” of the

effective magnetic field and the average spin of the small head has been

renormalized respectively to the length 1 and 1/2, in order to be put on the

same scale (they are respectively a few orders of magnitude larger and smaller

than the total average spin). The results presented in Fig. 8.6 allow one a

better understanding of the structure of the total wave function described by

Eq. (8.16).

The ratio of the integrated probabilities (
∫
P (zc, τ)dzc) for the small and

big peaks (∼ 10−3 in Fig. 8.1 can be easily estimated as tan2(Θ/2), where
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Figure 8.6: The directions of the effective magnetic field (thick solid arrow)

renormalized to the unit length; the direction of the average spin calculated

using the χb(s, τ) spin function (thin arrow); and the direction of the average

spin calculated using the χs(s, τ) spin function (thin dashed arrow) renor-

malized to the length 1/2, in order to be plotted in the same picture. Times

and parameters are as in Fig. 8.3. In Figs c) and g) one single thin line has

been drawn, for the total average spin. This is due to the spatial overlapping

of the probability distributions corresponding to the small and big peak.

Θ ≈ 0.07 is the initial angle between the effective field, (ε, 0,−dφ/dτ), and

the spin direction. Therefore, by measuring the cantilever vibrations, one

finds the spin in a definite state in-or opposite to the effective magnetic field.

Numerical simulations for such a new initial condition, i.e. when the average

spin points in - or opposite to the effective field, are shown in Fig. 8.7. The
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probability distribution P (zc, τ) shows again two peaks but the ratio of the

integrated probabilities of these peaks is much less than in Fig. 8.1. (∼ 10−6).

-40 0 40

10-30

10-20

10-10

100

P(
z c)

-40 0 40

10-30

10-20

10-10

100

P(
z c)

-40 0 40

z c

10-30

10-20

10-10

100

P(
z c)

-40 0 40

10-30

10-20

10-10

100

-40 0 40

zc

10-30

10-20

10-10

100

-40 0 40

10-30

10-20

10-10

100

a) b)

c) d)

e) f)

Figure 8.7: Probability distribution of the CT coordinate, zc, for ε = 400 and

η = 0.3. The initial conditions: 〈zc(0)〉 = −20, 〈pc(0)〉 = 0 (α = −
√

2× 10),

and the average spin in the direction of the effective field.

Note that Fig. 8.7 has a larger scale on the y−axis than that in Fig. 8.1, in

order to show that the small peak is clearly beyond the unavoidable numerical

errors (below 10−25 in Fig. 8.7).

Thus, for chosen parameters, the probability of the second peak in the

CT position generated by a single spin measurement is small. This implies

that the appearance of this peak cannot prevent the amplification of the

cantilever vibration amplitude, and therefore the measurement of the state

of a single spin.
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Figure 8.8: Measurement of the single-spin state using the phase of the CT

vibrations. For the dynamics of 〈zc(τ)〉 and 〈Sz(τ)〉 the solid line corresponds

to “big” peak of the probability distribution, and the dashed line corresponds

to “small” peak, renormalized to the similar amplitudes. At the bottom, the

dynamics of the z−component of the effective field is shown.

So far, the described picture reminds the well-known Stern-Gerlach effect

in which the cantilever measures the spin component not in the z−direction

but along the effective magnetic field. An appearance of the second peak,

even if the average spin points initially in the direction of the effective field,

provides a difference with the Stern-Gerlach effect. The origin of this peak

is a small deviations from the adiabatic motion of the spin even at a large

amplitude of the effective field, and the back reaction of the CT vibrations

on the spin.

The important question is the following: How to use the described tech-

nique not only to detect a spin signal but also to measure the state of a single

spin? Let us consider the phase of the CT vibrations when the initial spin
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points in-or opposite to the direction of the effective magnetic field. The

computer simulations show that the phases of the CT vibrations for these

two initial conditions are significantly different. When the amplitude of the

CT vibrations increases, the phase difference for two initial conditions ap-

proaches π. Thus, the classical phase of the CT vibrations indicates the state

of the spin relatively to the effective field.

Fig. 8.8 demonstrates a process of measurement of a single-spin state

using the phase of the CT vibrations. For the dynamics of 〈zc(τ)〉 and 〈Sz(τ)〉
the solid curve corresponds to the “big” peak of the cantilever distribution,

and the dashed curve corresponds to the “small” peak. At the bottom, the

dynamics of the z−component of the effective field is shown. One can see

that the solid curve of 〈Sz(τ)〉 is in phase with the effective field component,

Beff,z(τ). The phase difference of the CT vibrations corresponding to two

peaks approaches π for large times.

In practical applications it would be very desirable to use MRFM for

measurement of the initial z−component of the spin. For this purpose one

should provide the initial direction of the effective field to be the z−direction.

Then, the initial z−component of the spin will coincide with its component

relatively to the effective field. In computer simulations presented in Figs.

8.1-8.6 an instantaneous increase of the amplitude of the rf field, at τ = 0

has been assumed. This causes an initial angle between the directions of the

spin and the effective field, Θ ≈ ε/|dφ/dτ | ≈ 0.07. To eliminate this initial

angle the quantum spin-cantilever dynamics for an adiabatic increase of the

rf field amplitude has been simulated:

ε = 20τ for τ ≤ 20, and ε = 400 for τ > 20. (8.17)

Dependence for dφ/dτ was taken the same as before. The results of these

simulations are qualitatively similar to those presented in Figs. 8.1-8.6, but

the integrated probability of the small peak was reduced to its residual value

∼ 10−6.
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8.2 Decoherence and thermal diffusion for the

CT

In order to consider the processes of decoherence and thermal diffusion for

the CT we will use the master equation for the spin-CT system in the same

way as it was done in Chapter 6. In the presence of the frequency modulated

rf field the master equation (6.5) transforms into the equation

∂ρs,s′(zc, z
′
c, τ)

∂τ
=

[
i

2
(∂zz − ∂z′z′)−

i

2
(z2
c − z′c

2
)− β

2
(zc − z′c) (∂z − ∂z′)

−Dβ(zc − z′c)
2 − 2iη(z′cs

′ − zcs) + iφ̇(s′ − s)
]
ρs,s′(zc, z

′
c, τ)− (8.18)

−i ε
2

[ρs,−s′(zc, z
′
c, τ)− ρ−s,s′(zc, z

′
c, τ)] .

For computer simulations it is convenient to expand the density matrix

ρs,s′(zc, z
′
c) over the product of the eigenfunctions of the oscillator’s Hamilto-

nian:

ρs,s′(zc, z
′
c, τ) =

∑
n,m

As,s
′

n,m(τ) un(zc)u
∗
m(z′c). (8.19)

Substituting this expansion into the master equation we obtain the system

of equations for the amplitudes As,s
′

n,m(τ):

Ȧs,s
′

n,m(τ) = [iφ̇(τ)(s′ − s) +
1

2
β − (n+m+ 1)Dβ − i(n−m)] As,s

′

n,m(τ)−

iηs′
√

2mAs,s
′

n,m−1(τ)− iηs′
√

2m+ 2As,s
′

n,m+1(τ) +

iηs
√

2nAs,s
′

n−1,m(τ) + iηs
√

2n+ 2As,s
′

n+1,m(τ) +

Dβ
√
m(n+ 1)As,s

′

n+1,m−1(τ) +Dβ
√
n(m+ 1)As,s

′

n−1,m+1(τ) +
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(D +
1

2
)β
√

(n+ 1)(m+ 1)As,s
′

n+1,m+1(τ) + (D − 1

2
)β
√
nmAs,s

′

n−1,m−1(τ)−

β

2
(D − 1

2
)
√
n(n− 1)As,s

′

n−2,m(τ)− β

2
(D +

1

2
)
√

(n+ 1)(n+ 2)As,s
′

n+2,m(τ)−

β

2
(D − 1

2
)
√
m(m− 1)As,s

′

n,m−2(τ)−

β

2
(D +

1

2
)
√

(m+ 2)(m+ 1)As,s
′

n,m+2(τ)−
i

2
ε[As,−s

′

n,m (τ)− A−s,s′
n,m (τ)]. (8.20)

First, we describe the results of numerical solution of Eqs. (8.20) for

β = D = 0 and the same values of parameters η and ε, as in Section 8.1.

The initial conditions for the density matrix correspond to Eqs. 8.11:

ρs,s′(zc, z
′
c, 0) = Ψ1(zc, 0)Ψ∗

1(z
′
c, 0)χ̂ss′(0), (8.21)

where χ̂(0) is the spin density matrix:

χ̂(0) =

(
1 0

0 0

)
, (8.22)

which describes the spin pointing in the positive z−direction. The modulus

of the parameter α for the initial coherent state (8.11) was taken five times

smaller than in Section 8.1: |α| = 2
√

2, instead of |α| = 10
√

2, in order to

deal with greater amount of computations.

For τ > 0, the density matrix describes the entangled state which cannot

be represented as a product of the cantilever and spin parts. The initial peak

of ρs,s′(zc, z
′
c, τ) splits into two peaks which are centered along the diagonal

zc = z′c, and two peaks centered at zc 6= z′c, off the diagonal. The density ma-

trix can be represented approximately as a sum of four terms corresponding

to four peaks,

ρs,s′(zc, z
′
c, τ) = ρ

(1)
s,s′ + ρ

(2)
s,s′ + ρ

(3)
s,s′ + ρ

(4)
s,s′ , (8.23)

where we omit variables, zc, z
′
c, τ . The matrices, ρ(1) and ρ(2), describe the

“big” and “small” diagonal peaks; ρ(3) and ρ(4), describe the peaks centered

at zc 6= z′c.
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As an illustration, we show in Fig. 8.9 the quantity,

ln |ρ1/2,1/2(zc, z
′
c, τ) + ρ−1/2,−1/2(zc, z

′
c, τ)|. (8.24)

We have found that with accuracy to 1% the density matrix, ρ
(1)
s,s′(z, z

′, τ),

can be represented as a product of the coordinate and spin parts

ρ
(1)
s,s′(zc, z

′
c, τ) = R̂(1)(zc, z

′
c, τ)χ̂

(1)
s,s′(τ), (8.25)

where χ̂
(1)
s,s′(τ) describes the spin which points in the direction of the external

effective field (ε, 0,−φ̇(τ)). A similar expression is valid for ρ
(2)
s,s′(zc, z

′
c, τ). But

in this case, χ̂
(2)
s,s′(τ) describes a spin which points in the opposite direction.

Next we describe the evolution of the density matrix for the finite values

of the parameters β and D: β = 10−3 and D = 10. (The high-temperature

approximation for the master equation requires the inequality D � 1, which

is satisfied for D = 10.) The initial uncertainty of the CT position is, δzc =

1/
√

2. Due to thermal diffusion, the uncertainty of the CT position increases

with time. Thus, we have two effects: i) the increase of the amplitude of the

driven cantilever vibrations (similar to the Hamiltonian dynamics) and ii) the

increase of the uncertainty of the CT position due to the thermal diffusion.

If the second effect dominates, the two positions of the diagonal peaks (i.e.

peaks centered on the line zc = z′c) become indistinguishable. In this case,

one cannot provide a spin measurement with two possible outcomes.

It was found that peaks centered on the diagonal retain the main prop-

erties described by the Hamiltonian dynamics. The “density matrix”,

ρ
(k)
s,s′(zc, z

′
c, τ),

for k = 1, 2 can be approximately represented as a product of the CT and

spin parts. The spin part of the matrix describes the spin which points in the

direction of the external effective field (for k = 1) or in the opposite direction

(for k = 2).

Next, we discuss the two peaks centered at zc 6= z′c. As an illustration,

Fig. 8.10 shows the quantities,

ln |ρ1/2,1/2(zc, z
′
c, τ) + ρ−1/2,−1/2(zc, z

′
c, τ)|, (8.26)



84
8. OSCILLATING ADIABATIC SPIN REVERSALS DRIVEN BY THE

FREQUENCY MODULATED RF FIELD

Figure 8.9: Left column: three-dimensional plot of ln |ρ1/2,1/2(zc, z
′
c, τ) +

ρ−1/2,−1/2(zc, z
′
c, τ)|, for different times τ . Right column: three-dimensional

plot of ln |ρ1/2,−1/2(zc, z
′
c, τ) + ρ−1/2,1/2(zc, z

′
c, τ)|, at the same times τ . The

values of parameters are: ε = 400, η = 0.3, β = D = 0. The initial conditions

are: 〈zc(0)〉 = −4, 〈pc(0)〉 = 0.
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and

ln |ρ1/2,−1/2(zc, z
′
c, τ) + ρ−1/2,1/2(zc, z

′
c, τ)|, (8.27)

at τ = 57.8. One can see the small peaks centered at zc 6= z′c. The peaks

centered at zc 6= z′c describe the coherence between the two CT positions. The

amplitude of these peaks quickly decreases due to the decoherence. Thus,

the master equation explicitly describes the process of measurement. The

coherence between two cantilever trajectories (the macroscopic Schrödinger

cat state) quickly disappears. As a result, the cantilever will “choose” one

of two possible trajectories. Correspondingly, (depending on the cantilever

trajectory) the spin will point in the direction of the effective magnetic field

or in the opposite direction.

In conclusion, we note that the computer simulations of the CT-spin dy-

namics using the master equation allow one to understand the basic elements

of the single-spin measurement process, which contains the driven vibrations

of the CT, decoherence and thermal diffusion. From the other side, because

of the huge amount of computations the simulations of the driven CT vi-

brations at τ > Q and for realistic values of parameters seems to be a very

complicated problem. We also note that in this chapter as well as in the

previous one we have ignored the direct interaction between the spin and its

environment, which causes the quantum jumps of the spin (spin flips).
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Figure 8.10: Left column: the three dimensional plot for

log |ρ1/2,1/2(zc, z
′
c, τ)+ρ−1/2,−1/2(zc, z

′
c, τ)|, at different times τ . Right column:

the three dimensional plot for log |ρ1/2,−1/2(zc, z
′
c, τ) + ρ−1/2,1/2(zc, z

′
c, τ)|, at

different times τ . The values of parameters are: ε = 400, η = 0.3, β = 10−3,

D = 10. Initial conditions are: 〈zc(0)〉 = −4, 〈pc(0)〉 = 0.



Chapter 9

Oscillating Cantilever-Driven

Adiabatic Reversals

(OSCAR) Technique in MRFM

This and the two next chapters are devoted to the brilliant technique, which

has been used by Rugar et al. [8] for the first detection of a single elec-

tron spin below the surface of a non transparent solid. This technique is

called “the oscillating cantilever driven adiabatic reversals” (OSCAR). In

the MRFM techniques considered in the previous two chapters the cantilever

vibrations were driven by the periodic reversals of the spin. In turn, the peri-

odic reversals of the spin were driven by the pulsed rf field (Chapter 7) or by

the frequency modulated rf field (Chapter 8). In both cases, the oscillating

dipole field ~B
(1)
d on the spin, associated with the CT vibrations, was small

compared to the rf field, ~B1.

In the OSCAR technique the CT vibrations are driven by a feedback

loop designed to keep the CT amplitude A constant. The amplitude of the

oscillating dipole field ~B
(1)
d is much greater than the magnitude of the rotating

rf field ~B1. As a result, the CT vibrations cause the cyclic adiabatic reversals

of the spin with the CT frequency ωc. In turn, the periodic reversals of the

spin, produce the back resonant force on the CT. This force is, approximately

87



88
9. OSCILLATING CANTILEVER-DRIVEN ADIABATIC REVERSALS

(OSCAR) TECHNIQUE IN MRFM

proportional to the CT displacement and, consequently, causes a shift of

the effective spring constant δkc and the CT vibration frequency δωc The

frequency shift δωc can be measured experimentally with a high precision.

The OSCAR technique has been introduced by Stipe et al. [26] in 2001.

Two years later Mamin et al. [27] demonstrated the two-spin sensitivity in

OSCAR. Finally, in 2004 Rugar et al. [8] reported the long-expected single-

spin detection. In the OSCAR technique the CT may oscillate perpendicular

or parallel to the sample surface. In the first case the cantilever itself is

parallel to the sample surface, as it is shown in Fig. 5.1. In the second case

the cantilever is placed perpendicular to the sample surface (see Fig. 9.1).

z

x

B
ext

B
1

spinsample

ferromagnetic
particle 

Figure 9.1: MRFM setup with the CT oscillating along the x−axis parallel

to the sample surface.
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Below, in Section 9.1, we discuss the process of a single spin measurement

using the OSCAR technique and estimate the main parameters of the CT-

spin dynamics in the spirit of the mean field approximation (Berman et al.

[17]). In Section 9.2 we describe shortly the experiment [8] on a single spin

detection, Berman et al. [28].

9.1 CT-spin dynamics: discussion and

estimates

We will consider the CT oscillating parallel to the surface of the sample

and the electron spin in the x − z plane (Fig. 9.1). We assume that the

electron spin is initially in its ground state, i.e. it points in the negative

z−direction. It means that the external magnetic field ~Bext, which points in

the positive z−direction, is much greater than the dipole field ~Bd produced

by the ferromagnetic particle. Let us assume, for example, that the rf field is

turned on when the CT is in its end position 〈xc〉 = A and the z−component

of the dipole field is greater than it was at 〈xc〉 = 0. We may ignore the

x−component of the dipole field if Bext � Bd. Indeed, for the magnitude of

the vector ~Bext + ~Bd we have:√
(Bext +Bdz)2 +B2

dx ≈ Bext +Bdz. (9.1)

The y−component of the dipole field in Fig. 9.1 is zero since the spin is in

the x − z plane. If the z−component of the magnetic field Bext + Bdz for

〈xc〉 > 0 is greater than it was for 〈xc〉 = 0, the effective field in the RSC

points initially, approximately, in the positive z−direction, and the spin 〈~S〉
is antiparallel to the effective field.

In the process of adiabatic motion, the spin 〈~S〉 remains antiparallel to the

effective field. The z−component of the spin magnetic moment µz = −γh̄〈Sz〉
oscillates with the CT frequency. It produces a back resonant force on the

CT. In Chapter 4 we have shown that this force is given by the expression

(4.17), in which the gradient of the magnetic field is taken at the spin location



90
9. OSCILLATING CANTILEVER-DRIVEN ADIABATIC REVERSALS

(OSCAR) TECHNIQUE IN MRFM

when the CT is in the origin 〈xc〉 = 0. As the resonant back force is associated

with the z−component of the magnetic moment µz, and the only component

of the force, which affects the CT vibrations is the x−component Fx, we

consider the approximate expression for Fx:

Fx ≈ −µz
∂Bz

∂x
≡ −Gzµz, (9.2)

where we introduced the notation Gz = ∂Bz/∂x < 0.

For the estimation, below we will take, for example, parameters from

Ref. [27]:

• The effective CT spring constant kc = 600 µN/m,

• The CT frequency and period ωc/2π = 6.6 kHz, Tc = 150 µs,

• The CT quality factor Q = 5× 104,

• The CT amplitude A = 10 nm,

• The rotating rf field amplitude and frequency B1 = 300 µT , ω =

3 GHz, (ω/γ = 100 mT ),

• The Rabi frequency and period ωR/2π = γB1/2π = 8.4 MHz, TR =

2π/ωR = 120 ns,

• The magnetic field gradient at a spin location Gz = 430 kT/m,

• The maximum magnetic force on CT 〈Fx〉max = |Gz|µB = 4 aN ,

• Temperature T = 200 mK.

We now estimate the CT frequency shift in the spirit of the mean field

approximation. Let the spin be antiparallel to the effective field ~Beff . Then

〈Sz〉
S

= −〈Beff〉z
Beff

, (9.3)
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where ~Beff = (B1, 0,−Gz〈xc〉). The net force on the CT is given by

Fx = −kc〈xc〉+ γh̄Gz〈Sz〉. (9.4)

Combining these formulas and averaging over fast oscillations (〈xc〉2 → A2/2),

we obtain the expressions for the relative shift of the effective spring constant

and the relative frequency shift:

δkc = − γh̄G2
z

[2(G2
zA

2 +B2
1)]

1/2
,

δωc
ωc

=
δkc
2kc

, (9.5)

which corresponds to the numerical value δωc/ωc = −4.7 × 10−7 and δωc =

3 mHz. For our values of parameters, GA� B1, and the expression for δkc
can be simplified to

δkc = −
√

2|Gz|µB
A

. (9.6)

Correspondingly, we have

δωc
ωc

= −|Gz|µB√
2kcA

. (9.7)

This new expression has a clear physical meaning. The magnetic force on the

CT cannot be greater than |Gz|µB. This is why the shift of the CT spring

constant and the frequency shift decreases with the increase of the amplitude

A.

Now we discuss the possibility of reducing the CT amplitude and increas-

ing the CT frequency shift. The condition for the full adiabatic reversals can

be represented as follows:

1 � |Gz|A
B1

� ωR
ωc
. (9.8)

The left inequality is the condition for full spin reversals (approximately

between +z and −z directions). The right inequality is the condition for

adiabatic spin motion, which is equivalent to Eq. (2.27). For our parameters
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Figure 9.2: Partial reversals of the effective field in the RSC.

|Gz|A/B1 = 14 and ωR/ωc = 1270. To increase the CT frequency shift, we

may sacrifice the full spin reversals retaining the adiabatic motion. Fig. 9.2

shows the partial reversals of the effective field. The use of partial adiabatic

reversals is convenient for computer simulations because it allows one to save

computational time. Below we show that this idea is not appropriate for the

experiment, as the thermal frequency noise also increases with the decrease

of the CT amplitude. While the spin is parallel or antiparallel to the effective

field, the main manifestation of the CT-environment interaction in OSCAR

is the thermal frequency noise. Now we will estimate its value. We will

assume the “natural” detection bandwidth ∆f = ωc/4Q (see Chapter 7). In

this case

xrms =

(
kBT

kc

)1/2

, (9.9)

and

Frms =
kcxrms
Q

.
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To estimate the characteristics thermal fluctuations of the spring constant

δkTc , we assume that the “thermal” force increases from 0 to Frms when the

CT coordinate changes from 0 to A/2. Then δkTc = 2Frms/A, and, corre-

spondingly, the characteristic thermal frequency fluctuations δωTc become

δωTc
ωc

=
xrms
AQ

. (9.10)

The corresponding numerical values are:

xrms = 68 pm,

Frms = 1.6 aN, (9.11)

δωc/ω
T
c = 1.4× 10−7.

Thus, the estimated characteristic CT thermal frequency fluctuations δωTc
are smaller than the absolute value of the OSCAR frequency shift |δωc|. On

the other hand, one can see that the thermal frequency fluctuations, like the

OSCAR frequency shift, increase with the decrease of the CT amplitude.

Thus, the partial adiabatic reversals will not increase the signal-to-noise ra-

tio. Next, we consider the effect of the spin-environment interaction. This

interaction can be described in terms of magnetic noise acting on the spin.

Roughly speaking, this noise causes a deviation of the spin from the effec-

tive field. This deviation generates two CT trajectories corresponding to the

two possible directions of the spin relative to the effective field. These two

trajectories manifest the formation of the Schrödinger cat state. Now, the

CT-environment interaction comes into play. CT-environment interaction

quickly destroys the Schrödinger cat state leaving only one of the two pos-

sible trajectories. Physically, this appears as a quantum collapse. Usually,

the collapse pushes the spin back to the “pre-collapse” direction relative to

the effective field. Sometimes the spin changes its direction. When a change

occurs, we can observe the quantum jump by measuring the sharp change of

the CT frequency shift.

Let us assume that the collapse occurs when the separation between the

two CT trajectories is of the order of the quantum uncertainty δxc of the CT
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position (position of the center of mass of the ferromagnetic particle):

δxc ∼
(
h̄ωc
kc

)1/2

. (9.12)

(In this estimate we used the first equation (4.10) omitting the factor 1/
√

2.)

If our assumption were correct then the characteristic collapse time tcol would

be of the order of the CT period tcol ∼ Tc.

Now, we will estimate the characteristic time interval between two quan-

tum jumps tjump. We assume that the most important source of the magnetic

noise for the spin is associated with the cantilever modes whose frequencies

are close to the Rabi frequency of the spin. The reason is the following.

When the spin changes its direction between +z and −z, its frequency in

the RSC frame changes between its maximum value ωmax and its minimum

value, which is the Rabi frequency, ωR. Because all cantilever modes have

the same thermal energy kBT/2, the thermal amplitude of the mode is in-

versely proportional to its frequency. Thus, the greatest amplitude of the CT

thermal vibrations is associated with the modes near the Rabi frequency. As

an estimate, we consider those modes in the interval between the Rabi and

twice the Rabi frequency ωR and 2ωR. The CT thermal amplitude ATR near

the Rabi frequency ωR can be estimated using the equipartition theorem:

1

2
m∗

(
ATRωR

)2
= kBT. (9.13)

Using the equation ω2
c = kc/m

∗ we obtain,

ATR =
ωc
ωR

(
2kBT

kc

)1/2

≈ 75 fm. (9.14)

We will estimate the characteristic fluctuation time for the magnetic noise

near the Rabi frequency as the Rabi period TR. Then the characteristic

angular deviation ∆θ0 of the average spin 〈~S〉 during the correlation time

can be estimated as

∆θ0 ∼ γ(|Gz|ATR)TR, (9.15)
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where |Gz|ATR is the characteristic noise field near the Rabi frequency. For

our parameters we obtain ∆θ0 ∼ 6.8 × 10−4 rad. In a single reversal of the

effective field the spin precession frequency in the RSC is smaller than 2ωR
during the time interval ∆t1,

∆t1 ≈ 2
√

3
ωR

γωc|Gz|A
. (9.16)

This expression can be derived from the equation:

γBeff (t) = 2ωR, (9.17)

where

Beff (t) = [(|Gz|A cosωct)
2 +B2

1 ]
1/2. (9.18)

From Eq. (9.17) we obtain two solutions t1 and t2, which satisfy the equations

cos (ωct1,2) = ±
√

3ωR
γ|Gz|A

, (9.19)

∆t1 = t2 − t1.

Next, subtracting the left and right sides of the equation for t2 and from the

corresponding sides of the equation for t2, and approximating sin(ωc∆t/2)

with ωc∆t/2 we obtain (9.16).

Assuming a diffusion process, we can estimate the square of the angular

deviation during a single reversal

〈∆θ2
1〉 =

∆θ2
0

TR
∆t1, (9.20)

where ∆θ2
0/TR is the diffusion coefficient. The angular deviation ∆θcol be-

tween the two collapses is

〈∆θ2
col〉 = 〈∆θ2

1〉
tcol
Tc/2

. (9.21)

Now we should find the probability of a quantum jump, after the Schrödinger

cat state collapse, in terms of 〈∆θ2
col〉. In Chapter 3 we have shown that the
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wave function of a spin, which points in the direction of a unit vector ~n can

be represented by the first equation in (3.8). This equation can be simplified

if we use the polar θn and azimuthal φn angles of the unit vector ~n:

χ1/2 = cos
θn
2
α+ sin

θn
2

exp (iφn) β. (9.22)

If one measures the spin z−component, then the spin wave function χ1/2

collapses to the wave function α with the probability cos2 θn/2, or to the

wave function β with the probability sin2 θn/2.

In our case we may expect a similar effect. If between two consecutive col-

lapses the average spin deviates from the effective field by the characteristic

angle ∆θcol, then after the collapse it will return to its initial direction rela-

tive to the effective field with the probability cos2(∆θcol/2). The probability

of a quantum jump Pjump will be

Pjump = sin2 ∆θcol
2

' 〈∆θ2
coll〉
4

. (9.23)

The characteristic number of collapses between the two consecutive quantum

jumps is equal to tjump/tcol. To estimate the value of tjump we may put

Pjump
tjump
tcol

≈ 1. (9.24)

From this equation we find

tjump ≈
tcol
Pjump

∼ A√
3γ|Gz|(ATR)2

≈ 14 s. (9.25)

Note that the collapse time tcol cancels out in the final expression (9.25).

9.2 Experimental detection of a single spin

The first experimental detection of a single spin has been demonstrated with

vitreous silica (silicon dioxide). The gamma ray irradiation produced silicon

dangling bonds, which are called “E′-centers”. An E′-center contains an
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unpaired electron spin 1/2. The estimated concentration of E′-centers was

between 1019 and 1020 m−3. The experiment was performed at temperature

T = 1.6 K, with an rf field of amplitude B1 = 300 µT and frequency ω/2π =

2.96 GHz. The magnitude B0 of the permanent magnetic field on the spin

at the equilibrium CT position was

B0 = | ~Bext + ~B
(0)
d | = ω

γ
= 106 mT, (9.26)

while the external magnetic field Bext = 30 mT . Thus, the dipole magnetic

field produced by the CT, was greater than the external field. The CT, with

the spring constant kc = 110 µN/m, oscillated parallel to the sample surface,

as it is shown in Fig. 9.1, with the frequency ωc/2π ' 5.5 kHz and amplitude

A ' 16 nm.

To increase the measurement sensitivity, Rugar and his team implemented

a modified technique which is called the “interrupted OSCAR” technique.

They interrupted the rf field periodically (with a period Ti of about 11.6

ms). When the CT was at its end point, the applied rf field was interrupted

for a time interval equal to half of the CT vibration period. At the end of the

“dead interval”, the effective field reverses while the spin retains its initial

direction. This effect is equivalent to the application of the effective π−pulse

in the RSC. As a result, the CT frequency shift becomes a periodic function

of time with twice the interruption period 2Ti. Now the OSCAR signal is

detected at the frequency 1/(2Ti). Fig. 9.3 explains the interrupted OSCAR

technique. One can see that the periodic interruption of the rf field with

period Ti causes the periodic change of the CT frequency shift with period

2Ti. The first harmonic of the periodic frequency shift δωc(t) is

4

π
δω0 a(t) sin

(
πt

Ti

)
. (9.27)

Here a(t) = ±1 is a random telegraph function associated with the quantum

jumps (spin flips) and δω0 is the maximum value of |δωc|. This harmonic has

been selected for detection. In a 1 Hz detection bandwidth the frequency

noise was about 23 mHz, much greater than the expected value of δω0. For
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Figure 9.3: The interrupted OSCAR technique: a) the CT coordinate as a

function of time. b) amplitude of the rf field, c) the CT frequency shift.

On panel b) two arrows of the same direction indicate the same direction of

the effective field ~Beff and the spin magnetic moment ~µ , while arrows with

opposite directions indicated opposite direction of ~Beff and ~µ.

a spin detection, an averaging time of 13 hours per point was needed. As

the averaging time was much greater than the expected characteristic time

tjump between the two consecutive quantum jumps, the amplitude of the

first harmonic (4/π)δω0 a(t) averages to zero. That is why the square of

the amplitude (4/π)2δω2
0 has been averaged and measured experimentally

instead of the amplitude itself. The maximum frequency shift was found to

be δω0 = 4.2 mHz.



Chapter 10

CT-Spin Dynamics in the

OSCAR Technique

In this chapter we present both the quasiclassical and quantum description

of the CT-spin dynamics in the OSCAR technique (Berman et al. [29, 31]).

In particular, we will derive the expression for the CT frequency shift δωc,

which is to be measured in the OSCAR experiments.

10.1 Quasiclassical theory: simple geometry

In this section we describe the quasiclassical theory of the OSCAR tech-

nique, for a simple experimental setup, shown in Fig. 10.1: the CT oscillates

perpendicular to the sample surface along the z−axis, and the spin is also

located on the z−axis. As we already mentioned in the previous chapter, the

amplitude A of the CT vibrations in the OSCAR technique is kept constant

by a feedback loop.

In order to describe the OSCAR dynamics theoretically one can use three

simple approaches:

1. One can consider the CT vibrations driven by the resonant external

force.

99
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Figure 10.1: OSCAR MRFM setup. We show the case when the “up” direc-

tion of the spin magnetic moment ~µ corresponds to the bottom position of

the CT vibrations.

2. One can consider the free (natural) CT vibrations with no damping or

during the time interval t� Q/ωc.

3. In numerical simulations one can consider the damped CT vibrations

changing the CT coordinate at one of the end points of vibrations to

the fixed value A.

In this section we will use the first approach.

The classical equation of motion for the CT (i.e. for the center of the

spherical ferromagnetic particle) we will write in the form

z̈c + ω2
czc +

3µ0m

2πm∗
µz

(d∗ + zc)4
+
ωc
Q
żc =

F0

m∗ cos(νt+ θ0), (10.1)

where the third term in the left side of the equation describes the magnetic

force, produced by the spin magnetic moment ~µ on the magnetic moment
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~m of the ferromagnetic particle, the fourth term describes the CT relaxation

with time constant Q/ωc, and the right side of the equation describes the

external oscillating force of amplitude F0 and frequency ν, which is close to

the CT frequency ωc, d
∗ is the distance between the spin and the origin.

As the unit of length we will use the amplitude A of the stationary CT

vibrations with no spin,

A =
F0Q

m∗ω2
c

. (10.2)

Also we use µB as the unit of the magnetic moment. Then we can write the

coupled system of dimensionless equations of motion for the CT-spin system:

z̈c + zc +
λµz

(1 + p∗zc)4
+

1

Q
żc =

1

Q
cos[(1 + ρ)τ + θ0], (10.3)

µ̇x = −χ zc µy,
µ̇y = ε µz + χ zc µx,

µ̇z = −ε µy.

Here we use the dimensionless time τ = ωct and parameters:

p∗ =
F0Q

d∗m∗ω2
c

,

λ =
3µ0mµB

2π(d∗)4QF0

,

χ =
3γµ0mQF0

2πm∗ω3
c (d

∗)4
,

ρ =
ν

ωc
− 1, ε =

ωR
ωc
. (10.4)

The equations of motion of the spin magnetic moment are written in the

RSC, the parameter λ describes the magnetic force on the CT, the param-

eter p∗ describes the direct nonlinear contribution to the magnetic force,

and ρ describes the deviation of the external force frequency ν from the un-

perturbed CT frequency ωc. All three parameters are supposed to be small:

λ, p∗, ρ� 1. The parameters χ and ε describe the z− and the x−components
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of the effective field on the spin. In the conditions of full adiabatic reversals

we have χ� ε� 1.

We are going to find the CT frequency shift δωc. For this we will find the

value of ρ, which corresponds to the maximum CT amplitude. Let suppose

that the spin magnetic moment ~µ points in the positive z−direction, when

the CT is at the bottom point of its stationary vibrations, (see Fig. 10.1).

When the CT is at the bottom point, the dipole field Bd on the spin, is

greater than its equilibrium value B
(0)
d . So, the direction of the effective field

~Beff is close to the positive z−direction, and, consequently, the direction of

~µ is close to the direction of the effective field. It is clear from Fig. 10.1 that

the magnetic force on the CT (magnetic attraction, produced by the spin

magnetic moment ~µ) is opposite to the elastic force. Thus, in this case we

expect the negative frequency shift of the CT vibrations.

In order to simplify our computations we assume that the spin mag-

netic moment points exactly in the direction of the effective field. Assuming

the “perfect” adiabatic motion for the spin we put ~̇µ = 0 and obtain from

Eqs. (10.3):

µx =
ε√

ε2 + χ2z2
c

,

µy = 0, (10.5)

µz = − χzc√
ε2 + χ2z2

c

.

Substituting Eqs. (10.5) into the first equation in Eqs. (10.3), we obtain the

nonlinear equation for zc:

z̈c + zc −
λχzc√
ε2 + χ2z2

c

+
1

Q
żc =

1

Q
cos[(1 + ρ)τ + θ0], (10.6)

where we neglected the direct nonlinear contribution to the magnetic force

(p∗ = 0). Note that the third term in the left side of Eq. (10.6) corresponds

to the modification of the CT potential energy by the value:

−λ
χ

√
ε2 + χ2z2

c . (10.7)
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The stationary solution of Eq. (10.6) can be approximately written as

zc(τ) = a(ρ) sin[(1 + ρ)τ + θ0]. (10.8)

Here a(ρ) is the actual amplitude of of the CT vibrations, which can be

slightly different from A, and we assume that z2
c in the denominator of the

third term in the left side of Eq. (10.6) can be replaced by 1/2:

z2
c ≈ sin2 τ =

1

2
(1− cos 2τ) → 1

2
. (10.9)

In a rough approximation we can ignore the nonresonant term cos 2τ . In

this approximation Eq. (10.6) transforms into:

z̈c +

1− λχ√
ε2 + χ2/2

 zc +
1

Q
żc =

1

Q
cos[(1 + ρ)τ + θ0]. (10.10)

The value of ρ corresponding to the maximum amplitude a(ρ) is equal to

ρ = −

 1

4Q2
+

λχ

2
√
ε2 + χ2/2

 . (10.11)

The first term in this expression describes the relative frequency shift

associated with the finite quality factor of the oscillator and the second term

describes the relative frequency shift δωc/ωc caused by the spin. Ignoring ε2

compared to χ2 we obtain a simple equation

δωc
ωc

= − λ√
2
. (10.12)

Taking into account that in the setup, shown in Fig. 10.1,

G =
∂Bd

∂z
=

3µ0m

2π(d∗)4
. (10.13)

We can rewrite Eq. (10.12) in the form

δωc
ωc

= − µBG√
2kcA

. (10.14)
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This equation is similar to Eq. (9.7), which was derived for the CT oscillating

parallel to the sample surface.

In order to obtain a more accurate formula for the frequency shift we will

use the perturbation theory developed by Bogoliubov and Mitropolskii[30].

We look for the solution of Eq. (10.6) in the form

zc = a(τ) cos(ψ) + λu1(a, ψ), (10.15)

where ψ = (1 + ρ)τ + θ(τ). The function u1(a, ψ) is the sum of the Fourier

terms with the phases 3ψ, 5ψ, 7ψ,.... The amplitudes of these terms decrease

with increasing Fourier number, n, as 1/(2n + 1)3. The first nonvanishing

term is small and equals u1(a, ψ) ≈ 0.02 cos(3ψ). This allows us to neglect

the contribution of u1(a, ψ) in the expression for zc in Eq. (10.15).

The slow varying amplitude, a(τ), and the phase, θ(τ), in the first order

of the perturbation theory satisfy the two coupled differential equations,

da

dτ
= − λ

2π

∫ 2π

0
dψ

χa cosψ sinψ√
ε2 + (χa cosψ)2

− a

2Q
− sin θ

Q(2 + ρ)
, (10.16)

and

dθ

dτ
= − 1

8Q2
− ρ− λ

2πa

∫ 2π

0
dψ

χa cos2 ψ√
ε2 + (χa cosψ)2

− cos θ

aQ(2 + ρ)
. (10.17)

Note that the integral on the right-hand side of Eq. (10.16) is equal to zero.

The integral on the right-hand side of Eq. (10.17) can be expressed through

the elliptic integrals as

4
∫ 2π

0
dψ

χa cos2 ψ√
ε2 + (χa cosψ)2

= 4
[
1

k
E(k)− p2kK(k)

]
, (10.18)

where k = 1/
√

1 + p2 and K(k) and E(k) are the complete elliptic integrals,

respectively, of the first and second kind , p = ε/(aψ). Indeed, we have∫ π/2

0
dψ

χa cos2 ψ√
ε2 + (χa cosψ)2

=
∫ π/2

0
dψ

cos2 ψ√
p2 + cos2 ψ

(10.19)

=
∫ 2π

0
dψ

(1− sin2 ψ)√
p2 + 1− sin2 ψ

=
∫ π/2

0
dψ

(p2 + 1)
(
1− 1

p2+1
sin2 ψ

)
− p2

√
p2 + 1

√
1− 1

p2+1
sin2 ψ

.
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Splitting this integral in two parts, we obtain the right-hand side of Eq. (10.18).

When p2 � 1 one can decompose K(k) and E(k) as

K(k) ≈ C + (C − 1)
k′2

4
+ . . . ,

(10.20)

E(k) ≈ 1 + (C − 1

2
)
k′2

2
+ . . . ,

where k′2 = 1 − k2 ≈ p, C = ln(4/k′) ≈ ln(4/p). From Eqs. (10.18) and

(10.20) we find the value of the integral in Eq. (10.17) for p� 1

− λ

2πa

∫ 2π

0

χa cos2 dψ√
ε2 + (χa cosψ)2

≈ −2λ

πa

[
1− p2

a

(
2 ln

4

p
− 1

)]
. (10.21)

Substituting Eq. (10.21) into Eq. (10.17) we obtain

da

dτ
= − a

2Q
− 1

Q(2 + ρ)
sin θ,

dθ

dτ
= − 1

8Q2
− ρ− 2λ

πa

[
1− p2

4

(
2 ln

4

p
− 1

)]
− cos θ

aQ(2 + ρ)
. (10.22)

We now calculate the position of the maximum of the amplitude, a(ρ), in

the stationary regime of driven oscillations using Eq. (10.22). In the regime

of driven oscillations a =const, θ =const, and we must solve the system of

two Eqs. (10.22) where da/dτ = 0 and dθ/dτ = 0. Eliminating the phase θ,

we have
1

a2(2 + ρ)2
=

1

4
+Q2

(
1

8Q2
+ ρ+

2λ

πa

)2

, (10.23)

where we neglected the term proportional to p2 � 1. The amplitude, a, can

be written as a = 1 + b, where b� 1, so that

1

a(2 + ρ)
=

1

(1 + b)(2 + ρ)
≈ 1

2

(
1− b− ρ

2

)
. (10.24)

Taking the square root from both side of Eq. (10.23) and using Eq. (10.24)

we obtain
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−b− ρ

2
≈ 2Q2

(
1

8Q2
+ ρ+

2λ

π

)2

, (10.25)

where we put a ≈ 1 in the denominator of the term proportional to λ (i.e.

we neglected the term of the order of βλ.
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Figure 10.2: The dependence of the amplitude of the driven CT oscillations

on the frequency detuning, ρ, obtained using the numerical solution of the

equations of motion (10.3). The solid line corresponds to the initial conditions

(10.28) and the values of parameters λ = 8.5 × 10−5, χ = 2500, ε = 280

p = 0.05, Q = 100. The dotted line corresponds to the same values of the

parameters but for “inverted” initial condition (in Eq. (10.28) µx → −µx,
µz → −µz). The dashed line represents the dependence a(ρ) with no spin.

The maximum of the function, β = β(ρ) can be found from the condition

dβ/dρ = 0, which yields

ρ = − 1

4Q2
− 2λ

π
. (10.26)

Thus, the relative frequency shift caused by the spin is given by

δωc
ωc

= −2λ

π
. (10.27)
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Comparing with the formula (10.12) we see that the more accurate pertur-

bation approach yields the factor 2/π instead of the factor 1/
√

2.

The numerical solution of the original equation (10.3) confirms the ana-

lytical estimates. Fig. 10.2 (solid line) demonstrates the dependence of the

stationary amplitude of the CT vibrations, a, on the frequency detuning, ρ.

The stationary amplitude is achieved at τ � Q. The initial conditions in

this numerical solution correspond to the magnetic moment pointing in the

direction of the effective field:

zc(0) = −1, żc(0) = 0,

µx(0) =
ε√

ε2 + χ2
, µy(0) = 0, (10.28)

µz(0) =
χ√

ε2 + χ2
, θ0 =

3

2
π.

The dotted line on the same Figure corresponds to the magnetic moment
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Figure 10.3: a) Dynamics of the magnetic moment ~µ(τ), with the initial

conditions (10.28). The gray line is obtained as a result of the numerical

integration of Eqs. (10.3), while the black one indicates the solution (10.5).

For µz(τ) both curves almost coincide. The parameters are the same as those

for the solid line in Fig. 10.2. b) The same as a) but for ε = 28.
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pointing opposite to the direction of the effective field. One can see that the

CT frequency caused by the spin, changes its sign.

Fig. 10.3a demonstrates an adiabatic reversal of the magnetic moment ~µ

obtained from the adiabatic approximation (10.5) (black line) and original

equations of motion (10.3) (gray line). One can see a close correspondence

between the two solutions.

For comparison, Fig. 10.3b demonstrates the dependence ~µ(τ) for the

case when the conditions of adiabatic reversals are violated. In this case the

adiabatic approximation is not close to the solution of Eq. (10.3).

10.2 Quantum theory of the OSCAR MRFM

In this section we use the quantum theory to describe the free vibrations of

the CT interacting with a single spin. We will consider the same simple setup

in Fig. 10.1 as in the previous section. We will use the quantum units for

the energy, coordinate and momentum, and the quantum Hamiltonian (8.4)

of the CT-spin system, where we put φ̇ = 0. We will describe the computer

simulations of the quantum dynamics for the values of parameters

η = 0.3, ε = 10, 〈zc(0)〉 = A = 13, 〈pc(0)〉 = 0. (10.29)

The condition for the adiabatic motion in terms of our parameters is

2ηA� ε2. (10.30)

The condition for the full reversals of the effective field is

ε� 2ηA. (10.31)

For the parameters (10.29) we have 2ηA ≈ 7.8. Thus, the condition

(10.30) is satisfied while (10.31) is violated. As we have explained in the

Section 1 of Chapter 8 for such values of parameters we have the case of

partial adiabatic reversals shown in Fig. 9.2, which is convenient for computer

simulations. In order to estimate the CT frequency shift, caused by the spin,
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in the conditions of the partial adiabatic reversals we may use formula (10.11).

In units of ωc the value of δω0 = |δωc| is

δω0 =
λχ

2
√
ε2 + χ2/2

. (10.32)

Taking into consideration that the parameters λ and χ can be rewritten in

the form:

χ =
γA

ωc
G, λ =

µB
kcA

G, (10.33)

and also µB = γh̄/2, and the quantum unit of length is (h̄ωc/kc)
1/2, we obtain

λχ = 2η2, χ2 = 4η2A2. (10.34)

Substituting Eqs. (10.34) into Eq. (10.32), for the values of parameters

(10.29) we obtain

δω0 =
η2

√
2η2A2 + ε2

≈ 7.9× 10−3. (10.35)

The results of computer simulations of the OSCAR MRFM dynamics

are similar to those described in Chapter 7, but with some important pe-

culiarities. The wave functions was taken in the form (8.7) with the initial

conditions (8.11). The complex parameter α in Eq. (8.11) is equal to

α =
1√
2

[〈zc(0)〉+ i〈pc(0)〉] , (10.36)

where 〈zc(0)〉 and 〈pc(0)〉 are taken from (10.29). The probability distribution

for the CT position

P (zc, τ) = |Ψ1(zc, τ)|2 + |Ψ2(zc, τ)|2, (10.37)

eventually splits into two peaks which describe two CT trajectories. The

ratio of the integrated probabilities for two peaks is given approximately by

tan2(θ/2), where θ is the initial angle between the directions of the average

spin and the effective field ~Beff = (ε, 0,−2η〈zc(0)〉). (The effective field is
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Figure 10.4: Functions |Ψ1(zc, τ)|2 (solid curve) and |Ψ2(zc, τ)|2 (dashed

curve), for six values of τ . Initial conditions: 〈zc(0)〉 = A = 13, 〈pc(0)〉 = 0,

and the electron spin points in the positive z−direction.

given in units ωc/γ.) The approximate position of the center of the first peak

is

z1 = A cos (1− δω0) τ, (10.38)

and the approximate position of the second peak is

z2 = A cos (1 + δω0) τ, (10.39)

where δω0 ≈ 8.0 × 10−3. Note that the value δω0 estimated from (10.35) is

almost the same. Both functions Ψ1(zc, τ) and Ψ2(zc, τ) contribute to each

peak (see Fig. 10.4). When two peaks are clearly separated, the wave func-

tion Ψ can be approximately represented as a sum of two functions Ψb and

Ψsm, which correspond to the “big” and “small” peaks in the probability dis-
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tribution. We have found that each function Ψb and Ψsm, with the accuracy

to 1%, can be represented as a product of the coordinate and spin functions

Ψb = ψb(zc, τ)χ
b(s, τ), Ψsm = ψsm(zc, τ)χ

sm(s, τ). (10.40)

The first spin function χb(s, τ) describes the average spin which points

approximately opposite to the direction of the effective field

~Beff,1 = (ε, 0,−2ηz1),

for the first CT trajectory. The second spin function χsm(s, τ) describes the

average spin which points approximately in the direction of the effective field
~Beff,2 = (ε, 0,−2ηz2), for the second CT trajectory.

Unlike MRFM dynamics considered in Chapter 7, the OSCAR technique

implies different effective fields for two CT trajectories. That is why, in

general, the average spins corresponding to two CT trajectories do not point

in the opposite directions, and the wave functions χb(s, τ) and χsm(s, τ) are

not orthogonal to each other. The only exceptions are the instants τ for which

two CT trajectories intersect providing a unique direction for the effective

field.

We would like to note the important difference between the quasiclassical

and quantum dynamics of the CT-spin system. If initially the spin magnetic

moment makes an angle θ with the effective field then the quasiclassical

dynamics describes a single CT trajectory with the frequency shift

δωc = −δω0 cos θ, (10.41)

where δω0 is the maximum absolute value of the frequency shift, which can

be achieved at θ = 0 and θ = π. Thus, the frequency shift δωc can accept

any value between −δω0 and δω0 depending on the value of the angle θ.

The quantum dynamics describes two CT trajectories at the same time (the

Schrödinger cat state) with the frequency shifts −δω0 and δω0, corresponding

to the two possible values of the spin component relative to the direction of

the effective field. The probabilities for these two trajectories are cos2 θ/2
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Figure 10.5: Classical and quantum cantilever dynamics in OSCAR MRFM;

(a) classical cantilever coordinate z(τ), (b) quantum average cantilever coor-

dinate 〈z(τ)〉, (c) the Fourier spectrum for (a): z(τ) =
∑
nAn cos(ωnτ +ϕn),

(d) the Fourier spectrum for (b): 〈z(τ)〉 =
∑
nBn cos(ωnτ + θn). All param-

eters are the same as in Fig. 10.4. In a) and b) we show, for convenience,

time sequences shorter than those used in order to get the Fourier spectrum

shown in c) and d).

and sin2 θ/2. For any angle θ the quantum dynamics describes only two fre-

quencies δω0 and −δω0. Fig. 10.5 demonstrates the difference between the

quasiclassical and the quantum dynamics. In order to describe the decoher-

ence and the thermal diffusion for the CT interacting with the spin we have

used the master equation (8.18), where we put φ̇ = 0. The initial density

matrix was taken in the form (8.21), which is the product of the CT and the

spin density matrices with the CT being in the coherent state, and the spin
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Figure 10.6: Evolution of the density matrix for (β = D = 0), at four instants

of time (as indicated in the figure). Parameters: ε = 10, η = 0.3. The

left column: ln |∑s ρs,s|, the right column: ln |∑s ρs,−s|. Initial conditions:

〈zc(0)〉 = −8, 〈pc(0)〉 = 0. Contour lines are the intersections of the functions

ln |∑s ρs,±s| horizontal planes.

pointing in the positive z− direction.

Fig. 10.6 shows the evolution of the density matrix without decoherence
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and thermal diffusion, for the following values of parameters

ε = 10, η = 0.3, β = D = 0. (10.42)

The left column demonstrates the behavior of the spin diagonal density

matrix elements (contour lines for ln |∑s ρs,s|), and the right column demon-

strates the behavior of the spin non-diagonal density matrix elements (con-

tour lines for ln |∑s ρs,−s|). Initially we have one “spatial” peak on the plane

zc − z′c. Eventually, this peak splits into four peaks. Two spatial diagonal

peaks, which are centered on the line zc = z′c, correspond to two cantilever

trajectories. Two spatial non-diagonal peaks describe a “coherence” between

the two trajectories, which is a quantitative characteristic of the Schrödinger

cat state. All four spin components of the density matrix ρs,s′(zc, z
′
c, τ) (with

s = ±1/2, s′ = ±1/2) contribute to each peak in the zc − z′c plane.

The density matrix ρs,s′(zc, z
′
c, τ) can be represented as a sum of four

terms

ρs,s′(zc, z
′
c, τ) =

4∑
k=1

ρ
(k)
s,s′(zc, z

′
c, τ), (10.43)

where each term describes one peak in the zc − z′c plane: the first two terms

with k = 1, 2 describe the spatial diagonal peaks, and two other terms with

k = 3, 4 describe the spatial non-diagonal peaks.

It was found that the diagonal terms ρ(1) and ρ(2) can be approximately

decomposed into the product of the coordinate and spin parts

ρ
(k)
s,s′(zc, z

′
c, τ) = R̂(k)(zc, z

′
c, τ)χ̂

(k)
s,s′(τ), k = 1, 2. (10.44)

The spin matrix χ̂
(1)
s,s′(τ) describes the average spin which points approxi-

mately opposite to the direction of the effective field ~Beff,1. The spin matrix

χ̂
(2)
s,s′(τ) describes the average spin which points approximately in the direction

of the effective field ~Beff,2. The same properties of the density matrix remain

for the case β,D 6= 0. Fig. 10.7 demonstrates the effects of decoherence and

thermal diffusion for β = 0.001 and D = 20. The spatial non-diagonal peaks

in the zc− z′c plane quickly decay. This reflects the effect of decoherence: the

statistical mixture of two possible CT trajectories replaces the Schrödinger
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Figure 10.7: Evolution of the density matrix: effects of decoherence and

thermal diffusion; D = 20, β = 0.001, ε = 10, η = 0.3. The left column:

ln |∑s ρs,s|, the right column: ln |∑s ρs,−s|. Initial conditions: 〈zc(0)〉 = −8,

〈pc(0)〉 = 0. Contour lines are the intersections of the functions ln |∑s ρs,±s|
with the horizontal planes.

cat state. Next, the spatial diagonal peaks spread out along the diagonal

zc = z′c. This reflects the classical effect of the thermal diffusion.
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10.3 OSCAR frequency shift for a realistic

setup

As we have mentioned in the previous chapter the first experimental detection

of a single spin has been demonstrated with the setup shown in Fig. 9.1. In

that experiment the dipole field ~Bd produced by the CT was greater than

the external field ~Bext. It means that for the CT position xc = 0 with no rf

field the net magnetic field on the spin ~B0 = ~B
(0)
d + ~Bext doesn not point,

even approximately, in the positive z direction. Moreover, the spin does not

have to be located in the x− z plane, so that the dipole field ~B
(0)
d may have

the non-zero y−component.

In this section we will compute the OSCAR frequency shift for the CT

oscillating parallel to the sample surface (Fig. 9.1), for arbitrary location of

the spin and arbitrary relation between the dipole field ~Bd and the permanent

external field ~Bext. First, we will assume that the rf field of frequency ω is

linearly polarized in the plane which is perpendicular to the magnetic field
~B0. Later, we will discuss the arbitrary direction of the rf field. As only

one rotating component of the rf field will be important, we will write the rf

field with a factor 2: 2 ~B1(t). We will consider the free vibrations of the CT

interacting with the spin magnetic moment using the quasiclassical approach.

The dipole magnetic field ~Bd is given by:

~Bd =
µ0

4π

3(~m · ~n)~n− ~m

r̃3
, (10.45)

where r̃ is the variable distance between the moving CT and the stationary

spin, ~n is the unit vector pointing from the CT to the spin. We put:

r̃ =
√

(x− xc)2 + y2 + z2, (10.46)

~n =
(
x− xc
r̃

,
y

r̃
,
z

r̃

)
, (10.47)

where x, y, z are the spin coordinates, and xc is the CT-coordinate. For

xc = 0 and B1 = 0 the net magnetic field on the spin is given by:
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~B0 = ~Bext + ~B
(0)
d , (10.48)

~B
(0)
d =

3mµ0

4πr5

(
zx, zy, z2 − r2

3

)
, (10.49)

~Bext = (0, 0, Bext), (10.50)

where r =
√
x2 + y2 + z2. In the linear approximation on xc the magnetic

field ~Bd changes by the value of ~B
(1)
d :

~B
(1)
d = −(Gx, Gy, Gz) xc, (10.51)

(Gx, Gy, Gz) =
3mµ0

4πr7

(
zr2 − 5zx2,−5xyz, xr2 − 5xz2)

)
. (10.52)

The quantities (Gx, Gy, Gz) describe the gradient of the magnetic field at the

spin location at xc = 0:

(Gx, Gy, Gz) =

(
∂Bx

∂x
,
∂By

∂x
,
∂Bz

∂x

)
. (10.53)

Note, that the magnetic field and its gradient depend on the CT coordinate

xc.

Next we consider the equation of motion for the spin magnetic moment ~µ

in the RSC rotating with the rf field of frequency ω about the magnetic field
~B0 (the z̃−axis of this new system points in the direction of ~B0). We have:

~̇µ = −γ~µ× ~Beff ,

~Beff =
(
B1, 0, B0 − ω

γ
− xc

∑
iGi cosαi

)
,

cosαi =
B0,i

B0
, i = x, y, z.

(10.54)

Here αi, (i = x, y, z) are the angles between the direction of the magnetic field
~B0 and the axes x, y, z of the laboratory system of coordinates. Note, that we

ignore the transversal components of the dipole field ~Bd as they represent the
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fast oscillating terms in the RSC. Also we consider only rotating component

of the rf magnetic field.

The classical equation of motion for the CT can be represented as:

ẍc + ω2
cxc =

Fx
m∗ , (10.55)

where Fx is the magnetic force acting on the on the CT. Note, that we

consider CT oscillations in the laboratory system of coordinates. Ignoring

fast oscillating terms in the laboratory system, we obtain:

Fx = −µz̃
∑
i

Gi cosαi. (10.56)

Below, in this section, we will use the following units: for frequency -

“ωc”, for magnetic moment -“µB”, for magnetic field -“ωc/γ”, for length -

the characteristic distance “L0” between the CT and the spin, for force -

“kcL0”. Using these units and the dimensionless time τ = ωct, we derive the

dimensionless equations of motion:

~̇µ = −~µ× ~Beff ,

ẍc + xc = Fx,

~Beff = (B1, 0,∆− α′G′xc) ,

Fx = −αα′G′µz̃,

∆ = B0 − ω,

G′ =
1

r7
[z(r2 − 5x2) cosαx − 5xyz cosαy + x(r2 − 5z2) cosαz].

(10.57)

Parameters α and α′ are given by:

α =
µBωc
γkcL2

0

, α′ =
3γµ0m

4πωcL3
0

. (10.58)
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Note that all quantities in Eq.(10.57) are dimensionless, i.e. x means x/L0, µ

means µ/µB, B0 means γB0/ωc, and so on. In terms of dimensional quantities

the parameter α′ equals to the ratio of the dipole frequency γB
(0)
d to the

CT frequency ωc, and the product αα′ equals to the ratio of the static CT

displacement Fx/kc to the CT-spin distance L0. The derived equations are

convenient for both numerical simulations and analytical estimates.

When the CT oscillates, the resonant condition ω = | ~Bext + ~Bd| can be

satisfied only if the spin is located inside the resonant slice which is defined

by its boundaries:

| ~Bext + ~Bd(xc = ±A)| = ω, (10.59)

where A is the amplitude of the CT vibrations. For analytical estimate we

assume that the spin is located at the central surface of the resonant slice.

In this case in Eq. (10.57) ∆ = 0. We will assume an ideal adiabatic motion

and put ~̇µ = 0 in Eq. (10.57). Let the CT starts its motion at t = 0 from

the right end position xc(0) = A. Then, the initial direction of the effective

magnetic field ~Beff (0) depends on the sign of the parameter G′. If G′ < 0,

then the direction of ~Beff (0) is close to the direction of ~B0. If G′ > 0, then

the vector ~Beff points, approximately, in the direction opposite to the vector
~B0. We will assume that the spin magnetic moment is initially in the state

of equilibrium. It means that for G′ < 0 the magnetic moment ~µ will have

the direction close to the direction of the effective field ~Beff .

From the first equation in (10.57) we obtain

µz '
Beff,zG

′

Beff |G′|
. (10.60)

Substituting this expression into Fx we obtain the following equation for

xc:

ẍc + xc

1 +
α(α′)2G′|G′|√
B2

1 + (α′G′xc)2

 = 0. (10.61)
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We solve this equation using the perturbation theory [30]. Eq. (10.61) can

be written in the following form:

d2xc
dτ 2

+ xc = ε′f(xc), (10.62)

where

f(xc) =
αG′xc√

B2
1 + (α′G′)2x2

c

, (10.63)

and ε′ = −αα′|G′|.
The approximate solution of (10.62) can be written as:

xc(τ) = a(τ) cosψ(τ) +O(ε′), (10.64)

where in the first order on ε′, the functions a(τ) and ψ(τ) satisfy the equa-

tions:
da

dτ
= ε′P1(a) +O(ε′),

dψ

dτ
= 1 + ε′Q1(a) +O(ε′),

(10.65)

and the functions P1(a) and Q1(a) are given by:

P1(a) = − 1

2π

∫ 2π

0
f(a cosψ) sinψ dψ, (10.66)

Q1(a) = − 1

2πa

∫ 2π

0
f(a cosψ) cosψ dψ. (10.67)

On inserting the explicit expression (10.63) for f(a cosψ) one gets:

P1(a) = 0, (10.68)

Q1(a) = − 2α′G′

π
√
B2

1 + (α′G′a)2

∫ π/2

0

(1− sin2 ψ)√
1− k2 sin2 ψ

dψ, (10.69)

where

k2 =
(α′G′a)2

B2
1 + (α′G′a)2

. (10.70)
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Eq.(10.69) can be written as:

Q1(a) = − 2α′G′

πk2
√
B2

1 + (α′G′a)2
[(k2 − 1)K(k) + E(k)], (10.71)

where K(k) and E(k) are the complete elliptic integrals of the first and

second kind. When k ' 1 elliptic integrals can be approximated by:

K(k) ≈ ln
4√

1− k2
+

1

4

(
ln

4√
1− k2

− 1

2

)
(1− k2), (10.72)

E(k) ≈ 1 +
1

2

(
ln

4√
1− k2

− 1

2

)
(1− k2). (10.73)

In the first approximation we have a = A and

δωc =
2

π

α(α′)2G′|G′|√
B2

1 + (α′G′A)2
×

1 +
1

2

B2
1

B2
1 + (α′G′A)2

[
ln
(4
√
B2

1 + (α′G′A)2

B1

)
+

1

2

] . (10.74)

In typical experimental conditions we have

B1 � α′G′A, (10.75)

and Eq.(10.74) transforms to a simple expression

δωc =
2

π

αα′G′

A
. (10.76)

In terms of dimensional quantities we have:

δωc
ωc

=
2µBG0

πkcA
, (10.77)

where

G0 =
∑
i

Gi cosαi. (10.78)

Taking into consideration the expression for λ in (10.33) one can see that

formula (10.77) for the relative frequency shift is similar to formula (10.27)
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which was derived for the simplest OSCAR setup. Note, that Eqs. (10.74)

and (10.76, 10.78) are valid for any spin location on the central resonant

surface and for any relation between Bext and Bd. We also note that in

Eq. (10.74) the frequency shift δωc is an even function of y and an odd

function of x.
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Figure 10.8: The OSCAR MRFM frequency shift δωc(z) at the central res-

onant surface (∆ = 0), for x > 0. Symbols show numerical data, lines

correspond to estimate (10.74) for (a) y = 0 (circles), (b) y = x/2 (squares)

and (c) y = x (crosses). Black circles are the intersection with the plane

z = −1, black squares are the intersection with the plane z = −0.1.

Below we will describe the results of numerical solution of Eq. (10.57)

with the parameters taken from experiment [8]:

ωc
2π

= 5.5 kHz, Kc = 110 µN/m, A = 16 nm,

Bext = 30mT,
ω

2π
= 2.96 GHz,

ω

γ
= 106 mT, (10.79)

|Gz| = 200 kT/m, B1 = 300 µT. (10.80)

Taking the characteristic distance between the spin and the CT L0 =
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Figure 10.9: Cross-sections of the resonant slice for z = −0.1 and z = −1.

Dashed lines show the intersection between the cross-section and the central

resonant surface. Full circles indicate spin locations which correspond to the

frequency shifts indicated by black symbols in Fig. 10.8.

350 nm we obtain the following values of the dimensionless parameters:

α = 1.35× 10−13 α′ = 1.07× 106, A = 4.6× 10−2,

B1 = 1.5× 103, Bext = 1.53× 105, ω = 5.4× 105. (10.81)

The initial conditions were taken in the form

~µ(0) = (0, 0, 1),

xc(0) = A, ẋc(0) = 0. (10.82)

Fig. 10.8 shows the frequency shift δωc as a function of the spin z-coordinate

at the central resonant surface (∆ = 0). First, one can see an excellent

agreement between the numerical data and the analytical estimate (10.74).

Second, as it may be expected, the maximum magnitude of the frequency

shift |δωc| can be achieved when the spin is located in the plane of the CT

vibrations y = 0.

However, for y = x one can achieve almost the same magnitude |δωc|
(with the opposite sign of δωc). Moreover, for y = x the dependence δωc(z)



124 10. CT-SPIN DYNAMICS IN THE OSCAR TECHNIQUE

0.5 0.6 0.7 0.8 0.9
rp

-4e-06

0

4e-06

δω
c

-0.8 -0.4 0 0.4 0.8

x

-0.8

-0.4

0

0.4

0.8y

a) b)

1

2

3

1

2

3

y=0

y=x

Figure 10.10: (a) The OSCAR MRFM frequency shift δωc(rp) inside the

cross-sectional area of the resonant slice for x > 0. Solid lines correspond

to y = 0, dashed lines correspond to y = x. Lines are (1), z = −0.1, (2),

z = −0.43, and (3), z = −1. rp = (x2 + y2)1/2. (b) Cross-section of the

resonant slice for z = −0.1. Bold segments show the spin locations which

correspond to the lines (1) on (a).

has an extremum which can be used for the measurement of the spin z-

coordinate. If the distance between the CT and the surface of the sample

can be controlled, then the “depth” of the spin location below the sample

surface can be determined. Note, that in Figs. 10.8-10.12 the coordinates

x, y, and z are given in units of L0, and the frequency shift is in units of

ωc. Fig. 10.9 shows the cross-sections of the resonant slice for z = −0.1 and

z = −1. The greater distance from the CT the smaller cross-sectional area.

The black symbols in Fig. 10.9 show the spin locations, which correspond

to the frequency shift indicated by black symbols in Fig. 10.8. Fig. 10.10

demonstrates the “radial” dependence of the frequency shift δωc(rp), where

rp = (x2 +y2)1/2. The value of rp can be changed by the lateral displacement

of the cantilever. As one may expect, the maximum value of |δωc| corresponds
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Figure 10.11: a) Dependence δωc(φ), with φ = tan−1(y/x) for the central

resonant surface and z = −0.1 (full line); z = −0.43 (dashed line), z = −1

(dotted line). b) solid line shows the cross-section of the resonant slice for

z = −0.1. Dashed line shows the intersection between the plane z = −0.1

and the central resonant surface. The plus in (b) shows the spin location

φ = −0.1. The corresponding frequency shift is marked by a plus on (a).

to the central resonant surface. The maximum becomes sharper with the

decrease of z. Thus, the small distance between the CT and the sample

surface is preferable for the measurement of the “radial position” of the spin.

Fig. 10.11 shows the “azimuthal dependence” of the frequency shift δωc(φ),

where φ = tan−1(y/x) and the spin is located on the central resonant surface.

Note, that for given values of z and φ the coordinates y and x of the spin are

fixed if the spin is located on the central resonant surface. The value of φ can

be changed by rotating the cantilever about its axes. One can see the sharp

extrema of the function δωc(φ). Again, the small distance between the CT

and the sample is preferable for the measurement of the “azimuthal position”
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of the spin. Finally, we consider the realistic case when the direction of po-

larization of the rf field 2 ~B1 is fixed in the laboratory system of coordinate.

Now the angle θ between the direction of polarization of 2 ~B1 and the field ~B0

depends on the spin coordinate as the magnitude and direction of the dipole

field ~B
(0)
d depend on the spin location. To describe this case we ignore the

component of 2 ~B1, which is parallel to ~B0, and change B1 to B1 sin θ in all our

formulas. As an example Fig. 10.12a demonstrates the dependence δωc(z)

for the case when the rf field is polarized along the x−axis. One can see that

in a narrow region of z, the magnitude of the frequency shift sharply drops.

This occurs because in this region the magnetic field ~B0 is almost parallel to

the x−axis (see Fig. 10.12b). Thus, the effective field B1 sin θ is small, the

condition of the adiabatic motion (2.27), which in our case can be written as

γ[B1 sin θ]2 � |d ~Beff/dt|, is not satisfied, and the spin does not follow the

effective field. The dashed line in Fig. 10.12a corresponds to the analytical

estimate (10.74) with the substitution B1 → B1 sin θ: the analytical estimate

assumes adiabatic conditions, which are violated for small θ.

The sharp drop of |δωc| could be observed either by the change of the

distance between the CT and the sample surface or by the change of the

direction of polarization of the rf field. In any case, this effect could be used

for independent measurement of the spin “depth” below the sample surface.

In conclusion, we note that taking the values of parameters (10.80) and

assuming G0 ≈ Gz we obtain from Eq. (10.77) δωc/2π| ≈ 3.7 mHz, which is

close to the experimental value 4.2 mHz.
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Figure 10.12: (a) Dependence δωc(z) when the rf field ~B1 is parallel to the

x−axis. The spin is located at the central resonant surface y = 0, x > 0.

Solid line are numerical data, dashed line is the analytical estimate (10.74),

which assumes adiabatic motion of the spin magnetic moment ~µ parallel

to ~Beff . For a few numerical points indicated as black circles in (a) the

corresponding ~B0 field is shown in (b). (b) Solid line: intersection between

the central resonant surface and the x− z plane. Arrows show the magnetic

field ~B0 on this intersection at the points indicated as black circles in (a).

The absolute value of the frequency shift |δωc| drops at the spin locations

where ~B0 is approximately parallel to ~B1 (θ � 1).
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Chapter 11

Magnetic Noise and Spin

Relaxation in OSCAR MRFM

In this chapter we will consider the direct interaction between the spin and

its environment. We will assume that the main source of magnetic noise

on the spin is associated wit the thermal vibrations on the CT. Magnetic

noise causes the spin deviation from the effective magnetic field in OSCAR

MRFM. This deviation, in turn, causes quantum jumps (spin flips). We have

discussed quantum collapses and quantum jumps shortly in Chapter 8. In

this chapter we will consider simple models for both phenomena (Berman et

al. [33], [34]). We will start this chapter from the analysis of the OSCAR

signal generated by an ensemble of spins rather than a single spin [35, 37].

In this case, the magnetic noise causes the decay of the regular OSCAR

signal, which can be described as the spin relaxation in the RSC with the

characteristic time τm. The regular OSCAR signal is followed by the random

OSCAR signal, which does not decay with time like random quantum jump

in the case of a single spin. We will discuss both regular and random OSCAR

signals. We will also consider the opportunity of suppression of the magnetic

noise using a non-uniform cantilever instead of a uniform one [35, 36, 37, 38].

129



130 11. MAGNETIC NOISE AND SPIN RELAXATION IN OSCAR MRFM

11.1 OSCAR relaxation in a spin ensemble

In this section we will consider the regular and random OSCAR signals gener-

ated by an ensemble of spins inside the resonant slice. First, we will consider

the CT oscillating perpendicular to the sample surface. Fig. 11.1 shows the

resonant slice for this case.

Figure 11.1: The resonant slice for the CT oscillating perpendicular to the

sample surface. Bext and B1(t) are the permanent and rotating rf magnetic

fields; ~m is the magnetic moment of the ferromagnetic particle, ~µk is the k-th

magnetic moment in the resonant slice.

The resonant Larmor frequency

ωL ≈ γ(Bext +Bdz), (11.1)
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depends on the CT position and on the position of the spin inside the resonant

slice. The frequency ωL for the spins on the upper boundary of the resonant

slice matches the rf frequency ω when the CT is in its upper position zc = A.

For the same position of the CT the frequency ωL for a spin on the bottom

boundary of the resonant slice will be much smaller than ω. Note, that in

Eq. (11.1) and below we assume that the external magnetic field Bext is much

greater than the dipole field Bd.

We are not going to consider an analytical approach to the computation

of the relaxation time used by Mozyrsky et al. [39], but restrict ourselves

with analytical estimate and numerical simulations.

For analytical estimate we consider the motion of a single classical mag-

netic moment ~µk in the center of the resonant slice, under the action of the

fluctuating magnetic field produced by the ferromagnetic particle. Assume

that the magnetic moment moves adiabatically, together with the effective

field in the semi-plane (+z)− (+x)− (−z), in the rotating frame. When the

polar angle of the vector ~µk is not small, the weak fluctuating dipole field

produced by the ferromagnetic particle has a component perpendicular to ~µk
which causes a deviation from the effective field.

In the process of adiabatic reversals the resonance frequency of the mag-

netic moment changes from ωmax (near the +z−axis) to ωR (near the trans-

verse plane), and back to ωmax (near the −z−axis). If a characteristic fre-

quency of the fluctuating field falls in the region (ωR, ωmax) the fluctuating

field causes a noticeable deviation of the magnetic moment from the effective

field.

Next, we make assumptions similar to that in Chapter 8, when we es-

timated the characteristic time interval between the quantum jumps. The

greatest thermal amplitudes have the modes in the narrow region, approx-

imately (ωR, 2ωR). The geometrical factor also favors these modes because

the magnetic moment ~µk has the resonant frequency in the region (ωR, 2ωR)

when it is very close to the transverse plane where the fluctuating field is

perpendicular to the magnetic moment ~µk. To estimate the action of the fluc-

tuating field, we will assume that in this region of the resonant frequencies
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the magnetic moment experiences the fluctuating magnetic field produced

by the thermal CT vibrations. To simplify our estimate, we assume that

these vibrations have the constant amplitude ATR, given by Eq. (9.14), and

random phase. The characteristic time between the “phase jumps” of the

fluctuating field (the correlation time) can be estimated as the Rabi period

TR. Assuming that the angular spin deviation from the effective field is a

diffusion process we obtain the characteristic deviation during a single rever-

sal 〈∆θ2
1〉. The value of 〈∆θ2

1〉 is given by Eqs. (9.20) and (9.15), where we

should change Gz = ∂Bz/∂x to ∂Bz/∂z. We may estimate the relaxation

time τm as the time corresponding to the total deviation 〈∆θ2〉 ' 1. In this

case τm is the time interval, which includes 1/〈∆θ2
1〉 reversals

τm =
Tc
2

(
1

〈∆θ2
1〉

)
. (11.2)

Thus, we obtain the formula which is similar to (9.25) for the characteristic

time interval between quantum jumps.

Omitting the numerical coefficient we may rewrite this formula in the

form convenient for the discussion:

τm =
kcA

γ(∂Bz/∂z)kBT

(
ωR
ωc

)2

. (11.3)

We shall discuss this formula. The characteristic time of the deviation

from the effective field increases with increasing Rabi frequency ωR , but de-

creases with increasing temperature. These dependences reflect the obvious

properties of the thermal noise of the cantilever. The dependence τm on the

amplitude of the cantilever vibrations A is associated with the time ∆t1 of

passing the resonant region (ωR, 2ωR): the greater A is, the smaller the time

∆t1; thus the greater number of reversals is needed to provide a significant

deviation of ~µk from the effective field. The dependence τm on the magnetic

field gradient ∂Bz/∂z appears as the result of two competing factors. On the

one hand, when the gradient ∂Bz/∂z increases, the fluctuating magnetic field

also increases. On the other hand, the time of passing the resonant region

∆t1 decreases when the gradient ∂Bz/∂z increases.
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Below, we describe the results of our computer simulations. We will

consider the damped vibrations of the CT interacting with the spins of the

resonant slice in the presence of the magnetic noise. The classical equation

of motion for the CT is

z̈c + zc +
1

Q
żc = f(τ),

f(τ) =
∑
k

ηk µkz, (11.4)

ηk =
µ0

4π

3mµ

kcA5

z̃k (5z̃2
k − 3r̃2

k)

r̃7
k

.

Here we use the dimensionless time τ = ωct, the CT coordinate zc is written

in units of the CT amplitude A, xk, yk and zk are the coordinates of the k-th

magnetic moment ~µk in the same units,

z̃k = zk − zc, r̃k =
(
x2
k + y2

k + z̃2
k

)1/2
, (11.5)

the magnetic moment ~µk is written in units of its magnitude µ. In this section

we will consider ~µk not as a magnetic moment of the k-th spin with magnitude

µB but as a macroscopic magnetic moment of an arbitrary magnitude µ,

which is the same for all k. In our simulations the value of µ is adjusted to

the number of magnetic moments N , so that the average magnetization M

in the resonant slice remains constant.

The motion of the k-th magnetic moment in RSC is given by

µ̇kx = −∆k µky,

µ̇ky = ∆k µkx − ε µkz, (11.6)

µ̇kz = ε µky.

In Eqs. (11.6) the following notation was used:

∆k =
(γBext − ω)

ωc
+
µ0

4π

γm

ωcA3

3z̃2
k − r̃2

k

r̃5
k

,

(11.7)

ε =
γB1

ωc
.
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Note, that ∆k is the z−component of the rotating-frame effective field ~Bk
eff

(in units ωc/γ), and ε is the x−component of the effective field in the same

units.

Figure 11.2: The thermal amplitudes of the high frequency cantilever modes

for a silicon cantilever (190 µm×3 µm×850 nm) used in [26]. The cantilever

temperature is 80 K.

The upper and the lower boundaries of the resonant slice are determined

by the equation

∆k = 0, at zc = ±1. (11.8)

In our numerical experiments, the magnetic moments have been distributed

uniformly inside the resonant slice. We used the following initial conditions,

zc = −1, µkz = 1, (11.9)

i.e., the magnetic moments are oriented approximately along the effective

field in the rotating frame. To model the feedback technique in OSCAR
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MRFM, our computer algorithm increased the value of zc to 1 every time the

cantilever passed the upper point. The period of the cantilever oscillations

was determined as the time interval between the instants of the zc maximum

values.

To model the magnetic noise on spins we use the following approach.

First, we estimate the thermal amplitude aTn of the n-th cantilever mode

using the equipartition theorem:

1

2
mc

(
ωna

T
n

)2
= kBT. (11.10)

Fig. 11.2 demonstrates the thermal amplitudes of the high frequency can-

tilever modes for experiment [26].

As we mentioned in Chapter 3 the cantilever mass mc is connected to the

effective mass m∗ by the relation M∗ = mc/4. Also, the amplitude of the CT

vibrations for any mode is twice the amplitude of the mode. Thus, for the

n-th cantilever mode the thermal amplitude ATn of the CT vibrations can be

written as

ATn = 2aTn =
ωc
ωn

(
2kBT

kc

)1/2

. (11.11)

To describe the influence of the noise on the spin dynamics we replace the

coordinate zc with zc + δzc in the expressions for z̃k and r̃k in Eq. (11.7),

where

δzc =
∑
n

ATn
A

cos(Ωnτ + ψn),

(11.12)

Ωn =
ωn
ωc
,

and ψn is a random phase. We solve the system of Eqs. (11.4) and (11.6)

changing zc → zc+δzc according to Eq. (11.12). We did not take into account

the influence of the thermal noise on ηk in Eqs. (11.4). As our simulations

demonstrate, the influence of the thermal noise does not cause a significant

direct contribution to the cantilever vibrations through the parameter ηk,

but causes a dephasing of the magnetic moments in the resonant slice. The
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number of magnetic moments in the resonant slice was 200 (1 ≤ k ≤ 200).

Our simulations show that the results do not change significantly when this

number is increased to 400.

Figure 11.3: Decay of the OSCAR signal for various values of the CT am-

plitude A; ATR = 1 pm and ε = 390. Curve a corresponds to A0 = 15 nm;

curves b and c correspond to A0 = 7.5 nm. For curve b we also took into

consideration spins close to the resonant slice.

The parameters in our numerical simulations were taken from experiment

[26]:

Bext = 140 mT, kc = 14 mN/m,

ωc/2π = 21.4 kHz, A = 28 nm, (11.13)

Q = 2× 104, m = 1.5 pJ/T.

The distance between the bottom of the ferromagnetic particle and the sur-

face of the sample, d1 (see Fig. 11.1), was d1 = 700 nm, and the radius of
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the ferromagnetic particle was equal to d1. The average magnetization of the

sample was M = 0.89 A/m. For these values of parameters the value of d2

in Fig. 11.1 was found to be d2 = 875 nm, and the value of the magnetic

field gradient at the center of the resonant slice was 140 kT/m. We have

studied the decay of the OSCAR signal, ∆Tc/∆T0, where ∆Tc is the shift of

the period of the cantilever vibrations due to the influence of the magnetic

moments of the sample, and ∆T0 is the initial value of ∆Tc.

Figure 11.4: Decay of the OSCAR signal for different values of the parameter

N ′. Curves 1−5 corresponds to N ′ = 105, 103, 100, 10 and 2. The amplitudes

are ATR = 5 pm, A = 15 nm, and ε = 390.

We express the amplitude ATn in terms of the amplitude ATR of the thermal

vibrations near the Rabi frequency. From Eq. (9.14) for ATR we obtain the

obvious relation ATn = ATRωR/ωn.

The phases ψn in Eqs. (11.10,11.12) were changed randomly between 0

and 2π with random time intervals, τψ, between two successive changes of
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the phase. In particular, we put τψ = N ′τ0, where τ0 takes random values

between 2π/1.2ε and 2π/0.8ε, and N ′ is a free parameter of the model.

Our simulations show that the decay of the OSCAR signal is almost

independent of N ′ for N ′ < 1000. (See Fig. 11.4.) We have found that

for N ′ < 1000 the signal can be approximately described by an exponential

function with relaxation time, τm, Fig. 11.3. The relaxation time quickly

decreases with an increase of the characteristic noise amplitude at the Rabi

frequency ATR which, in turn, is proportional to
√
T/ε.

Figure 11.5: Decay of the OSCAR signal for A = 28 nm and various values of

the temperature T and rotating magnetic field B1. Curves 1-3 corresponds to

ε = 390 (B1 = 0.3 mT ) and T = 20 K, 40 K and 80 K. Curve 4 corresponds

to ε = 195 (B1 = 0.15 mT ) and T = 80 K. The relaxation times for curves

1− 4 are 1500 ms, 700 ms, 310 ms and 145 ms.

To study the spin relaxation we also considered values of parameters

which provide relatively small relaxation time. This allowed us to reduce
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the simulation time and to determine the characteristic scaling properties

of the relaxation process. As an example, Fig. 11.3 shows the decay of the

OSCAR signal for various values of the CT amplitudes. One can see that the

relaxation time τm decreases when the CT amplitude decreases. (See curves

a and c in Fig. 11.3.) Note that if we take into considerations spins near the

resonant slice, the value of τm slightly increases. (Compare curves b and c in

Fig. 11.3.)

Figure 11.6: Decay of the OSCAR signal for ATR = 5 pm and A = 15 nm, and

various numbers of the high-frequency modes taken into considerations. The

lowest of high-frequency cantilever modes is the mode with the frequency

closest to the Rabi frequency 8.4 MHz (ε = 390). Curves a,b and c corre-

spond to 22, 3 and 2 high-frequency cantilever modes, respectively, including

the lowest one.

Figure 11.5 shows the decay of the OSCAR signal for various values of the

temperature and rotating magnetic field Bd. One can observe the expected
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decrease of the relaxation time τm with an increase of the temperature or

decrease of the rotating magnetic field amplitude.

Figure 11.6 shows the decay of the OSCAR signal for various numbers

of high-frequency modes taken into considerations. One can see that the

relaxation time τm slightly decreases when the number of high-frequency

cantilever modes increases from 2 to 22. A further increase of the number of

modes does not essentially change the decay rate.

In Figs.11.4-11.6 and Figs.11.7-11.9 we took into consideration 22 high

frequency modes. The lowest mode had the frequency closest to the Rabi

frequency ωR. The characteristic time interval between the phase jumps was

taken as 10 Rabi periods.

Figure 11.7: a) The regular MRFM signal. b) The random MRFM signal.

The temperature is 80 K. The Rabi frequency ωR/2π = 4.17 MHz. The

cantilever amplitude A = 28 nm.

Next, we will consider the random OSCAR MRFM signal, which follows

the decay of the regular one.

As an example, Fig. 11.7 demonstrates the connection between the regular

and random OSCAR MRFM signals, for a system of 50 magnetic moments

uniformly uniformly distributed in the resonant slice.

The decay time of the regular signal is τm = 145ms. The MRFM random

signal is about 30% of the maximum regular signal.
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Figure 11.8: The standard deviation of the random MRFM signal as a func-

tion of the number N of magnetic moments in the resonant slice (at a fixed

value of the average magnetization M = 0.89 A/m). All parameters are the

same as in Fig. 11.7.

Fig. 11.8 shows the standard deviation of the random signal

σξ =
√
〈(ξ − 〈ξ〉)2〉,

(11.14)

ξ =
∆Tc
∆T

, (11.15)

as a function of a number of magnetic moments distributed in the resonant

slice (for the same value of the average magnetization M). One can see that

with the increase of N the standard deviation σξ approaches the value 0.1.

This indicates that the random MRFM signal survives the transition to the

continuous magnetization.

As an illustration to the spin dynamics, Fig. 11.9 shows the random

change of the magnetic moment component along the effective field. (The

magnetic moment was arbitrary chosen in the resonant slice.) One can see

that the magnetic moment randomly moves between the direction of the

effective field and the opposite direction.
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Figure 11.9: The component µ‖ of an arbitrary chosen magnetic moment

along the effective magnetic field in the rotating frame. All parameters are

the same as in Fig. 11.7.

Finally, we will describe the results of our computer simulations for the

CT oscillating parallel to the sample surface. Fig. 11.10 shows the resonant

slice, or better to say, semislice for this case. Again, the magnetic moments

~µk of the same magnitude µ are distributes inside the resonant slice, and the

external magnetic field Bext is assumed to be much greater than the dipole

field ~Bd, produced by the CT on the spins. Again, the value of µ is adjusted

to the number N of magnetic moments in the slice, so that the magnetization

M remains constant.

The equations of motion for the CT and the magnetic moments are similar

to the equations (11.4, 11.6). For the CT coordinate we have:

ẍc + xc +
1

Q
ẋc = f(τ),

f(τ) =
∑
k

ηkµkz, (11.16)
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Figure 11.10: Resonant semislice for the CT oscillating parallel to the sample

surface. The z − y plane is the plane of symmetry for the resonant slice.

ηk =
µ0

4π

3mµ

kcA5

x̃k (5z̃2
k − 3r̃2

k)

r̃7
k

.

For magnetic moments we have again Eqs. (11.6)-(11.7). Instead of

Eq. (11.12) we have the similar equation for δxc:

δxc =
∑
n

ATn
A

cos (Ωnτ + ψn) . (11.17)

Below we show the results of our computer simulations for the following

values of parameters:

ωc/2π = 7 kHz, kc = 100µ N/m, Q = 5× 104,
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A = 10 nm, m = 25 fJ/T, d1 = 220 nm, d2 = 300 nm,

B1 = 300 µT, ω/2π = 3 GHz, M = 0.9 A/m, (11.18)

and the radius of the ferromagnetic particle 200 nm.

Figure 11.11: The cross-sectional area of the resonant semislice in the x− z

plane. Dots show random distribution of magnetic moments in the upper

part of the resonant slice.

The resonant slice boundaries were found from the condition ∆k(xc =

±1). We took into account only moments ~µk located in the upper part of

the resonant slice (see Fig. 11.11). They provide the main contribution to

the MRFM signal.

Note, that for two spins with coordinates (x, y, z) and (−x, y, z), the

change of the z−component of the dipole field, caused by the cantilever

displacement, has opposite signs at two locations. Let, for example, the

z−component of the effective field for this two spins be zero when the fer-

romagnetic particle is at the origin (xc = 0). If xc 6= 0, the z−component

of the effective field on the first spin is opposite to that on the second spin.

If the initial direction of two spins relative to the external magnetic field is
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the same, these spins will have an opposite direction relative to the local

effective field. Thus, the two spins induce a MRFM signal of the opposite

sign. If the spins are uniformly distributed in the resonant slice, the net

MRFM signal disappears. That is why, in our simulations, we assume that

spins occupy only the resonant semislice xc > 0. The cross-sectional area of

resonant semislice in the x− z plane is shown in Fig. 11.11.

Figure 11.12: The decay of the regular MRFM signal for seven noise realiza-

tions. The temperature is 20 K. The number of magnetic moments in the

resonant semislice is N = 100.

Note, that only initial decaying MRFM signal disappears for uniformly

distributed spins. The random MRFM signal, which follows the initial regu-

lar signal, would have been present if we consider the whole resonant slice.

We assume that initially all magnetic moments point in the positive z

direction, and the CT is in its right end point, xc = 1.

In these simulations the phases ψn in Eq. (11.17) were changed ran-

domly between 0 and 2π with random time intervals between two successive
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“jumps”. The time interval between the phase jumps was taken randomly

between 8.3TR and 14TR, where TR is the Rabi period. In Eq. (11.17) we

took into consideration 25 cantilever modes in the vicinity of the Rabi fre-

quency. The regular MRFM signal decays approximately exponentially (see

Fig. 11.12).

Figure 11.13: The random MRFM signal which follows the regular signal

shown in Fig. 11.12.

The regular MRFM signal is followed by the non-decaying random signal.

Figures 11.12-11.15 illustrate the results of computer simulations. Fig. 11.12

shows the decay of the regular signal ∆Tc/∆T0, while the random signal,

which follows the signal presented in Fig. 11.12, is shown in Fig. 11.13.

Provided the simulations results in a random-walk-like behavior, the av-

erage shape of the spectrum is Lorentzian-like. The spectrum of the noisy

signal does not have a unique characteristic form, but changes for different

realizations. At the same time, the amplitude of harmonics Am in the low-

frequency region with the upper boundary of the order 1/(4τm) is higher than

in the high-frequency region of the spectrum (Figs. 11.14a and 11.14b).
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Figure 11.14: Characteristic noise spectra for two different realizations:

∆Tc(t)/∆T0 =
∑
mAm cos(2πνmt+ ψm). A value on the vertical axis, e.g. 5,

corresponds to A2
m = 5× 10−5.

The characteristic decay time τm of the regular signal can be estimated

as a quarter of period of the boundary frequency in the noise spectrum.

Finally Fig. 11.15 shows the noise spectral density 〈A2
m(νm)〉 averaged

over seven realizations of the noise. Note that the amplitudes for the lowest

frequencies are computed with an error because their periods are compared

with the total time of simulations of the noise signal.

11.2 Reduction of magnetic noise

The reduction of magnetic noise on the spin is extremely important for any

MRFM technique. Such a reduction would increase the time interval tjump
between the quantum jumps in a single spin MRFM and relaxation time τm
for an ensemble of spins. To reduce the magnetic noise one should suppress

the thermal vibrations of the CT near the Rabi frequency. This can be

achieved using a nonuniform (loaded) cantilever instead of a uniform one.

In this section we consider two ways for the reduction of the magnetic

noise using a cantilever with a nonuniform thickness. The first one consists
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Figure 11.15: The noise spectral density of the random signal.

in reducing the values of the cantilever eigenfunctions near the CT for the

frequencies which are close to the Rabi frequency. Better to say, one should

reduce the values of the cantilever eigenfunctions near the location of the

ferromagnetic particle which, in general can be shifted from the CT.

The second way, suggested by Chui et al. [41] is to increase the gap

between the eigenfrequencies of the cantilever in the region of the Rabi fre-

quency.

For a cantilever with a nonuniform thickness, instead of Eq. (4.25) we

have the following equation of motion:

ρ S(x)
∂zp
∂t

− Y
∂2

∂x2

[
I(x)

∂2zp
∂x2

]
, (11.19)

with the boundary conditions (4.26). Instead of Eq. (4.27) we have the

following equation for the eigenfunctions f ′n(x) and eigenfrequencies ω′n:

ρ S(x) f ′n(x)(ω
′
n)

2 = Y
∂2

∂x2

[
I(x)

∂2

∂x2
f ′n(x)

]
. (11.20)
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The eigenfunctions f ′n(x) can be normalized to the cantilever volume Vc:∫ lc

0
dx S(x)f ′n(x)f

′
m(x) = δnm

∫ lc

0
dx S(x) ≡ δnmVc. (11.21)

Note, that the condition of orthogonality for n 6= m includes the factor S(x).

Below we describe the computer simulations performed by the authors.

To find the eigenfunctions f ′n(x) of the nonuniform cantilever we use the

expansion over the eigenfunction fn(x) of the uniform cantilever

f ′n(x) =
M∑
k=1

ckmfk(x). (11.22)

We take the number of basis functions M = 50 which provides the accu-

rate approximation for the eigenfunctions of the nonuniform cantilever. In

particular, we have verified the conditions of orthogonality (11.21) for the

normalized eigenfunctions f ′n(x): the value of the integral in the left hand

side of (11.21) did not exceed 0.02.

In our computations for a given value of n we have found the eigenvectors

ckn (1 ≤ k ≤M) of the matrix αkm,

lc(ω
′
n)

2ckn =
M∑
m=1

αkm cmn,

(11.23)

αkm =
Y

ρ

∫ lc

0
dx

[
∂2

∂x2

(
ϕk(x)

S(x)

)]
I(x)

∂2ϕm(x)

∂x2
.

We have considered the uniform increase of the thickness of the cantilever

t′c(x) = tc{1 + γ exp[−(x− x0)
2/δ2]}, (11.24)

where tc is the thickness of the “unperturbed” cantilever, (1 + γ)tc is the

maximum thickness which is achieved at the point x = x0, and δ is the

characteristic size of inhomogeneity.

For tc � wc � lc the eigenfrequencies and the eigenfunctions depend on

the ratio lc/tc which was chosen approximately 33 in our simulations. In some
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Figure 11.16: Dependence of the values of eigenfunctions f ′n(lc) on the eigen-

frequencies ω′n. Dots corresponds to γ = 4, x0 = 0.095, δ = 0.05. The mass of

the cantilever (in terms of the mass of the “unperturbed” uniform cantilever)

is mc = 1.38. The fundamental frequency (in terms of the “unperturbed”

frequency ωc) is ω1 = 0.65. Circles corresponds to γ = 6, x0 = 0.99, δ = 0.05,

mc = 1.325, ω1 = 0.68. For x > x0 the cantilever thickness is constant.

cases, for x > x0 we take the constant value of the thickness : t′c(x) = tc(1+γ)

(see captions to Fig. 11.16, 11.19 and 11.20).

Typically, a ferromagnetic particle in MRFM experiments is placed near

the CT. Our simulations show that in this case, one should increase the

thickness of the cantilever near its tip in order to provide the maximum

possible reduction of the high-frequency eigenfunction value near the tip.

Figure 11.16 shows the values of the eigenfunctions f ′n(x) near the tip

(x = lc) as a function of the eigenfrequency ω′n. In Fig. 11.16 and below the

ratio lc/tc = 190/6, the eigenfrequencies of the modes ω′n are given in units

of the fundamental frequency ωc of the unperturbed uniform cantilever. The

values x0 and δ are given in units of lc.
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Figure 11.17: (a) Eigenfunctions f ′n(x/lc) for n = 11 and n = 12 (the cor-

responding eigenfrequencies ω′11 = 362 and ω′12 = 416). The values of pa-

rameters: γ = 4, x0 = 0.7, δ = 0.05, ω1 = 0.82. (b) Eigenfunctions for the

“unperturbed” uniform cantilever.

We have found that even a more significant effect in the noise reduction

can be achieved if the ferromagnetic particle is located at some distance from

the CT. In this case, the increase of the cantilever thickness should be cen-

tered at the position of the ferromagnetic particle. Fig. 11.17 demonstrates

the reduction of the eigenfunctions f ′11 and f ′12 in the region of the inhomo-

geneity. Circles in Fig. 11.18b show the value of the eigenfunctions at the

center of the inhomogeneity x = x0 < lc. One can see that the values of

f ′n(x0) may become very small. At the same time, the values f ′n(lc) increase

in comparison with the uniform cantilever (squares in Fig. 11.18).

Figure 11.19 demonstrates the same features as Fig. 11.18 for a cantilever

of different shape. One can see that in the frequency region ωeff the values

f ′n(x0) are very small: f ′n(x0) � 1. For a cantilever with a mass increase

about 100%, the reduction of values of the eigenfunctions is not significant.

However, the increase of the gap between the eigenfrequencies is rather large.

Figure 11.20 demonstrates both the change of the values of eigenfunctions

near the tip and the “repulsion” of the eigenfrequencies, for such a cantilever.

Using the methods described in the previous section we computed the relax-
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Figure 11.18: (a) The cantilever shape; (b) the values of the eigenfunctions

at the center of the inhomogeneity x = x0 (circles) and near the cantilever

tip x = lc (squares). The values of parameters: γ = 3, x0 = 0.79, δ = 0.05,

ω′1 = 0.8.

ation time for the MRFM signal ∆T/∆T0. Figure 11.21 shows the typical

decay of the MRFM signal for the following parameters. The amplitude of

the CT vibrations is 15 nm, the effective spring constant and the funda-

mental frequency of the “unperturbed” uniform cantilever are 0.014 N/m

and 21 kHz, correspondingly, the Rabi frequency is 8.2 MHz, the magnetic

moment of the ferromagnetic particle is 1.5 × 10−12 J/T , the radius of the

ferromagnetic particle is 700 nm, the distance from the bottom of the ferro-

magnetic particle to the center of the resonant slice is 875 nm, the cantilever

quality factor is 2 × 104. The cantilever oscillates perpendicular to the sur-

face of the sample. To reduce the computational time we took the room

temperature.

Curve (a) in Fig. 11.21 corresponds to the uniform cantilever with the

ferromagnetic particle near the CT, curve (b) corresponds to the cantilever
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Figure 11.19: (a,b) The same as in Fig. 11.18 but for γ = 2, x0 = 0.97,

δ = 0.05, ω′1 = 0.8. For x > x0 the cantilever thickness is constant. (c)

Eigenfunctions f ′n(x/lc) for n = 15 and n = 18 (the corresponding eigenfre-

quencies are ω′15 = 630 and ω′18 = 924).

with the ferromagnetic particle and the inhomogeneity near the tip (dots in

Fig. 11.16 show the eigenfunctions for this cantilever), curves (c) and (d)

correspond to the cantilever with the ferromagnetic particle placed at some

distance from the tip: x = x0 < lc, [ curve (c) is for the cantilever shown

in Fig. 11.19 ]. The ratio of the relaxation times for these four cases is

1 : 10 : 63 : 140.

For a cantilever with the mass increase about 100% shown in Fig. 11.20

with the ferromagnetic particle placed near the cantilever tip (x = lc), the

decay of the MRFM signal is almost the same as that described by the curve

(d) in Fig. 11.21.

Thus, one can see that a small inhomogeneity of the cantilever thickness

(with the mass change less than 50%) near the CT can provide a tenfold

increase of the MRFM relaxation time.

A greater suppression of the magnetic noise can be achieved if the ferro-

magnetic particle is located at some distance from the CT. The same results

can be obtained using a cantilever with a mass increase about 100%.
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Figure 11.20: The values of eigenfunctions near the CT and the eigenfrequen-

cies for a cantilever with the mass increase about 100%; (a) the cantilever

shape; (b) the values of eigenfunctions near the tip; (c) the eigenfrequencies

of the cantilever; (d) the eigenfrequencies of the “unperturbed” uniform can-

tilever; (e) eigenfunctions f ′x(x/lc) for n = 12 and n = 17 (the corresponding

eigenfrequencies ω12 = 555 and ω17 = 1138). The values of parameters:

γ = 4, x0 = 0.8, δ = 0.1, mc = 2.15, ω1 = 0.5. For x > x0 the cantilever

thickness is constant.
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Figure 11.21: Typical decay of the MRFM signal for four cases: (a) the

uniform cantilever with the ferromagnetic particle at the tip; (b) the nonuni-

form cantilever with the ferromagnetic particle at the tip (γ = 4, x0 = 0.95,

δ = 0.05); (c) the nonuniform cantilever with the ferromagnetic particle at

x = x0 < lc (γ = 3, x0 = 0.79, δ = 0.05); (d) the same for γ = 2, x0 = 0.97,

δ = 0.05.

11.3 Simple model for quantum jumps

Now we return to a single spin detection in OSCAR MRFM and consider

a simple model, which describes the statistical characteristics of quantum

jumps. We will consider a vertical cantilever with the CT oscillating along

the x−axis, which is parallel to the surface of the sample (see Fig. 9.1). Let

us consider the quantum Hamiltonian similar to (8.4) with zc → xc, φ̇ = 0,

and add the term, which describes the magnetic noise on the spin. We have

H =
1

2

(
p̂2
c + x2

c

)
+ εŜx − 2ηŜzxc + ∆(τ)Ŝz,

(11.25)

∆(τ) =
γ

ωc
∆Bz(τ).
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We use the same notation and quantum units as in Chapters 7 and 9.

We will consider a simple case when the external magnetic field is much

greater than the dipole field on the spin. In this case the parameter η of the

CT-spin interaction can be expressed in terms of Gz = ∂Bz/∂x:

η =
µBGz

(h̄ωckc)1/2
. (11.26)

The function ∆(τ) in Eq. (11.25) is proportional to the random magnetic

field ∆Bz(τ) acting on the spin. We consider only the z−component of the

random magnetic field, which is the most significant for quantum jumps.

Indeed, the z−component of the random field causes the spin deviation from

the effective field in the most “vulnerable” region near the x−y plane, where

the resonant frequency in the RSC is close to its minimum value ωR. We will

use the same parameters as in Section 1 of Chapter 8. For these parameters

we have η = 0.078, ε = 1270.

Below we describe our simplified model. We consider the function ∆(τ)

to be a random telegraph signal with two values ±∆. The value of ∆ can be

expressed in terms of the amplitude ATR of the thermal CT vibrations near

the Rabi frequency:

∆ = 2ηATR. (11.27)

We take the time interval between two consecutive “kicks” of ∆(τ) randomly

from the interval (τ0 − δτ, τ0 + δτ), with the average time interval, τ0, close

to the Rabi period τR:

τR =
2π

ε
= 4.95× 10−3. (11.28)

We assume that every “kick” provided by the function ∆(τ) is followed

by the collapse of the wave function. Before the kick, the spin points

in (or opposite to) the direction of the effective field. After the kick there

appears the finite angle ∆Θ between the new direction of the effective field

and the average spin. Let, for example, a kick occurs at τ = τk and, before

the kick at τ = τk − 0 the spin points in the direction of the effective field
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~Beff (τk − 0) = [ε, 0,−2ηxc(τk) + ∆(τk − 0)]. The direction (the polar angle)

of the spin Θspin and of the effective field Θeff are the same:

Θspin = Θeff = tan−1

(
Bx
eff

Bz
eff (τk − 0)

)
. (11.29)

After the kick, the direction of the effective field Θ′
eff is

Θ′
eff = tan−1

(
Bx
eff

Bz
eff (τk + 0)

)
. (11.30)

The value of ∆Θ is given by:

∆Θ = Θspin −Θ′
eff . (11.31)

As we explained in Chapter 8 (Section 1), the probability for the spin

to “accept” the “before-kick” direction relative to the new effective field is

cos2(∆Θ/2). The probability to “accept” the opposite direction, i.e. the

probability of a quantum jump is sin2(∆Θ/2). A significant probability of a

quantum jump appears only when the effective field passes the transversal

x − y plane. Thus, after every kick of the random field our computer code

decides the “fate” of the spin in accordance with the probabilities of two

events: to restore the previous direction relative to the effective field, or to

experience a quantum jump. In our model the CT experiences harmonic

oscillations

x(±)
c (τ) = A cos(1± δω0)τ, (11.32)

where (±) correspond to two CT trajectories with the spin pointing in (or

opposite to) the direction of the corresponding effective field, and δω0 is

taken in units of ωc. The dimensionless CT amplitude for our parameters is

A = 1.2× 105, and the CT frequency shift estimated from Eq. 10.77 is

δω0 =
2µBGz

πkcA
= 4.2× 10−7. (11.33)

Note, that our model contains two important simplifications: first, we

assume that the wave function collapse occurs immediately after the “kick”
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Figure 11.22: (a) Distribution function of time intervals between two consec-

utive quantum jumps for ∆ = 100, τ0 = 0.01 and 109 kicks; the solid line is

a fit with τd = 32; (b) Enlargement of (a)

of the random field. Thus, we ignore the finite time when the spin-CT

system is in an entangled state. Second, in a real situation the deviation

of the spin from the effective field is a “quasi–resonance” process caused by

the cantilever modes whose frequencies are close to the Rabi frequency. In

our model this deviation appears as a result of the “kick” of the random

field. Below we describe the results of our computer simulations. Fig. 11.22

demonstrates a typical distribution of time intervals, τjump, between two

consecutive quantum jumps. The distribution is a sequence of sharp peaks

at τjump = τn = nπ with the Poisson-like amplitude

P (τn) ∼ exp(−τn/τd). (11.34)

Certainly, P (τjump) = 0 at τ < τ0 − δτ . The sharp peaks appear as the

probability of the quantum jump is significant when the spin passes through

the transversal plane, i.e. every half-period of the CT oscillation which is
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equal to π. The average value of the time interval 〈τjump〉 was found to be

〈τjump〉 ≈ τd, (11.35)

with an error less than 3%. The standard deviation is equal to τd with the

same accuracy

(〈τ 2
jump〉 − 〈τjump〉2)1/2 ≈ τd. (11.36)

We studied the dependence of the average value 〈τjump〉 on the parameters

of our model. We have found that 〈τjump〉 does not depend on δτ or δωc. (We

varied δτ from 0 to τ0 and changed δωc up to one order of magnitude.)
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Figure 11.23: Dependence of the average time interval between two con-

secutive quantum jumps on τ0/∆
2. The full line corresponds to the value

A = 1.2 × 10−5, the squares represent δωc = 4.2 × 10−8, the crosses

δωc = 4.2 × 10−7, the circles δωc = 4.2 × 10−6. The dashed line corre-

sponds to the value A = 7.2 × 10−5. Data have been obtained by varying

parameters ∆ and τ0 in the ranges: 10 < ∆ < 300 and 0.001 < τ0 < 1.

At a fixed value of the amplitude A the value of 〈τjump〉 is approximately

proportional to τ0/∆
2. Fig. 11.23 demonstrates this dependence.
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The best fit for the numerical points in Fig. 11.23 is given by

ln〈τjump〉 = p+ q ln(τ0/∆
2). (11.37)

For A = 1.2 × 105 we have p = 17.9, q = 0.993. For the sixfold value

A = 7.2×105 we obtained the same value of q, and p = 19.743. If we estimate

the amplitude of the random CT vibrations near the Rabi frequency as 1pm,

then ∆ = 1.8. Putting τ0 = τR, we obtain ωc〈τjump〉 = 2.3 s.

Next we computed the correlation function for the CT frequency shift

C(τa) =
〈(δωc(τ)− 〈δωc〉)(δωc(τ + τa)− 〈δωc〉)〉

〈(δωc(τ))2〉 − 〈δωc〉2
, (11.38)

where 〈δωc〉 = 〈δωc(τ)〉 = 0, and 〈...〉 indicates an average over time.
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Figure 11.24: Correlation function of the CT frequency shift C(τa) for dif-

ferent parameters: circles ∆ = 100, τ0 = 10−2, squares ∆ = 50, τ0 = 10−2,

triangles ∆ = 50, τ0 = 10−1. In all cases δτ = τ0/4. The dashed curves show

the exponential approximation of the correlation function exp(−τ/τc) with

τc = 23.91, 95.81, 1179.15, respectively.
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In Fig. 11.24 we show the correlation function C(τa) for three different

values of parameters, as indicated in the legend. As one can see, the general

behavior is well described by the exponential function (indicated by dashed

lines in Fig. 11.24) exp(−τ/τc). The relation between the correlation time τc
and 〈τjump〉 was found to be 〈τjump〉 ' 2.5τc.

In conclusion, we note that the quantum jumps in a single quantum

system are widely studied in quantum optics (see, for example, the review of

Plenio and Knight [40]).

11.4 Reduction of the frequency shift due to

the CT-spin entanglement

Magnetic noise on the spin causes the deviation of the spin from the direc-

tion of the effective field ~Beff . Quantum collapse “pushes” the spin back

to the previous direction relative to ~Beff or, sometimes, to the opposite di-

rection. The latter case we call the quantum jump. During the short time

interval between the two consecutive collapses the spin is entangled with the

CT. It means that during this time there are two CT trajectories with the

frequency shift δωc = ±δω0, but these two trajectories are hidden inside a

single “average trajectory” due to the quantum uncertainty of the CT posi-

tion. The magnitude of the frequency shift for this “average trajectory” must

be smaller than δω0. In this section we consider this effect using a simplified

model of the mysterious quantum collapse.

Below, as well as in the previous section, we use the dimensionless quan-

tities: CT coordinate xc and momentum p̂c in “quantum units”, frequency

shift δωc in units of ωc, and dimensionless time τ = ωct. We start from the

Hamiltonian (11.25). The wave function Ψ of the CT-spin system can be

written in the same form as in Eq. (8.7):

Ψ =

(
Ψ1(xc, τ)

Ψ2(xc, τ)

)
. (11.39)

Note, that if the functions Ψ1(xc, τ) and Ψ2(xc, τ) are identical up to a
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constant complex factor, then the wave function Ψ can be represented by a

product of the CT and the spin wave functions. In this case, the average

spin 〈~S〉 has the magnitude 1/2. In the general case, the spin is entangled

with the CT, and the average spin magnitude is smaller than 1/2.

Below we describe our computer simulations of the CT-spin dynamics

with the Hamiltonian (11.25). Again, we consider the function ∆(τ) in

Eq. (11.25) as a random telegraph signal with two values ±∆. The time

interval between two consecutive “kicks” of the function ∆(τ) was taken

randomly from the interval (3τR/4, 5τR/4). The initial wave function is cho-

sen as a product of the CT and spin wave functions. The initial state of the

CT is a coherent state (4.13) with the value of α:

α =
1√
2

[〈xc(0)〉+ i〈pc(0)〉] . (11.40)

The initial direction of the spin is taken opposite to the direction of the

effective field, which is given, in units of ωc/γ by:

~Beff = (ε, 0,−2ηxc) . (11.41)

To save computational time we have used the values of parameters (10.29),

where 〈zc(0)〉 must be changed to 〈xc(0)〉. These values of parameters corre-

spond to the partial adiabatic reversals with the frequency shift (10.35).

In our numerical simulations the functions Ψ1(xc, τ) and Ψ2(xc, τ) in

(11.39) have been expanded over 400 eigenfunctions of the unperturbed oscil-

lator Hamiltonian. During the time interval between two consecutive “kicks”

of the noise function ∆(τ) we have a time–independent Hamiltonian. Thus,

we find the evolution of the wave function by diagonalizing the 800 × 800

matrix and taking into consideration the initial conditions after each “kick”.

The output of our simulations is the time interval τj+1 − τj between two

consecutive returns to the origin for the average value 〈xc〉

〈x(τj+1)〉 = 0 and 〈x(τj)〉 = 0. (11.42)

The results of our simulations are shown in Fig. 11.25, which demonstrates
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the deviation of τj+1 − τj from the unperturbed half-period of the CT oscil-

lations π, namely

δτj = τj+1 − τj − π. (11.43)
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j
0.022

0.023

0.024

δτ
j
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∆ = 0.3
∆ = 0.5

Figure 11.25: Deviation of τj+1− τj from the unperturbed half period of the

CT oscillations π, as a function of the number of half periods j, for different

values of ∆, as indicated in the legend. Solid lines are the standard linear

fits. On the vertical axis δτj = τj+1 − τj − π.

Without magnetic noise (∆ = 0) the deviation δτj does not change with

time. In this case we have for any j:

δτj = δτ0 = π|δω0| ' 0.025. (11.44)

If ∆ 6= 0, then the value of δτj decreases with the increase of j (see Fig. 11.25).

Note, that we consider a relatively small time interval before the CT tra-

jectory splits into two trajectories, i.e. before the formation of the Schrödinger

cat state. We assume that the characteristic collapse time τcol includes, at
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least, a few half-periods of the CT vibrations. Next, we assume in our model

that the quantum collapse is an instantaneous event and that between the

collapses, the CT-spin system evolves according to the Schrödinger equation.

In this case, we may introduce the average frequency shift 〈δωc〉:

〈δωc〉 = −〈δτj〉
π

. (11.45)

The deviation of the average magnitude of the frequency shift 〈|δωc|〉 from

the value δω0 depends on the value of τcol.

Note that the deviation 〈|δωc|〉 from δω0 may be interpreted as an effective

reduction of the spin δS caused by the spin-CT entanglement. If we rewrite

the estimation (10.35) for the partial adiabatic reversals in the form:

δωc =
2Sη2

(2η2A2 + ε2)1/2
, (11.46)

then the reduction of the spin is given by the formula

δS =
(〈|δωc|〉 − δω0)(2η

2A2 + ε2)1/2

2η2
. (11.47)

The deviation 〈|δωc|〉 from δω0 is caused by the generation of the second

CT trajectory with the opposite frequency shift. During the relatively short

time interval which we considered here, the peak of the probability distribu-

tion, corresponding to the second CT trajectory, is hidden inside the peak

corresponding to the first CT trajectory. The second peak, generated by the

magnetic noise ∆(τ), is small compared to the first peak. That is why its

contribution to the average frequency shift is also small.

Now, we will describe a possible experiment, where two CT trajectories

with the opposite frequency shift ±δω0, have the same probability. We as-

sume that during a small time interval between the quantum collapses these

two peaks form a common peak with no frequency shift at all. This ex-

periment would be close to the interrupted OSCAR technique described in

Chapter 8, Section 2. Namely, when the CT is in one of its end points,

one will turn off the rf field for the duration of a quarter of the CT pe-

riod. It is equivalent to the application of the π/2− pulse in the RSC.
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The “π/2−pulse” changes the angle between the spin and the effective field.

After the“π/2−pulse” we have two CT trajectories with frequencies ±δω0,

each with the same probability. Before the CT-spin wave function collapses

to one of these two trajectories with the corresponding direction of the spin,

the CT will oscillate with the unperturbed frequency ωc. After the collapse

the frequency shift is +δω0 or −δω0, with equal probabilities. If one applies

a periodic sequence of “π/2−pulses” with the period τp, and τp > τcol, then

the average frequency shift is

〈|δωc|〉 =
0 · τcol + δω0(τp − τcol)

τp
= δω0

(
1− τcol

τp

)
. (11.48)

Manipulating with τp one could achieve a significant decrease of 〈|δωc|〉 in

comparison to δω0. By measuring 〈|δωc|〉, one can estimate from (11.48) the

characteristic time of collapse of the spin cantilever wave function, τcol.
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Chapter 12

MRFM Applications:

Measurement of an Entangled

State and Quantum

Computation

In this chapter we will consider the applications of the MFRM techniques

to the measurement of an entangled spin state and an MRFM-based nuclear

spin quantum computer, Berman et al. [42, 43, 44].

12.1 MRFM measurement of an entangled

spin state

The entangled states are well known as the most bizarre states in quantum

physics, (see, for instance, Bell’s paper [45]). We will consider an entangled

spin state, for example, the spin state of two particles

|χ〉 =
1√
2

(| ↑↑〉+ | ↓↓〉) . (12.1)

167
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which is described by the spin wave function

χ(s1, s2) =
1√
2

(α1α2 + β1β2) , (12.2)

where si = Sz,i, i = 1, 2. In the entangled state (12.1) both spins have the

same direction. With probability 1/2 it may be the positive or the negative

z−direction, but in any case it will be the same direction for both spins. Even

if two particles are far from each other, there is some “quantum connection”

between their spins. If one measures the spin z−component for the first

particle and “collapses” it, say, to the state “up”, i.e. | ↑〉, then he or she

automatically collapses the spin of the second particle to the same state “up”.

This quantum connection cannot be used for the instantaneous transfer of

the information, as a person who performs the measurement does not know

in advance the result of his or her measurement.

In this section we consider the evolution of the entangled spin state (12.1)

when one of the two spins is measured using MRFM. As an example, we will

consider an MRFM technique with cyclic adiabatic reversals driven by the

frequency modulated rf field (see Chapter 8).

We use the Hamiltonian (8.2) for the CT-spin system:

H =
1

2

(
p̂2
c + z2

c

)
− φ̇Ŝz,1 + εŜx,1 − 2ηŜz,1zc, (12.3)

which includes the spin operators Ŝx,1 and Ŝz,1 for the first spin and does

not contain the operators for the remote entangled spin. The dimensionless

wave function of the whole CT-spin system, including the second spin, can

be written as

Ψ(zc, s1, s2, τ) = ψ↑↑(zc, τ)α1α2 + ψ↑↓(zc, τ)α1β2

+ ψ↓↑(zc, τ)β1α2 + ψ↓↓(zc, τ)β1β2. (12.4)

Substituting (12.4) into the Schrödinger equation, we derive four coupled

equations for the functions ψ(zc, τ),

2iψ̇↑↑ = (p̂2
c + z2

c + φ̇− 2ηzc)ψ↑↑ − εψ↓↑,
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2iψ̇↓↑ = (p̂2
c + z2

c − φ̇+ 2ηzc)ψ↓↑ − εψ↑↑,

2iψ̇↑↓ = (p̂2
c + z2

c + φ̇− 2ηzc)ψ↑↓ − εψ↓↓,

2iψ̇↓↓ = (p̂2
c + z2

c − φ̇+ 2ηzc)ψ↓↓ − εψ↑↓. (12.5)

This system of equations splits into two independent sets of equations. The

initial state is assumed to be a product of the coherent quasiclassical state

(4.13) for the CT and the entangled state (12.1) for the two spins.
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Figure 12.1: The probability distribution, P (zc), at τ = 216.

Below we describe the numerical simulations for the same values of pa-

rameters as in Section (8.1) and an adiabatic increase of the rf field amplitude

described by formula (8.17). Fig. 12.1 shows the typical probability distri-

bution of the CT position,

P (zc) = |ψ↑↑|2 + |ψ↑↓|2 + |ψ↓↑|2 + |ψ↓↓|2. (12.6)

One can see that the probability distribution, P (zc), describes a Schrödinger

cat state of the CT (i.e. two CT trajectories) with two approximately equal

peaks. When these two peaks are clearly separated, the total wave function

can be represented as a sum of two terms corresponding to the two peaks in
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the probability distribution,

Ψ(zcs1, s2, τ) = Ψb(zc, s1, s2, τ) + Ψsm(zc, s1, s2, τ). (12.7)

Note, that the two peaks have equal amplitudes, but we prefer to use the

same superscripts “b” and “sm”, which we used for “big” and “small” peaks

in Chapters 8 and 10.
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Figure 12.2: Upper boxes: the real part of wave functions; lower boxes: the

imaginary part of wave functions, at τ = 216. a) The full line Re(ψ↑↑),

circles Re(−5ψ↓↑). b) The full line Re(ψ↑↓), circles Re(5ψ↓↓). c) The full line

Im(ψ↑↑), circles Im(−5ψ↓↑). d) The full line Im(ψ↑↓), circles Im(5ψ↓↓).

Our numerical analysis shows that each term, Ψb and Ψsm, can be approx-

imately decomposed into a direct product of the CT and spin wave functions,

Ψb = ψb(zc, τ)χ
b(s1, τ)α2, Ψsm = ψsm(zc, τ)χ

sm(s1, τ)β2. (12.8)

This decomposition is possible because the complex function ψ↑↑(zc, τ) is

proportional to ψ↓↑(zc, τ), and the complex function ψ↑↓(zc, τ) is proportional
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to ψ↓↓(zc, τ). Such proportionality can be seen in Fig. 12.2, where we plot the

corresponding wave functions at the same time as in Fig. 12.1, with suitable

numerical coefficients.
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Figure 12.3: The positions, zmax(τ), of two peaks of the Schrödinger cat state

as functions of time.

The spin wave function, χb(s1, τ), describes the dynamics of the first spin

with its average, 〈χb|~S|χb〉, pointing approximately in the direction of the

effective field, ~Beff , in the RSC,

~Beff = (ε, 0,−φ̇). (12.9)

(We neglect here the nonlinear term 2ηzc whose contribution to the effective

field is small.) The spin function, χsm(s1, τ), describes the dynamics of the

first spin with its average pointing in the direction opposite to the direction

of ~Beff . As the amplitude of the CT vibrations increases, the phase dif-

ference between the oscillations of two peaks, |ψb(zc, τ)|2 and |ψsm(zc, τ)|2,
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approaches π. (See Fig. 12.3.) (To reach the phase difference of π, a long

time of numerical simulations is required.)

In realistic experimental conditions, the Schrödinger cat state quickly

collapses due to the interaction with the environment. In this case, the two

peaks of the probability distribution describe two possible trajectories of the

spin-CT system.

S1

S1

S2

S2

Beff

Beff

x

(a)

(b)

z

Figure 12.4: Two outcomes of the MRFM measurement of the state of two

entangled spins. (a) The measured spin, ~S1, points along the direction of

the effective field, and the remote spin, ~S2, points “up” (in the positive

z−direction). (b) The measured spin, ~S1, points in the direction opposite to

the effective field, and the remote spin, ~S2, points “down” (in the negative

z−direction).

In one of these trajectories the first (measured) spin is pointed along

the direction of the effective field while the second (remote) spin is pointed

“up” (in the positive z−direction); the other trajectory corresponds to the

opposite situation in which the orientation of both spins is reversed - the first

(measured) spin is antiparallel to the effective field, and the second (remote)
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spin is pointed “down” (in the negative z−direction). The phase difference

between the corresponding oscillations of the cantilever approaches π with

increasing the CT vibration amplitude. This result is equivalent to a Stern-

Gerlach measurement of a single spin entangled to a remote spin.

Thus, the numerical simulations reveal two possible outcomes shown

schematically in Fig. 12.4: (a) The first (measured) spin points along the

effective field in the RSC, and the second (remote) spin points in the posi-

tive z−direction. (b) The first (measured) spin points opposite to the direc-

tion of the effective field in the RSC, and the second (remote) spin points in

the negative z−direction. Thus, the collapse of the measured spin along (or

opposite) the direction of the rotating effective magnetic field leads to the

collapse of the remote spin in the positive (or negative) z−direction.

12.2 MRFM based spin quantum computer

Quantum computation became one of the most popular fields in quantum

physics. There are many books of various level describing the basic princi-

ples and the latest achievements in this field (see, for example, Nielsen and

Chuang [46] and Berman et al. [47]). A quantum computer utilizes a system

of quantum bits (qubits), which can be placed in a superpositional state. As

an example, a system of three “classical bits” may represent 23 = 8 numbers,

but only one number at a time. A system of three qubits can be placed into

a superpositional state

|ψ〉 =
1√
8

(|0 0 0〉+ |0 0 1〉+ |0 1 0〉+ |1 0 0〉+ |1 0 1〉+ |1 1 0〉+ |1 1 1〉) ,

(12.10)

which represents eight numbers at a time. Thus, in a quantum computer

one can manipulate with all eights numbers at a time. A scalable quantum

computer with N qubits would be able to manipulate with 2N numbers at

a time. It would allow solving the so called “intractable problems”, which

do not have an efficient “classical algorithm”. Two most spectacular exam-

ples are the Shor’s algorithm for prime factorization [48] and the Grover’s
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algorithm for search over the unsorted data [49].

In order to implement a scalable quantum computer one has to create a

large system of qubits with long enough relaxation and decoherence times.

Next, one is expected to be able to put the qubit system into its ground

state, to implement the one-qubit rotation and the Control-Not (CN) gate,

and to measure the states of qubits. One-qubit rotation means an arbitrary

change of the state of a qubit. The Control-Not gate CNik is a two-qubit

gate, which changes the state of the target qubit k if the control qubit i is in

the state |1〉 and does not affect the state of the target qubit if the control

qubit is in the state |0〉. As an example, an arbitrary state |ψ〉 of a two qubit

system

|ψ〉 = Ca|01 02〉+ Cb|01 12〉+ Cd|11 02〉+ Cf |11 12〉, (12.11)

under the action of the Control-Not gate CN12 transform into the state |ψ′〉:

CN12|ψ〉 = |ψ′〉 = Ca|01 02〉+ Cb|01 12〉+ Cd|11 12〉+ Cf |11 02〉. (12.12)

Below we describe a hypothetical nuclear spin quantum computer based

on MRFM. Assume that we have a chain of impurity paramagnetic atoms

near the surface of a solid. Every atom has an electron spin S = 1/2 and

a nuclear spin I = 1/2 and corresponding magnetic moments ~µ = −γh̄〈~S〉
and ~µn = γnh̄〈~I〉, where γn > 0 is the nuclear gyromagnetic ratio. The

hyperfine interaction couples electron and nuclear spins of the atom. The

whole system is placed into the external permanent magnetic field ~Bext. A

qubit is represented by a nuclear spin, and the two states of a qubit |0〉 and

|1〉 are represented by the ground and the excited states of the nuclear spin.

First, we will discuss the measurement of the state of a nuclear spin.

We assume that the sensitivity of the MRFM technique is sufficient for the

measurement of the state of an electron spin but is not sufficient for the

nuclear spin measurement. Let consider a simple case when the hyperfine

interaction is described by the Hamiltonian

Hhf = Ahf ~̂S · ~̂I, (12.13)
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where Ahf is the positive constant of the hyperfine interaction. In an external

magnetic field the frequency of the ESR will depend on the nuclear spin

state. We will consider the energy levels of electron-nuclear spin system in

an external magnetic field shown in Fig. 12.5.
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Figure 12.5: Energy levels for electron and nuclear spins 1/2 of a param-

agnetic atom in a high external magnetic field. The electron and nuclear

magnetic moments are indicated by µ and µn, ωe and ωn are the frequencies

of the ESR and nuclear magnetic resonance (NMR) in the external magnetic

field without the hyperfine interaction. The frequencies ωe0 = ωe + ωhf ,

ωe1 = ωe − ωhf , ωn0 = ωn + ωhf and ωn1 = ωhf − ωn. Here ωhf is the hy-

perfine frequency (half of the hyperfine splitting of the ESR). ωeq is the ESR

frequency for the nuclear state |q〉 (q = 0, 1). ωnq is the NMR frequency

for the electron state |q〉. We assume that ωhf > ωn. In the external field

Bext = 10 T , ωe ' 280 GHz, and ωn = ωn/2π ' 430 MHz (for a proton).

If the ESR frequency with no hyperfine interaction is ωe = γBext, then
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for the nuclear spin pointing “up” the ESR frequency, which we denote as

ωe0, is

ωe0 = ωe + ωhf , ωhf =
Ahf
2h̄

. (12.14)

For the nuclear spin pointing “down” the corresponding ESR frequency ωe1
is

ωe1 = ωe − ωhf . (12.15)

Note, that in Fig. 12.5 we assume that the NMR frequency ωn with no

hyperfine interaction ωn = γnBext is smaller than ωhf .

A possible setup for the nuclear spin measurement in a quantum computer

based on MRFM is shown in Fig. 12.6. At low temperature the electron spins

are polarized and their magnetic moments point in the positive z−direction.

As an example, we will consider a simple MFRM technique, where the peri-

odic reversals of an electron spin are driven by the periodic sequence of the

resonant rf pulses (see Chapter 7). If the time interval betwen two consec-

utive π−pulses is equal to the half of the CT period Tc, then the electron

spin reversals will drive the resonant CT vibrations. It is clear that if the

frequency of π−pulses is ωe0, then the electron spin will drive the CT vibra-

tions only if the nuclear spin points “up”. If the frequency of the π−pulses is

ωe1 the CT vibrations will be driven if the nuclear spin points “down”. Thus,

one can measure the state of the nuclear spin using the quantum transitions

of the electron spin detected by the MRFM technique.

Suppose that the distance between the impurity atoms is a = 5 nm,

the distance between the ferromagnetic particle and the target atom is d =

10 nm, and the radius of the ferromagnetic particle is R = 5 nm (see

Fig. 12.6). The dipole magnetic field at the target atom produced by the

ferromagnetic particle can be estimated as

Bd =
2

3
µ0M

(
R

R + d

)3

, (12.16)

where M is the magnetization (magnetic moment per unit volume) of the

ferromagnetic particle. Choosing µ0M = 2.2 T , which corresponds to iron,
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Figure 12.6: A nuclear-spin quantum computer based on MRFM. Bext is

the permanent external magnetic field, B1 is the rf magnetic field, Bd is the

nonuniform dipole magnetic field produced by a ferromagnetic particle in the

sample, R is the radius of the ferromagnetic particle, d is the distance be-

tween the ferromagnetic particle and the targeted atom, and a is the distance

between neighboring impurity atoms. The origin is placed at the equilibrium

position of the center of the ferromagnetic particle. Arrows on the sample

show the direction of the electron magnetic moments µ.

we get Bd = 5.4× 10−2 T . The corresponding shift of the ESR frequency is

γBd/2π = 1.5 GHz.

Now, we estimate the z−component of the dipole field B′
dz at the neigh-

boring impurity atoms:

B′
dz =

1

3
µ0M

(
R

r

)3
3(R + d

r

)2

− 1

 , (12.17)
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r =
√

(R + d)2 + a2. (12.18)

We assume that Bext � Bd, so only the z−component of the dipole field is

required to estimate the ESR frequency shift. The difference between the

ESR frequencies for two neighboring atoms is

∆ω′e = γ(Bd −B′
dz). (12.19)

For our parameters ∆ω′e/2π = 500 MHz. The electron Rabi frequency

ωR must be smaller than ∆ω′e, to provide a selective measurement of the

electron spin on the target atom. The magnetic dipole field at the target

atom oscillates due to the CT vibrations. The maximum deviation of the

magnetic field can be estimated as

∆B =

∣∣∣∣∣∂Bd

∂z

∣∣∣∣∣A, (12.20)

where A is the CT vibration amplitude. The corresponding deviation of the

ESR frequency is

∆ωe = γ∆B. (12.21)

As an example, for the CT amplitude A = 0.1 nm, the maximum deviation of

the magnetic field ∆B = 1 mT , and the corresponding deviation of the ESR

frequency ∆ωe/2π = 25 MHz. To provide spin flips, the Rabi frequency

ωR must be greater than ∆ωe. Next, to measure a nuclear state, the Rabi

frequency ωR must be less than the hyperfine frequency ωhf . Finally, the

obvious condition for the π−pulses driven periodic reversals technique is

ωR � ωc. Thus, the final requirement for the Rabi frequency can be written

as

ωc,∆ωe � ωR � ∆ω′e, ωhf . (12.22)

For our parameters the Rabi frequency ωR/2π ≈ 100 MHz, roughly satisfies

the inequalities (12.22). We should estimate also the dipole field ~B∗
d on the

atom produced by the other paramagnetic atoms. The main contribution to

the dipole field is associated with the neighboring atoms. For any inner atom
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in the chain, two neighboring electron magnetic moments which point in the

positive z−direction produce the dipole magnetic field ~B∗
d1 of magnitude

B∗
d1 =

2µ0µB
4πa3

≈ 1.5× 10−5 T. (12.23)

The maximal contribution from all other paramagnetic atoms to the dipole

field |B∗
d2| does not exceed 3 × 10−6 T . (For a chain of 1000 paramagnetic

atoms with electron spins in the ground state, the value of B∗
d2 at the center

of the chain is B∗
d2 ≈ 0.202Bd1.) The corresponding frequency shift of the

ESR is (
γ

2π

)
|B∗

d1 +B∗
d2| ≤ 500 kHz. (12.24)

This frequency shift is negligible compared to the estimated electron Rabi

frequency ωR/2π ≈ 100 MHz. Thus, to measure the nuclear-spin state of

the target atom, one can use a periodic sequence of “electron” π−pulses with

frequency

ω = ωe0 + γBd. (12.25)

Next, we will discuss the operation of the MRFM quantum computer.

First, the single-spin MRFM can be used to create 100% polarization in

a nuclear-spin chain. To do this, one should determine the initial state of

each nuclear spin in the chain. Note, that we assume 100% polarization of

electron spins. In the external magnetic field Bext = 10 T , at the temperature

T ≈ 1 K, the probability for an electron spin to occupy the upper energy

level is approximately

exp(−2µBBext/kBT ) ≈ 1.4× 10−6.

During the measurement process, one should use an even number of pulses

to return the electron spin to the ground state.

To create 100% polarization of the nuclear spins or to carry out a quan-

tum computation, one must fix the z coordinate of the ferromagnetic parti-

cle. This non-vibrating particle is not a measuring device. It is only a static

source of the inhomogeneous magnetic field. One can imagine that the fer-

romagnetic particle could move along the spin chain (see Fig. 12.7). It can
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Figure 12.7: The polarization of nuclear spins: The non-vibrating ferromag-

netic particle targets a nuclear spins which is initially in the excited state.

be used to target each nuclear spin which is in the excited state. According

to Eqs. (12.16) and (12.17) the target nuclear spin experiences an additional

magnetic field Bd ≈ 5.4×10−2 T . A neighboring nuclear spin experiences an

additional magnetic field B′
dz ≈ 3.6×10−2 T . The corresponding shifts of the

NMR frequencies are (γn/2π)Bd ≈ 2.3 MHz and (γn/2π)B′
dz ≈ 1.5 MHz.

(Here we present estimates for a proton, (γn/2π) ≈ 4.3 × 107 Hz/T .) The

frequency difference between the target nuclear spin and its neighbor is,

∆ω′n/2π ≈ 800 kHz.

In order to drive a nuclear spin one may use an rf pulse, which is reso-

nant to the nuclear spin. The frequency of this pulse is equal to the NMR

frequency, which is much smaller than the ESR frequency. If we denote

the rotating rf field driving the nuclear spin as ~Bn1, then the nuclear Rabi

frequency ωnR is

ωnR = γnBn1. (12.26)

The nuclear Rabi frequency ωnR must be smaller than ∆ω′n, in order to

provide a selective action of a nuclear π−pulse.

The dipole field B∗
d1 produced by two neighboring paramagnetic atoms

(for inner nuclear spins in the chain) is given by Eq. (12.23). The maximal

additional contribution of all other paramagnetic atoms was estimated to
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be |Bdz| < 3 × 10−6 T . The corresponding shift of the NMR frequency

is approximately 780 Hz, much less than the assumed value of the Rabi

frequency, ωnR ≈ 100 kHz. Thus, to drive the target nuclear spin into its

ground state, one can apply a “nuclear” π−pulse with the frequency

ω = ωn0 + γnBd. (12.27)

In this way, the whole chain of the nuclear spins can be initialized in its

ground state. In the same way, using various rf pulses instead of a single

π−pulse, one can provide a one-qubit rotation for any selected nuclear spin.

Now we consider the possibility of implementing conditional logic in a

chain of nuclear spins. The direct interaction between nuclear spins for in-

teratomic distance a = 5 nm is negligible. That is why, to provide conditional

logic in a system of nuclear spins, one will use an electron dipole field. Sup-

pose that we want to implement a two-qubit quantum CN logic gate. We

will consider, first, a simpler “inverse” CN gate: the target qubit changes its

state if the control qubit is in the ground state. The target qubit is a nuclear

spin which can change its state during the CN operation, but not necessarily

the nuclear spin closest to the ferromagnetic particle.

Assume that the target qubit is any inner nuclear spin in the chain, and

the control qubit is one of its neighboring nuclear spins. (See Fig. 12.8,

where A and B are the control and target qubits.) We want to implement

an “inverse” CN gate in three steps.

(1) One sets the ferromagnetic particle near the control qubit, Fig. 12.8a,

and applies an “electron” π− pulse with frequency given by Eq. 12.25. The

electron Rabi frequency ωR satisfies the inequalities ωR < ∆ω′e, ωhf . So,

the electron magnetic moment of the left paramagnetic atom in Fig. 12.8

changes its direction only if the control qubit is in the ground state |0〉. (2)

The ferromagnetic particle moves to the target qubit, see Fig. 12.8b. If the

control qubit is in the excited state, then the electron magnetic moment of

the left atom did not change its direction during the first step. In this case,

the NMR frequency for the target qubit is

γn (Bd +B∗
d1 +B∗

d2) . (12.28)
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Figure 12.8: Implementation of a quantum CN gate: (a) an “electron”

π−pulse drives the electron magnetic moment of the control qubit (nuclear

spin A) if A is in the ground state; (b) a “nuclear” π−pulse causes a tran-

sition in the target qubit (nuclear spin B) if the control qubit A is in the

ground state; (c) “electron” π−pulse drives the electron magnetic moment

back into the ground state.

The second term in the sum is important for us (γ/2π)B∗
d1 ≈ 650 Hz. The

value (γ/2π)B∗
d2 depends on the position of the nuclear spin in the chain. We

estimated that the range of variation for this term is approximately between

70 Hz and 130 Hz. The exact value of this term can be calculated or
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measured experimentally for each nuclear spin in the chain. If the control

qubit is in the ground state (as in Fig. 12.8), then the electron magnetic

moment of the left atom changed its direction during the first step. In this

case, the NMR frequency of the target qubit is

γn (Bd +B∗
d2) , (12.29)

because the dipole field produced by neighboring paramagnetic atoms cancels

out: B∗
d1 = 0.

Next, one applies a “nuclear” π−pulse with frequency (12.29). The dif-

ference between the frequencies in Eq. (12.28) and (12.29) is approximately

650 Hz. Thus, the nuclear Rabi frequency ωnR/2π must be less than 650 Hz.

The corresponding duration of the “nuclear” π−pulse is τ > 770 µs. Under

the action of a “nuclear” π−pulse the target qubit changes its state if the

control qubit is in its ground state.

(3) To complete the CN gate, the ferromagnetic particle moves back to

the control qubit, see Fig. 12.8c. Then one should again apply the “electron”

π−pulse with frequency (12.25). This pulse drives the electron magnetic

moment back to its ground state. A similar procedure can be applied if

the target qubit is at either end of the chain. In order to implement a “di-

rect” CN-gate instead of the “inverse” CN-gate one must apply a “nuclear”

π−pulse of frequency (12.28) instead of (12.29).

Next, we will consider a concrete physical system, which can be used as

an MRFM quantum computer. It may be, for example, a silicon substrate

with tellurium impurities. A tellurium atom in silicon is a “deep”donor with

a small electron cloud and with an extremely large hyperfine interaction.

Application of tellurium impurities in silicon could combine the advantages of

MRFM with the well-developed techniques of silicon technology. We consider
125Te nuclei with a spin I = 1/2, whose natural abundance is only 7%.

Suppose that the regular chain of 125Te impurities is placed near the surface

of the 28Si substrate. 28Si nuclei are non-magnetic (I = 0). The atoms with
29Si magnetic nuclei whose natural abundance is 4.7% are supposed to be

removed. When the host atom in silicon is replaced by the tellurium donor,



184
12. MRFM APPLICATIONS: MEASUREMENT OF AN ENTANGLED

STATE AND QUANTUM COMPUTATION

two extra electrons become available. The properties of tellurium donors in

silicon can be found, for example, in the article of Grimmeiss et al. [50]. It

was found that most of the implanted tellurium atoms occupy substitutional

sites. The ground state of the tellurium donors, as well as those of other

atoms with two extra electrons, are referred to as “deep impurity levels”,

in contrast to “shallow” impurities like phosphorus with one extra electron

whose ground state energies are of the order 50 meV . Because of the two

extra electrons, tellurium donors form singly ionized A centers, Te+, and

neutral B centers, Te0. The temperature-independent ground state energies

were found to be 410.8 meV for A centers, and 198.8 meV for B centers.

Unlike the typical case, considered above, the gyromagnetic ratio for 125Te

is negative , like the electron gyromagnetic ratio. The “spin Hamiltonian” of

the A-centers, which are supposed to be used in a quantum computer, can

be written as:

H = γh̄ ~B · ~̂S + γnh̄ ~B~̂I − A~̂S~̂I, (12.30)

where γn/2π = 13.45 MHz/T and A/2πh̄ = 3.5 GHz.

Below we describe the initialization to the ground state, one-qubit rota-

tion and the CN gate for this particular system. Let assume that the external

magnetic field Bext = 10 T , and the temperature is 1 K. At these conditions

the electron spins are polarized, but 44% of nuclear spins (qubits) are in their

excited states. To detect these nuclear spins one moves a cantilever to every

tellurium atom one by one.

Applying the periodic sequence of the rf π−pulses with frequency (12.25)

(ω/2π = 283.25 GHz) one drives the periodic reversals of the electron spin

and the CT vibrations only if the nuclear spin is in the ground state. If

the applied π−pulses do not drive the CT vibrations then it indicates that

the corresponding nuclear spin is not in the ground state. In this case, one

applies a “nuclear π−pulse” of frequency (12.27) ω/2π = 1.885226 GHz,

which drives this nuclear spin into its ground state. Using various rf pulses

of the same frequency one can implement one-qubit rotations.

To implement a CN-gate one moves the non-vibrating ferromagnetic par-

ticle to a tellurium ion containing a control nuclear spin (a control qubit).
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Then, one applies a π−pulse with frequency (12.25). This pulse drives the

electron spin into the excited state if the control nuclear spin is in its ground

state. Next, one moves the non-vibrating ferromagnetic particle to the neigh-

boring tellurium ion containing the target nuclear spin (a target qubit) and

applies a “nuclear” π−pulse of frequency (12.28) ω/2π = 1.885230 GHz.

This pulse changes the state of the target nuclear spin if the dipole contri-

bution from neighbor electron spins does not cancel out. This happens only

if the control nuclear spin was in the excited state. Finally, one moves the

non-vibrating ferromagnetic particle back to the ion containing the control

nuclear spin and applies a π−pulse with the frequency (12.25) to return the

electron spin to its ground state (if it had been in the excited state). Thus,

three rf pulses together implement a quantum CN-gate: the target qubit

changes its state if the control qubit is in the excited state. Note, that the

final measurement of the nuclear states can be implemented using MRFM in

the same way as the measurement of the initial nuclear states.
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Chapter 13

MRFM Techniques and Spin

Diffusion

Application of any spin device crucially depends on the spin relaxation time.

Spin diffusion, associated with “flip-flops” between the neighboring spins

caused by the dipole-dipole interaction, is one of the most important factors

in a spin relaxation process.

The idea of spin diffusion originated from Bloembergen who explained

nuclear spin-lattice relaxation in insulating crystals [51]. He demonstrated

that the transport of magnetization from fast relaxing spins (FRS) to slow

relaxing spins (SRS) can be described as a diffusion process. Due to the

spin diffusion, a small amount of FRS (e.g. located near the impurities) can

greatly accelerate the spin-lattice relaxation in the whole spin system.

Budakian et al. [52] have shown that the high gradients of the magnetic

field used in MRFM apparatus can be used for effective suppression of the

spin diffusion. In this chapter we will describe the theory of this effect and its

possible application for a spin quantum computer (Berman et al. [53, 54]).

187
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13.1 Spin diffusion in the presence of a

nonuniform magnetic field

According to the general theory of the spin diffusion in the ESR (Vugmeister

[55]) the relaxation process depends on the relation between two parameters:

the spin-lattice relaxation time for FRS TFL and the cross relaxation time

TFS, which is the characteristic time of the energy transfer from FRS to SRS.

We will consider the case TFS � TFL.

If TFS � TFL then FRS and SRS quickly come to the state of thermal

equilibrium, and the bottleneck of the relaxation process is the energy trans-

fer from FRS to the lattice. In this case the overall relaxation rate T−1
1 is

given by the parameter T−1
0 :

T−1
1 ≈ T−1

0 = (nF/nS)T
−1
FL, (13.1)

where nF and nS are the concentrations of FRS and SRS. The spin-lattice

relaxation of SRS with the characteristic time TSL is ignored in this expres-

sion.

We will consider a quasiclassical electron “spin” with magnetic moment

~µp. The magnitude of the magnetic moment, which is equal to the Bohr’s

magneton µp = µB, conserves in the process of the spin relaxation. The

motion of a magnetic moment ~µp satisfies to the quasiclassical equation of

motion with the relaxation term ~Rp:

~̇µp = −γ[~µp × ~Bp] + ~Rp,

~Rp =
ξp
µB [~µp × ~̇µp].

(13.2)

Here ~Bp is the magnetic field on spin “p”, which includes the uniform exter-

nal magnetic field ~Bext, the nonuniform dipole magnetic field produced, for

example, by a non-vibrating ferromagnetic particle ~Bdp and the dipole field

produced by other spins of a sample ~B∗
dp ; ξp is the relaxation parameter. We

assume that ~Bext points in the positive z−direction.

The dipole field ~B∗
dp is given by
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~B∗
dp =

µ0

4π

∑
k 6=p

3(~µk · ~nkp)~nkp − ~µk
r3
kp

, (13.3)

where ~nkp is the unit vector, which points from the spin k to the spin p, rkp
is the distance between the two spins. Below we use two conditions:

B∗
dp,

∣∣∣ ~Bdp −
〈
~Bd

〉∣∣∣� Bext + 〈Bdz〉

where 〈...〉 means the average over the spin system.

Note, that according to the Maxwell’s equation, div ~Bd = 0, there must

be a non-uniform transversal component of the magnetic field ~Bd. However,

because of
∣∣∣ ~Bdp −

〈
~Bd

〉∣∣∣� Bext + 〈Bdz〉 the transversal component of ~Bd in

the first approximation does not influence the Larmor frequency.

The average Larmor frequency ω0 in the spin system can be found ap-

proximately as

ω0 = γ〈B0〉, 〈B0〉 = Bext + 〈Bdz〉 , (13.4)

We transfer to the system of coordinates, which rotates with the frequency

ω0. Ignoring the fast oscillating terms and assuming ξp � 1 we obtain the

following equations of motion:

d~µp
dτ ′

= [~Ωp × ~µp], (13.5)

~Ωp =

−χ
2

∑
k 6=p

Akpµkx + ξ′pµpy, −
χ

2

∑
k 6=p

Akpµky − ξ′pµpx, δp + χ
∑
k 6=p

Akpµkz

 .
Here we use the following dimensionless notations:

~̇µp = d~µp/dτ
′, τ ′ = ξ0ω0t, ξ

′
p = ξp/ξ0, (13.6)

δp =
Bdpz − 〈Bdz〉

ξ0〈B0〉
, χ =

µ

4π

µB
ξ0a3〈B0〉

, Akp =
3 cos2 θkp − 1

(rkp/a)
3 ,

where the magnetic moment ~µp is taken in units of µB, a is the average

distance between the spins, θkp is the polar angle of the unit vector ~nkp,

ξ0ω0 = 1s−1.
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If we put origin inside the spin system at the point where δp = 0, then

the value of δp can be approximated as

δp =
aG

ξ0〈B0〉

(
zp
a

)
, G =

∂Bdz

∂z

∣∣∣∣∣
z=0

. (13.7)

The parameter χ is the characteristic constant of the dipole-dipole interaction

in our system, while the ratio G̃ = aG/(ξ0〈B0〉) describes the characteristic

Larmor frequency difference caused by the magnetic field gradient.

The approximations leading to (13.5) from (13.2) maintain, as it should

be, the conservation of the magnetic moment:

µ2
px + µ2

py + µ2
pz = 1. (13.8)

In the absence of relaxation (ξ′p = 0 ) the z−component of the total magnetic

moment also conserves:
∑
p
µ̇pz = 0.

In experiments [52] the values of parameters are the following:

B0 = 0.106 T, ω0/2π = 2.96 GHz, a ≈ 8 nm,

G ≈ 10 T/m÷ 36 kT/m, T1 ≈ 6.25 s÷ 25 s.

The value of χ is χ = 3.2× 105. When G changes from 10 T/m to 36 kT/m

the dimensionless parameter G̃ rises from 0.044χ to 156χ for a = 8 nm.

Thus, the Larmor frequency difference for the neighboring spins becomes

greater than the dipole-dipole interaction constant.

The computational scheme for Eq. (13.5) must satisfy to the conditions of

conservation µp and (in the absence of relaxation)
∑
p
µpz. Below we describe

the suggested computational algorithm. Equations (13.5) are approximated

by the difference equations

~µj+1
p − ~µjp

∆τ
=

[
~Ωp

(
~µ

(av)
1 , ~µ

(av)
2 , ...~µ

(av)
N

)
×
~µj+1
p + ~µjp

2

]
, (13.9)

where ~µ
(av)
k = (~µj+1

k + ~µjk)/2, k = 1, 2, ...N , N - number of magnetic moments

in a system, ∆τ ′ = τ ′j+1− τ ′j, j- counts the time instant. Equation (13.9) can

be written as
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(
~µj+1
p

)
i
=
∑
l

fil(~Ωp) ·
(
~µjp
)
l
. (13.10)

Here i, l = x, y, z, fil(~Ωp)- are nonlinear functions of ~Ωp. As parameters ~Ωp

depend on ~µj+1
k the solution of equations of motion was found by iterations.

In our simulations, we consider the system of identical cells (see Fig. 13.1).

Every cells contains N = n3 spins located near the points of the cubic lattice:

~rp = a(lp1 + lp2 + lp3) + δ~rp.

Figure 13.1: A pattern of the x − y plane containing FRS for n = 7. The

values of x and y are given in units of a. •− FRS.

Here n is an odd number, lp- are integers, −(n−1)/2 ≤ lp1,2,3 ≤ (n−1)/2,

δxp, δyp, δzp- are random numbers, which do not exceed 0.05a. At τ ′ = 0

the z−components of ~µp take random values between −0.8 and −1 with the

random direction of the transversal components. In every cell, the central

spin is the only FRS. In our simulations, we take the same value ξ′p = β̃ for

all FRS and the same value ξ′p = α̃ for all SRS.

The main (central) cell is surrounded by 440 identical auxiliary cells in or-

der to eliminate the boundary effects, which influence the relaxation process.
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We computed the dynamics of the spins in the central cell taking into con-

sideration their interaction with the spins of all the cells and assuming that

the corresponding spins in all cells have the same direction. The outcome of

our computation is the function

Mz(τ
′) =

∑
p

µpz(τ
′)
∑
p

|µpz(0)|. (13.11)

We have performed computations for n = 5, 7, 11. The corresponding

ratio ns/nf = N −1 = 124, 342, 1330. First, we have studied the relaxation

process in the absence of magnetic field gradient (G̃ = 0). We define the

effective dimensionless relaxation time τ1 using the relation

τ1 =
1

2

∞∫
0

[1−Mz(τ
′)] dτ ′, (13.12)

which is derived from the exponential decay Mz(τ
′) = 1− 2 exp(−τ ′/τ1). As

ξ0ω0 = 1 s−1, the numerical value of τ1 is equal to the value T1 in seconds.

For the spin system with no FRS the relaxation time T1 = TSL ≈ 2.2/α̃ (in

seconds). In experiment [52] TSL = 25s, and α̃ = 0.088.

We have simulated the relaxation process for various values χ > 104, but

all our figures below correspond to the experimental value χ = 3.2× 105.

Our computations show that the overall relaxation time τ1 can be de-

scribed by the relation

τ1 =
2.2

α̃+ β̃/N
. (13.13)

Putting N ≈ ns/nF and transferring to the dimensional relaxation rate,

we obtain from (13.13)

T−1
1 = T−1

SL + T−1
0 . (13.14)

The first term in this expression describes the spin-lattice relaxation rate for

SRS, and the second term T−1
0 = (nF/ns)T

−1
FL, first derived in [55], describes

the effect of the spin diffusion. From the experimental data [52] T−1
1 =
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0.16s−1, T−1
SL = 0.04s−1 we can estimate the value of T−1

0 : T−1
0 = 0.12s−1.

The corresponding value β̃/N ≈ 0.26 .

Figure 13.2: Spin relaxation Mz(τ
′) for the various values of the ratio β̃/N

and α̃ = 1. Curves 1-7: β̃/N = 0, 1, 2, 3, 4, 5, 6.

Fig. 13.2 demonstrates the dependence Mz(τ
′) for various values of the

ratio β̃/N .

Fig. 13.3 shows the dependence of the relaxation time τ1 on the ratio

β̃/N for α̃ = 0 and α̃ = 1. One can see the excellent agreement between the

numerical data and formula (13.13).

Next, we transfer to the main objective of this section: the analysis of

the influence of the magnetic field gradient on the relaxation process. Our

simulations show that the suppression of the relaxation rate depends on the

single parameter K = G̃/χ, which is the ratio of the characteristic Larmor

frequency difference to the dipole-dipole interaction constant. The two other

results of our simulations are the following:

1) The significant increase of the relaxation time τ1 appears in the region

4.4 ≤ K ≤ 44, which corresponds to the values 1 kT/m ≤ G ≤ 10 kT/m, in

a good agreement with experiments [52].

2) For K > 44, the ratio R(K) = τ1(K)/τ1(K = 0) is approaching
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Figure 13.3: The overall relaxation time τ1 as a function of ratio β̃/N . 1):

α̃ = 1; 2): α̃ = 0. Dots are received from the numerical calculations, solid

line corresponds to formula (13.13).

the value 1 + β̃/(α̃N). It means that the overall relaxation time T1(K) is

approaching the expected value TSL.

As an example, Fig. 13.4 demonstrates the dependenceMz(τ
′) for 5 values

of K, and Fig. 13.5 shows the function R(K) = τ1(K)/τ1(K = 0).

Next, we have studied the dynamics of the spatial distribution µpz(~rp, t).

We have found that in the absence of the magnetic field gradient (K = 0) the

relaxation process spreads randomly in all directions from FRS to SRS. In the

presence of the magnetic field gradient, the spin diffusion process becomes

anisotropic. Fig. 13.6 demonstrates the relaxation of a slice magnetic moment

Mzi for all the slices, −(n − 1)/2 ≤ i ≤ (n − 1)/2, in the central cell. One

can see that the relaxation process first develops in the slice containing FRS

(i = 0), then it spreads to the slices i < 0 below the central slice, then it

spreads to the upper slices i > 0. This phenomenon can be explained as

following.

The spin frequency in the rotating frame is given by Eq. (13.5). We have
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Figure 13.4: The relaxation Mz(τ
′) for various values of K: 1-5 - K =

0, 5, 10, 20, 50. Curve 6 is the relaxation in the spin system with no FRS

and K = 0. The values of other parameters: α̃ = 1, n = 7, β̃ = 1372

(β̃/N = 4).

Figure 13.5: Dependence R(K) onK at α̃ = 1, n = 7. Curves 1, 2 - β̃ = 1372,

686 (β̃/N = 4, 2).
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Ωp ≈ Kχ(zp/a) + Ωpd, Ωpd = χ
∑
k 6=p

Akpµkz , (13.15)

where the first term, ∝ K, is associated with the non-uniform dipole magnetic

field produced by the ferromagnetic particle, and the second term, Ωpd, is

associated with the dipole field produced by other spins of the system.

Figure 13.6: Relaxation of the slice magnetic moment Mzi(τ
′) in the presence

of the magnetic field gradient: a - for the central slice, which contain FRS

(i = 0), and for the slices below the central slice; b-for the slices above the

central slice. The values of parameters: n = 7, α̃ = 1, β̃/N = 4, K = 10.

Within the slice the value of Ωpd changes slightly between 5.6χ and 6.4χ.

Thus, the value Ωp is, approximately, Ω0 = 6χ in the slice i = 0, Ω1 =

(6 + K)χ in the slice i = +1, Ω−1 = (6 − K)χ in the slice i = −1, and

so on. For Ω1 − Ω0 = Ω0 − Ω−1 ≥ Ω0 (or K > 6) the relaxation due to

the spin diffusion develops first in the slice containing FRS (i = 0). When

the magnetic moment Mz0 in the central slice, i = 0, changes its direction,

Mz0 ≈ −1 → Mz0 ≈ +1, the dipole contribution on the neighboring slices

i = ±1 in our disturbed cubic lattice changes as

∆Ωi ≈ 0.35χ[1 +Mz0(τ)], i = ±1. (13.16)

The dipole term Ωdp within the central slice itself changes as
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∆Ω0 ≈ −9χ[1 +Mz0(τ)] . (13.17)

Thus, after the spin relaxation in the slice i = 0 the frequency difference

between the slices decreases for the slices i = 0 and i = −1, but increases for

i = 0 and i = 1. As a result, the spin relaxation process due to spin diffusion

starts in the slice i = −1, then in the slice i = −2, and so on.

The characteristic value K = K0, which is necessary to suppress the spin

diffusion between the slices, can be estimated as following. We assume that

at K = K0 the frequency difference between the slices i = 0 and i = −1

after the spin relaxation in the slice i = 0 remains greater than Ω0 = 6χ.

Taking into consideration that the initial frequency difference between these

slices is K0χ, the change of the frequency is −18χ for i = 0 and 0.7χ for

i = −1, we obtain K0 ≈ 25, which is in a good agreement with our numerical

simulations.

13.2 Suppression of spin diffusion in

application to a spin quantum computer

In this section we discuss how the effect of the suppression of the spin diffusion

could be used for a spin quantum computer. We will consider two schemes

for a spin quantum computer. In the first one a boundary spin chain in

a two-dimensional (2D) spin array is used as a one-dimensional (1D) spin

quantum computer. In the second one an isolated spin chain is used as a

1D quantum computer. While the chain of spin qubits is supposed to be

free from FRS, an FRS may appear at some distance from the chain. We

will use the same equations of motion (13.5) and the same notation as in the

previous section.

We will start from the first scheme for the quantum computer described

above. We will discuss spin diffusion and relaxation in a 2D array of spins

and its influence on the boundary chain of spins. We consider the following

initial conditions for the relaxation process: at τ ′ = 0 the z−components of
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~µp are given random values between −0.8 and −1 with a random direction

for the transverse components. The spin coordinates in the x − y plane are

given by

~rp = a(lp1, lp2, 0) + δ~rp,

δ~rp = (δxp, δyp, 0), (13.18)

where −(n − 1)/2 ≤ lp1,2 ≤ (n − 1)/2, n is an odd number (in order to be

able to put an FRS in the center of the 2D plane), the total number of spins

is N = n2. δxp, δyp- are random numbers, which do not exceed 0.05a.

Figure 13.7: a): a 2D spin system with FRS. FRS is shown as a big sphere,

SRS are represented by small spheres. Spin quantum computer is the bound-

ary spin chain, which is parallel to the x−axis. Gz > 0. b): curves 1 and

3 show the dependence Mz(τ
′) for K = 0: 1- for α̃ = 1, β̃/N = 4; 3 – for

α̃ = 0, β̃/N = 2. Curve 2 corresponds to K = 5, α̃ = 1, β̃/N = 4. The

“homogeneous system” curve corresponds to K = 0, α̃ = β = 1. For all

curves N = 441 (n = 21).

We consider a single FRS with the relaxation parameter ξ′p = β̃. All

SRS have the relaxation parameter ξ′p = α̃� β̃. We assume that the dipole

magnetic field Bdpz produced by the ferromagnetic particle increases with the

increase of x, and we approximate the value of δp as
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δp =
aGz

ξ0B0

(
xp
a

), Gz =
∂Bdpz

∂x

∣∣∣∣∣
x=0

. (13.19)

Our simulations show that similar to the three dimensional (3D) case the

suppression of the relaxation rate depends on the ratio K = G̃/χ, where

G̃ = aGz/(ξ0〈B0〉). Fig. 13.7a demonstrates one of the studied 2D spin sys-

tems with FRS. Our simulations show that at K = 0 the relaxation process

in the whole 2D- spin system does not depend on the location of the FRS.

The relaxation time τ1 defined in (13.12) is described by the same expres-

sion (13.12) as in the case of a 3D system. In Fig. 13.7b, curves 1 and 3

demonstrate the dependence Mz(τ
′) for K = 0. Note, that for K = 0 the

spin relaxation for all boundary spin chains (N, S, W, E in Fig. 13.7b) is

approximately the same as relaxation of the whole spin system (see Fig. 13.8).

Figure 13.8: Dependence Mz(τ
′) for K = 0. Smooth solid line corresponds to

the whole spin system, broken lines correspond to boundary chains N, S, W

and E in Fig. 13.7a. α̃ = 1, β̃/N = 4, N = 441.

We believe that this result is valid for cases in which the number of

spins N does not exceed the threshold value Nc = n2
c , which depends on the

effective constant χ of the dipole-dipole interaction.

A rough estimate for nc can be obtained in the following way. If the FRS

is located at the center of a 2D spin system, the dipole-dipole interaction
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a zµ
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Figure 13.9: a) Formation of a magnetic domain in a large spin system.

τ ′ = 0.5, Mz = −0.865. Parameters: χ = 1.6 × 105 (a = 48 nm), β̃/N =

4, N = 1225 (n = 35). b) Curve 2 demonstrates the dependence Mz(τ
′),

and curve 1 is identical to curve 1 in Fig. 13.7.

between the FRS “q” and the most remote spin “k” must satisfy the condition

Ω
(q)
kz = χAkq � 2π/τ1 or 8χ/n3

c � π/τ1, (13.20)

in order for Eq. (13.13) to be valid. If this condition is not fulfilled, the

spin diffusion becomes inhomogeneous over the spin system. The SRS which

are located near the FRS form a magnetic domain (see Fig. 13.9). At the

boundary of this domain, the dipole field ~B∗
dp, produced by the spins, has a

sufficient gradient to suppress the spin diffusion outside the domain.

The effect of reducing the spin relaxation rate due to the magnetic field

gradient can be described as following. Consider, for example, three spin

chains parallel to the y−axis. In Fig. 13.10 they correspond to the rows -1, 0,

and +1. LetBdz increases in the positive x−direction (Gz = ∂Bdz/∂x|x=0 > 0).

The dimensionless Larmor frequency of spin p can be written as
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Figure 13.10: Change of the dimensionless Larmor frequencies in the neigh-

boring rows −1, 0, 1. FRS is in the row “0”. Circles show the change of

frequencies due to the dipole-dipole interaction between the spins. Black cir-

cles show the frequency change due to the magnetic field gradient at K = 5.

∆Ωp,−1 < ∆Ωp,+1.

Ωp ≈ Kχ(
xp
a

) + Ωpd, Ωpd = χ
∑
k 6=p

Akpµkz. (13.21)

The initial value of Ωpd (when all µpz ≈ −1) in the 2D square spin lattice

is Ωpd ≈ 8χ. Suppose that row “0” contains a single FRS. Initially the

relaxation process occurs in row “0”. The value of µpz in row “0” sharply

changes to µpz ≈ +1. The corresponding changes of Ωpd in rows 0, 1, and -1

are approximately the same:

∆Ωpd,0 ≈ −4.8χ, ∆Ωpd,±1 ≈ −4χ. (13.22)

Spin diffusion is suppressed if the Larmor frequency difference due to

magnetic field gradient becomes greater than Ωpd,0. This occurs roughly at

K > 4. Our numerical simulations confirm this conclusion (see Fig. 13.7b,

curve 2.) At K = 10 the dependence Mz(τ
′) is approximately the same as

for the system with no FRS. (See Fig. 13.7a, “homogeneous” curve.)
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Figure 13.11: Distribution of µz at τ ′ = 0.35 for the relaxation process shown

in Fig. 13.7b, curve 2.

In a non-uniform magnetic field, spin relaxation is highly anisotropic.

The relaxation process spreads first in the direction of the smaller magnetic

field (because, as our simple example in Fig. 13.10 shows, ∆Ωp,−1 < ∆Ωp,+1),

as it occurred in 3D system. This phenomenon can be used in a quantum

computer. By changing the direction of the magnetic field gradient one can

increase the relaxation time in any of the boundary chains (N, S, W, E in

Fig. 13.7). As an example Fig. 13.11 demonstrates the distribution of µz at

τ = 0.35 for the relaxation process shown in Fig. 13.7b, curve 2.

Next, we will consider a quantum computer implemented on an isolated

spin chain. First, we consider a spin chain with N = 41 spins interacting

with the FRS. The external magnetic field is perpendicular to the chain. We

used two values χ = 1.3 × 106 and χ = 1.6 × 105, which correspond to the

distances a = a0 = 24 nm and a = 2a0 = 48 nm. We put α̃ = 0, and

β̃/(N + 1) = 5. For these values of parameters in 3D and 2D spin systems

we calculated the relaxation time using Eq. (13.13) τ1 ≈ 2.2(N + 1)/β̃ =
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Figure 13.12: a) FRS is placed at a distance ad ≈ a from the center of the

chain; b) Relaxation Mz(τ
′) in the spin chain for the number of spins in the

chain N = 11 and N = 41. The distance between the spins is equal to a0

and 2a0 (a0 = 24 nm); c) relaxation of the FRS µqz(τ
′); d) distribution of

µpz in the spin chain for τ ′ = 0.2. N = 41, a = a0 = 24 nm.

0.44. If the FRS is at the distance ad ≈ a from the center of the chain

(see Fig. 13.12a), then the relaxation rate is similar to that in 3D and 2D

systems. Fig. 13.12b demonstrates the relaxation Mz(τ) in the spin chain for

the situation shown in Fig. 13.12a. Fig. 13.12c demonstrates the dynamics

of the FRS. (The value of the magnetic moment of the FRS µqz was taken
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Figure 13.13: a) Relaxation of the third spin in the spin chain. N = 41; b)

relaxation process Mz(τ
′) when FRS is placed near the end of the chain.
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Figure 13.14: a-b) Magnetic moments distribution at τ ′ = 0.3, 1 for the spin

chain with N = 21. c) Magnetic moment of FRS µqz as a function of τ ′.

with the time interval ∆τ ′ = 0.01.) Fig. 13.12d demonstrates the random

distribution of the magnetic moments µpz in the spin chain at τ ′ = 0.2

(Mz = −0.68).

Note, that the dynamics of a single spin in the chain is similar to the

dynamics of the FRS. As an example, Fig. 13.13a shows relaxation of the
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Figure 13.15: a-b) Magnetic moments distribution at τ ′ = 0.6, 1 for the spin

chain with N = 41.

third spin in the chain, µ3z(τ
′). If the FRS is placed near the end of the spin

chain, the relaxation process in the spin chain slows down, and stops. (See

Fig. 13.13b.) This “freezing” of the relaxation process is accompanied by the

appearance of the stationary domain walls in the chain. (See Fig. 13.14 for

N = 21 and Fig. 13.15 for N = 41.) For N = 21 only those spins which are

close to the FRS take part in the relaxation process. The relaxation process

freezes with two domain walls for N = 41.

Next, we consider the case in which the FRS and the chain spins which

are close to FRS experience a higher spin dipole field than the other spins

in the chain (Fig. 13.16a, positions 1 and 2). Fig. 13.16b demonstrates the

relaxation process for the three positions of the FRS shown in Fig. 13.16a.

One can see that the high inhomogeneity of the dipole field near the FRS

suppresses the relaxation rate.

Fig. 13.17 shows distributions of the magnetic moments corresponding to

position 1 of FRS in Fig. 13.16a at two different instants of time. The distri-

bution of the magnetic moments for the FRS in position 2 (see Fig. 13.16a) is

shown in Fig. 13.18. Note that in both Fig. 13.17 and 13.18 the distribution

of the magnetic moments appears to be random rather than ordered.
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a
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Figure 13.16: a) FRS is very close to the spin chain (positions 1 and 2). In

position 2, the distance from the chain ad = a/2; in position 3, ad = 2a. b)

Relaxation of the magnetic moment of the chain Mz(τ
′) for three positions

of the FRS shown in a). Curve “0” is taken from Fig. 13.12b for comparison.

N = 21.

For position 3 in Fig. 13.16a the spin dipole field on the FRS is much

smaller than the spin dipole field on the spins of the chain. The relaxation

rate is suppressed initially but quickly increases at τ ′ ≈ 6. (See curve 3 in

Fig. 13.16b.) The characteristic feature of this case is the generation of a

moving domain wall. (See Fig. 13.19.) We have found that the direction of

the motion of the domain wall depends on the position of FRS. If we place the

FRS to the left of the chain, then the domain wall will move in the negative

y−direction in Fig. 13.16a. Thus, the process of spin relaxation in the spin

chain appears to generate the random spin distribution, the quasi-stationary

domain walls, and the moving domain wall.

Finally, we consider the suppression of the spin diffusion and relaxation

using a non-uniform magnetic field. As an example we will discuss the situa-

tion corresponding to an FRS in location 2 in Fig. 13.16a. Fig. 13.20a clarifies
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Figure 13.17: a-b) Magnetic moments distributions corresponding to FRS

position 1 in Fig. 13.14f at τ ′ = 3, 7.
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Figure 13.18: Magnetic moments distributions corresponding to position 2

of FRS in Fig. 13.14f at τ ′ = 10.

the spin dynamics in the uniform magnetic field for this situation. The central

spin “c”, which is close to the FRS, quickly approaches the stable inverted

state µcz = −1, while FRS approaches the stable ground state µqz = +1

(horizontal lines “c” and “q” in Fig. 13.20a). For other spins, their magnetic
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Figure 13.19: a-b-c) “Moving domain wall ” corresponding to position 3 of

FRS in Fig. 13.14f at τ ′ = 6, 6.5, 7.

Figure 13.20: a) Relaxation process for FRS in position “2” in Fig. 13.14f.

Horizontal lines “c” and “q” correspond to the central spin and FRS. Chaotic

lines correspond to other spins of the chain. N = 41, K = 0. b) Mz(τ
′) for

FRS in position “2” in Fig. 13.14f. N = 41, K = 50. Magnetic field increases

in the positive x−direction.

moments µpz change chaotically. Fig. 13.20b demonstrates the relaxation of

Mz(τ
′) in the spin chain in the presence of the non-uniform magnetic field

for K = 50. In this case the FRS magnetic moment mqz quickly approaches

the value µqz = +1, the central spin “c” also approaches the ground state

µcz = +1, while the other spins in the chain remain frozen. The change of

Mz(τ
′) in Fig. 13.20b is caused by the relaxation of the central spin during



13.2. Suppression of the spin diffusion 209

a

-1,0

-0,5

0,0

0,5

1,0
b

y

 

µ
pz

Figure 13.21: a) Relaxation of the central spin for K =

50 (13.2), 70 (13.3), 100 (13.4). b) Distribution of magnetic moments

at τ ′ = 10 for K = 100. (FRS is placed in the position “2” in Fig. 13.14f,

N = 41).

the time interval τ ′b. For a spin quantum computer, one should suppress the

relaxation of the central spin. Relaxation of the FRS changes the dipole

field on the neighboring spins of the chain to the value −2χ. In order to

suppress relaxation effectively the frequency difference between the spins in

the chain must increase after FRS relaxation. Consequently, the magnetic

field should increase in the positive x−direction in Fig. 13.16a. Fig. 13.21a

shows the relaxation of the central spin for three values of K, and Fig. 13.21b

demonstrates the magnetic moment distribution for K = 100. If the distance

ad between FRS and the central spin increases, then the FRS can be “iso-

lated” at smaller values of K. In the previous figures we used ad = a/2.

Fig. 13.22 demonstrates the results of our simulations for ad = a. One can

see that for K ≥ 10 the relaxation process is suppressed for every individual

spin. Fig. 13.23 demonstrates the distribution of the magnetic moments for

K = 10 and K = 25 at τ ′ = 12. Our semi-empirical estimate for the value

of K which is sufficient for the suppression of relaxation for the location of

FRS along the x−axis (Fig. 13.16a), can be written as K(ad/a)
4 > 10.
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Figure 13.22: a) Relaxation in the chain for ad = a, K = 5(curve

1), 10 (curve 2), 25 (curve 3). b) mean square deviation σ(τ ′) =[
1
N

∑
p

(µpz(τ
′)−Mz(τ

′))2

]1/2

as a function of τ ′ for K = 5, 10 and 25.
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Figure 13.23: Distribution of magnetic moments at τ ′ = 12 for K = 10 (a)

and K = 25 (b).
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Conclusion

The purpose of our book was to explain the basic principles and some theo-

retical approaches used in MRFM. We did not want to consider or even to list

all proposed MRFM techniques and applications. Instead, we tried to present

a logic sequence of examples, which can help readers of various background

to understand the physical principles underlying all MRFM techniques and

applications.

We mentioned already that our book is based largely on the research

work of the authors. A reader, who is interested in other directions of MRFM

research, may read the reviews of Sidles et al. [56] and Neste et al. [57], Suter

[58], and also the recent research articles. As an example, we will mention a

few articles which reflect some of the recent developments in MRFM.

Brun and Goan [59] have derived the stochastic quantum state diffusion

equation, which describes, in particular, the process of the wave function

collapse for the MRFM technique with the adiabatic spin reversals driven by

the frequency modulated rf field. For the same MRFM technique Gassman

et al. [60] have found the evolution of the CT and spin reduced density ma-

trices at an arbitrary temperature. Kempf and Marohn [61] have presented

a method for obtaining 2D-spin density map in MRFM. Garner et al. [62]

have developed a modified MRFM technique which relies on the magnetic

force gradient rather than on the magnetic force. Budakian et al. [63], using

211
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the interrupted OSCAR technique demonstrated the creation of spin order

in small ensembles of electron spins. With the same technique Mamin et

al. [64] reported a MRFM sensitivity of about 2000 net nuclear spins 19F in

CaF2 and 1H in biomolecules.

Finally, as Rugar et al. noted in their paper [8] the MRFM sensitivity has

been increased 107 times compared to the first experiments [5] reported in

1992. The further improvement about 103 times would allow a direct single-

nuclear-spin detection. It would open the way for MRI with an atomic scale

resolution. On this optimistic note we are going to finish our book.
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14.1 Abbreviations

1D, 2D, 3D - one-, two-, three dimensional

AFM - atomic force microscopy

CN - Control-Not

CT - cantilever tip

ESR - electron spin resonance

FDMR - fluorescence detected magnetic resonance

FMR - ferromagnetic resonance

FRS - fast relaxing spin

LSC - laboratory system of coordinates

MFM - magnetic force microscopy

MRFM - magnetic resonance force microscopy

MRI - magnetic resonance imaging

NMR - nuclear magnetic resonance

rf - radio frequency

rms - root mean square

RSC - rotating system of coordinate

SRS - slow relaxing spins

STM - scanned tunneling microscopy
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14.2 Prefixes

G (giga) = 109

M (mega) = 106

k (kilo) = 103

m (milli) = 10−3

µ (micro) = 10−6

n (nano) = 10−9

p (pico) = 10−12

f (femto) = 10−15

a (atto) = 10−18

z (zepto) = 10−21
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14.3 Notations

α =

(
1

0

)

α̃ = ξ′p for SRS

α - parameter of the wave function of the coherent state

|α〉 - coherent state of the oscillator

β =

(
0

1

)

β̃ = ξ′p for FRS

γ - electron gyromagnetic ratio (magnitude)

γn - nuclear gyromagnetic ratio (magnitude)

δωc - CT frequency shift

δω0 - maximum value of |δωc|

δkc - shift of the CT spring constant

δp =
Bdpz − 〈Bdz〉

ξ0〈B0〉

δTc - shift of the CT period

δzc - uncertainty in the CT position

∆ = ωb/2π

ε = ωR/ωc

η - dimensionless parameter of the spin - CT interaction

~µ - magnetic moment of an electron spin

µ0 - permeability of the free space
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~µn - magnetic moment of a nuclear spin

µB - Bohr’s magneton

µ± = µx ± iµy

ω - frequency of the rf field

ωb - bandwidth of the measuring device

ωj - eigenfrequency of the cantilever

ωc - “unperturbed” CT frequency

ω0 - average Larmor frequency

ωL - Larmor frequency in MRFM

ωn = γBext - ESR frequency

ωeq - ESR frequency for the state |q〉 of the nuclear spin, q = 0, 1

ωnq - NMR frequency for the state |q〉 of the electron spin, q = 0, 1

ωhf =
Ahf
2h̄

ωeff = γBeff - precession frequency in the RSC

ωR = γB1 - Rabi frequency

Ψ - wave function of the CT-spin system

χ̂ - spin density matrix

χ - spin wave function

χ = µ0
4π

µB
ξ0a

3〈B0〉

θeff - polar angle of the effective field
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ξp - relaxation parameter for the spin “p”

ξ0 = 1s−1

ω0
, where ω0 is in s−1

ξ′p =
ξp
ξ0

τ ′ = ξ0ω0 t

τ1 = 1
2
∫∞
0 [1−Mz(τ

′)]dτ ′

~τ - torque

τ = ωct - dimensionless time

τcol = ωctcol

τjump = ωctjump

τm - spin relaxation time in the RSC

â - annihilation operator

â† - creation operator

a - average distance between spins

ad - distance between the FRS and the center of the spin chain

A - CT amplitude

Ahf - hyperfine constant

ATR - amplitude of the thermal CT vibrations

~Beff - effective field in the RSC

~Bext - external permanent magnetic field

~B1 rf - field
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~B1n rf - field in NMR

~Bd - dipole field on the spin produced by the CT

~B∗
d - dipole field on the spin produced by other spins on the sample

~B
(0)
d - dipole field on the spin produced by the CT in the equilibrium position

~B0 = ~Bext + ~B
(0)
d

B± = Bx ± iBy

d - distance between the bottom of the ferromagnetic particle and the spin

d∗ - distance between the origin and the spin

Ê - unit matrix

~F - force on the CT

G = ∂Bd
∂z

Ga = ∂Bda
∂x a = x, y, z.

G̃ = aG
ξ0〈B0〉

H - Hamiltonian

~I - nuclear spin

kB - Boltzmann constant

kc - CT spring constant

K = G̃
χ

lc - cantilever length

mc - cantilever mass
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m∗ = kc
ω2
c

- CT effective mass

~m - magnetic moment of the ferromagnetic particle on the CT

M0 - magnetization of the ferromagnetic particle (magnitude)

Mz = Mz(τ
′) =

∑
p

µpz(τ
′)∑

p

|µpz(0)|

n = N1/3 - for 3D systems, = N1/2 - for 2D systems

~n - unit vector

nF - concentration of FRS

ns - concentration of SRS

n± = nx ± iny

N - number of spins

P - probability distribution for the CT position

Q - quality factor

R = R(K) =
τ1(K)

τ1(K = 0)

R0 - radius of the ferromagnetic particle

R̂j - rotational operator

~S - electron spin

~̂S - spin operator

Ŝ± = Ŝx ± iŜy

s = Sz
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tc - cantilever thickness

tcol - characteristic collapse time

tjump - characteristic time between two quantum jumps

T - temperature

T−1
0 =

nf
ns T

−1
FL

TFL - spin-lattice relaxation time for FRS

TSL - spin-lattice relaxation time for SRS

T1 - spin relaxation time

Tc - CT period

Td - decoherence time

Ti - period of interruption of the rf field

Tr = Q
ωc - time constant (relaxation time) of the CT vibrations

TR - Rabi period

un - eigenfunctions of the oscillator Hamiltonian

uα - eigenfunctions of the annihilation operator â

Um - magnetic energy

wc - cantilever width

xc, zc - CT - coordinates

Y - Young’s modulus

z0 - CT - equilibrium position
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