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Abstract. We study the effect of coherent propagation of lwo interacting particles in a 
disordered potential. The dependence of the enhancement factor for coherent localization length 
due to intemction is investigated numerically in the model of quantum chaos. The effect of 
interaction for two particles in many dimensions is also discussed. 
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1. Introduction 

The quantum localization of dynamical chaos has received a great deal of attention during 
the last few years [ I ,  21. It has been understood that quantum interference effects lead to 
a suppression of diffusive spreading in the action space in spite of the chaotic dynamics 
of the corresponding classical model. An important consequence of this phenomenon is 
the exponential localization of quantum eigenfunctions over the unperturbed levels. A 
close correspondence has been established between this, dynamical localization and the 
Anderson localization in a random potential for solid state systems [3]. One of the most 
studied models in this field is the kicked rotator model (KRM), which in the classical limit 
corresponds to the Chirikov standard map [4] (CSM), a common paradigm of classical 
chaos. Although the KRM seems to be at first glance a purely mathematical mode1, it has 
however found important applications for real physical systems, such as for example the 
process of microwave ionization of Rydberg atoms [SI. Another useful property of the KRM 
is that it can be studied very efficiently in numerical simulations allowing us to investigate 
its properties in great detail. 

In any case, the KRM describes one-particle quantum dynamics and in many respects 
it is quite similar to one-particle localization in a quasi-one-dimensional random potential 
[6]. The latter problem has been intensively studied in solid state physics and it is well 
understood from the theoretical point of view. In contrast, the case of interacting particles 
is much more complicated and a clear theoritical picture is still lacking (see for'instance 
the recent review [7]). Usually this problem is studied near the ground state and it is 
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common lore that a repulsive interaction would result in even stronger localization [8, 91. 
However, the recent investigation of two interacting particles in a quasi-one-dimensional 
random potential [lo] has shown that, even in the case of repulsive particles, interaction 
leads to an enhancement of localization length and a coherent propagation of two particles 
on a distance 1, much larger than the one-particle localization length 11. According to [lo] 
the enhancement factor is given by : 
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(1) 

where U is the strength of on-site interaction between two particles, V is the one-particle 
hopping element between nearest sites which determines the size of the one-particle energy 
band and M is the number of transverse channels. As is well known for M >, I the one- 
particle localization ]en@ 11 is proportional to M (for M < 1 1 )  [ l l ]  so that according to ( I )  
1, rx M 3 .  In ( I )  the intersite distance a is taken to be equal to one and energy is taken near 
the centre of the band so that k~ - l/a = 1. The interaction U is considered to be less 
than or comparable with V. The equation (1) is valid in the regime when the enhancement 
factor is greater than one, & / 1 I  > 1. 

The physical reasons according to which two particles propagate together, forming an 
effective pair, can be understood in the following way [IO]. Since the interaction couples 
only nearby sites (or on site) then the particles initially located at a distance r >> 1, have 
only exponentially small effective coupling with each other due to the exponential decay of 
localiisd one-particle eigenstates. For such types of states two interacting particles (TIP) 
remain localized in the radius 11 near their initial positions. These states are localized and 
form the majority of all states. However, there are other states in which TIP are initially 
close to each other so that r < 1 1 .  As follows from the previous case r >> 1 1 ,  the initially 
close particles ( r  < 11) cannot become separated at a distance much larger than I I  (otherwise 
we would contradict the previous case r >> 1 1 ) .  Therefore, they always remain at a distance 
r - 11 .  At this distance,interaction between particles is important. Qualitatively, the motion 
of one particle with respect to the other produces some kind of noise on it. This noise causes 
destruction of interference effects which produce one-particle localization. The destruction 
of interference allows particles to propagate at a distance 1, which is much larger than the 
distance between particles l I .  This propagation can take place only for two particles since 
as soon as they become separated (r >> 11)  they become localized. The above picture 
explains qualitatively why even repulsive particles can propagate together coherently at a 
large distance 1, >> 11. Of course, to be more precise one should use a more rigorous 
approach (see below) to take into account that the effective ‘noise’ can have discrete (1 
or 2 dimensions) or continuous spectrum (3 dimensions) so that finally the pair motion is 
localized ( I  or 2d) or delocalized (3d). In some sense the method of TIP propagation in 
a random potential is similar to the method used by Miinchhausen to save himself from a 
swamp. 

The 
enhancement factor lc/ll. is proporfional to the probability to mix one-particle states by 
interaction. In fact I C / l l  -’ rp where r - v?p is the rate of transition and p is the 
density of coupled states [IO]. The above relation between 14 = l c /1 ] ,  r and p was 
derived for photonic localization in a molecular quasicontinuum [12] where 19 measures 
the localization length in a number of one-photon transitions. The proportionality between 
1, and I? is similar to the proportionality of 1, to the diffusion rate D (0 - r) which is 
well established for the KRM. In the TIP model the size of the transition is I , ,  the coupling 
matrix element is U, - U/N3/’ [lo] and r - U 2 / N V ,  where N = M11 is the number 

1, U2 
- - l I M -  
11 32V2 

The functional dependence in ( I )  can  be understood in the following way. 
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of unperturbed components in a one-particle eigenstate. The density of coupled states is 
p = 1/AE - N'JV so that the enhancement factor is 1,/11 - (K/AE)' - N(U/V) '  
in agreement with (1). It is interesting to mention that such an estimate is quite similar 
to the derivation of statistical enhancement for weak interaction and parity violation in 
neutron-nucleus reactions discussed by Sushkov and Flambaum [13]. However in [13] the 
interaction, even enhanced, remains relatively weak iiving only small corrections while in 
our case the enhanced interaction U.fr - (Ml , ) ] / 'U is not small and it leads to significant 
changes in the properties of the system. Another interesting method of the derivation of ( I )  
was given recently by Imry [I41 based on the Thouless block picture which allows one to 
analyse different dimensions. His approach also shows the enhancement of conductance on 
a scale smaller than 1,. 

In [lo] the result (1) was also obtained by the reduction of the TIP problem to one 
of superimposed band random matrices (SBRM). There, the interaction, even if repulsive, 
creates an effective thick wire along the diagonal n l  = nz in the two-dimensional plane 
(nl ,  n2) of indices corresponding to two particles. The effective width of the wire (effective 
number of transverse channels) is determined by the number of levels M1, coupled by 
interaction in the one-particle basis. Outside of this width interaction is exponentially small 
and can be neglected at least in the first approximation. The large number of effective 
transverse channels Meff = Ml] leads to enhancement of localization length with the 
enhancement factor proportional to Mdf. 

All the above approaches were based on the assumption of statistical'independence of 
transition matrix elements and eigenenergies in the one-particle basis. This approximation 
seems to be reasonable due to randomness of the potential and finite radius of the interaction. 
However, it is very important to have a direct check and to verify the prediction (I). Some 
numerical checks were presented in [lo]. Here we present the results of a more detailed 
numerical investigation which we carried out for the model of interacting kicked rotators 
which had been discussed in [IO]. We also present numerical results for a model with finite 
radius of interparticle interaction. 

The paper is constructed as follows. In section 2 we introduce the model and present the 
main results for on-site interacting kicked rotators. The case of finite radius of interaction 
is discussed in section 3. Conclusions and discussions of results are presented in section 4. 

2. The  'on-site' interaction model 

To investigate the effect of enhancement of localization length by interaction we used the 
model of two interacting kicked rotators introduced in [lo]. The model represents two 
particles on a ring perturbed by kicks that are periodic in time. The evolution of the 
wavefunction @ on one period of perturbation is described by the unitary operator (Floquet 
operator) : 

(2) 
with i 1 , 2  = -ia/af?l,z. For U = 0 we have two noninteracting kicked rotators which 
had been intensively studied during the last few years [ l ,  2, 31. The classical dynamics 
is chaotic and diffusive for the chaos parameter K = kT z 1 [4]. The diffusion rate 
is approximately D = n'/t = k 2 / 2  for K >> 1. Quantum interference effects lead 
to suppression of this diffusion for typical irrational values of T / 4 r  and to exponential 
localization of eigenstates so that the averaged probability distribution over unperturbed 
levels decays as I @n 1' % exp(-2 1 n - no I /ll)/l, .  The localization length in the region 

~ iT(ri:+8:)/2+iIJSm, ."2 e-ik(cosa,+casar) S = e- 
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of strong chaos is approximately given by 11 X D c kZ/2.  The quasiclassical regime 
corresponds to k >> 1, T << I ,  kT = constant and 11 > 1. 

For U # 0 interaction between particles is switched on. Using the Bessel expansion, 
(2) can be written as : 
j = ,-iT(e:+s:)/z+iUan,..2 

Since J.-,,,(k) is exponentially small when In - ml z k, at each iteration of .? many states 
(- 2k) are coupled. Inter-particle interaction acts only when the two particles have the 
same momentum, namely when they occupy the same site on the momentum grid (on-site 
interaction, if we adopt the solid state terminology). Due to its presence in the exponent, 
the interaction U can only take values in the interval ( 0 . k ) .  Due to interaction the two 
particles are able to propagate coherently at a distance 1, much larger than the original 
one-particle localization length 11, as was anticipated in the introduction. Of course this 
can happen if they initially started within a distance r c I ] .  Even if very close to the TIP 
problem in the Id Anderson model [IO], our model has three different features. Indeed 
no randomness is occurring here and the interaction is neither attractive nor repulsive. In 
addition the perturbation couples many levels at each iteration (kick). 

The quantum dynamics was investigated in numerical simulations for symmetric 
configurations with an effective number of unperturbed levels from 1000 to 2000. 
Antisymmetric configurations of two particles do not feel the on-site interaction U and 
are not interesting. We iterated the quantum operator 5 starting from two particles initially 
at the same site for,differentparameter values. The spreading of the wavefunction in the 2d 
space (711, nz) was studied through the second moments along the diagonal line nl = nz : 

x J,, -ml (k)Jn2-m2 (k)(-i)"' t n ~ - m ~ - m ~ & m ~ e ~ + i m z ~ .  (3) 
m," 

u++(t) = $((In,\ + InzI)2)t 

a-(t) = ((In11 - inzl)z)t 
and across it 

as a function of the iteration time t .  In any investigated case U+ was observed to saturate at 
a higher value than in the absence of interaction, see figure 1. On the other side U- keeps 
the same order of magnitude as 1; (as it should in the absence of interaction). This means 
that the localization length is strongly enhanced along the diagonal nl = nz while it remains 
localized, with roughly the same localization length, across the diagonal. This is even more 
evident if one looks at the probability distribution P ( n r .  n2) = I$(nl. n2)Iz at a fixed time 
t >> t*, where t* % 11 is the localization time, see for instance figure 2. In this diagram a 
local averaged distribution function is represented in the quarter of space nl ,  n2 > 0, in a 
semilog plot. The channel of propagation along the diagonal nl = nz is manifested in the 
contour lines drawn at the surface basis. 

From the distribution function important information can be extracted by computing the 
following distributions : 

represented in figure 3 as a function of n* = Jnl A n, l / f i  = n / f i .  These distributions 
give a measure of the 'perturbed' localization lengths along (+) and across (-) the principal 
diagonal. It is relatively easy to derive from them the respective localization lengths 1' by 
the usual best fitting procedure. Indeed the distributions are quite close to exponential curves 
P+ - 2exp(-2ni/l*)/li as can be'inferred from figure 3. In the same diagram we show 
the probability distribution in the absence of interaction, PJ = Sn, e ~ p ( - 2 ~ / ~ n + / l ~ ) / l ~ ~  
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Figure 1. Dependence of second moments on time in model (1.1) with k = 7, K = kT = 5, 
U = 2; upper curve is U+, lower is o-. At f = 0 both particles are at nl = nz = 0. basis i s  
-8W 6 n < 800. For U = 0 o+(t) ~i 600 for large f .  
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Figure 2 Probability distribution for two patides in the w e  of figure 1 at t = 8 x I @ .  
Different contours show different probability levels. 

with lI = k2/2.  This noninteracting distribution is quite similar to P-. The localization 
lengths l* are then plotted versus l I  = k2/2  in order to check the validity of (I). For 
sake of comparison the lines with power I and 2 are drawn. The dependence of coherent 
localization length I ,  = I+ on the one-particle length I I  can be satisfactory described by 
l+ 0.51,2 at U = 2 whiie 1- sz 1.511. However, the least-square fit for the data of figure 
4 gives l* - IIu* with a+ = 1.44*0.29 and 01- = 1.14f0.07. We attribute the difference 
from the theoretical values 2 and I to the insufficiently large interval of variation of II  (only 
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4 times). Furthermore, detailed numerical investigations should be done to extract more 
accurate values of a*. Another interesting point following from figures 1-4 is that for the 
same length I 1  the coherent length 1, is significantly larger than in TIP in the Id Anderson 
model considered in [lo]. This can be seen by direct comparison of U+ values. One of the 
reasons for this difference could be the different type of hopping in the KRM where one 
kick couples many levels. 
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Figure 3. Probability distribution as a function of n* = 2-'/2(nl f " 2 )  for the case of figure 
2: P+(n+) (full line); P-(n-) (dashed): the dotted line is lhe theoretical distribution P j ( n + )  
for U = 0. 

To determine the numerical factor in the dependence of 1, on both U and ZI one should 
also study the problem at small values of U << 2. However, here for observation of the 
enhancement 1J11 one should work at much larger values of 11 than we used in figures 
1 4 .  This requires a sharp increase of the basis and makes the numerical calculations too 
difficult. The dependence on U has been investigated in the following way. According to 
(1) we expect that there should exist a critical U,, given by U, , f i  > C with C - 1. To 
check this we consider the same model but with random rotating phases, which means that 
T(n: + n;)/Z in the first exponent is replaced by f(n1) + f (n*) ,  with f ( n )  = f(-n) a 
random function in the interval (0,2a). 

In this way we can change configuration by varying the random realization and 
obtaining results for the average behaviour. The results averaged over 10 realizations of 
disorder are presented in figure 5. The asymptotic value reached by the second moments u r  = lim,+wu+(f) are plotted in units of the same value in the absence of interaction 
(U = 0). Error bars are due to fluctuations in varying the random configuration. For small 
U ,  0;" and U? are both increasing up to double their value without interaction. When 
U > U,, full ( U+) and open (U-) circles start to deviate from each other thus indicating the 
presence of a sharp transition. In our case the transition starts at one particle localization 
length 1, = 8 which approximately agrees with the observed critical value U,, x 0.3 and 
C X 1. We were not able to extIact more precise information on the dependence of I ,  on 
U due to the heaviness of numerical simulations. 
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1 2 3 4 

F i g m  4. Dependence of localizsion length 1" (full circles) and 1- (open circles) oi one- 
particle localization length 11 = k2/2 for K = 5. U = 2 and 4 < k < 8. Full line shows 
dependence 1, =I+ c( 1;. dashed line m a r k  1- a 11. 

0 
0 0.2 0.4 0.6 

U 
Figure 5. Dependence of enhancement for oy an U for the model (2.1) with random rotation 
phases (see section 21, k = 4. Error bars are obtained from o? for 10 different realizations of 
disorder. 

3. The model with b i t e  radius of interaction 

In this section we analysed the effect of a finite range interaction on the dynamics. To 
be more precise we chose in (2), instead of the former on-site interaction US,,,,,2 a more 
general, finite radius interaction : 

Url(m,  n z ) W  - 1111 - n2l) 
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where e ( x )  is the usual step function which is zero for x i 0 and one for x > 0. The phase 
r/ is a random number in the interval (-1.1) which depends only on nl if nl e nz and only 
on nz if n2 < n l .  It is quite clear that for b = 0 it becomes the previous one with diagonal 
disorder. The diagonal disorder creates some difference from the model of section 2 since 
now the interaction depends not only on the difference n l  - 112. However, physically it is 
clear that diagonal disorder in the interaction will not greatly change the results. Indeed, the 
main point is to have some coupling between two particles and the sign of interaction is not 
very important for the destruction of interference, since the one-particle random potential 
is already acting. Our numerical results confirm that disordered onesite interaction gives 
qualitatively the same effects as for on-site interaction U&,, .nZ. We usually investigated the 
cases with different interaction radius R = 2b + 1 and U = r. 

Our main interest is to investigate the effect of interaction with finite radius R. From 
the theoretical point of view we can expect that for interaction radius R < 11 equation (1) 
is still valid since the particles are effectively coupled at a distance l I .  However, for R > l I  
the size of the effective thick wire on the lattice nl, n2 is defined by R so we can expect 
that the enhancement factor will become larger 1 J L I  - ( R  + 11). This expression should 
remains valid up to values of R (< 112 where L12 is the 2d localization length for infinite 
radius R: In112 - 11. Indeed, for R >> L I Z  with the chosen type of interaction one should 
have the same localization length as in 2d. To avoid misunderstanding, let us mention that 
i n  our model the interaction enters the phase of the evolution operator and a large interaction 
radius does not lead to divergence of physical characteristics. 

The results of our numerical simulations for finite interaction radius R are presented 
in  figures 6-9. In figure 6 and figure 7' we show U+ and U- for three different 6 values 
(b = 0.4, 16) which roughly agee with the above estimates. In agreement with the above 
picture the enhancement factor remains practically unchanged for R e 11.  Only the case 
b = 16 has R l I  and this produces a significant growth in U+ (and even in U-).  The 
distributions P&), as defined in the previous section, are shown in figure 8 and demonstrate 
a sharp increase of I +  compared to U = 0. In the same way we took the asymptotic values 
ur reached by U*@) at large time t and we plot in figure 9 their square root as a function of 
the radius of interaction R (the values of I* have a similar behaviour). This figure confirms 
the above arguments that the enhancement starts to grow only for R > 11. However, it 
should be mentioned that the increase of R leads to a growth not only of U+ but also of U-. 

Indeed, U+ and U- are growing in the same way: from the same figure 9 one can  see that 
the ratio uy,m/u? is approximately constant as a function of the interaction radius R. The 
physical explanation of this similar growth is quite simple: the increase of R leads not only 
to the increase of the coherent propagation length but also to an increase of the effective 
size of the pair which becomes of the order of R >> 11. Unfortunately, we were not able to 
study numerically the regime R >> 11 (in our case the maximal ratio R / l I  c 2) and it was 
not possible to check the dependence 1, - R11. 

F Borgonovi and D L Shepelyanski 

4. Conclusions and discussions 

Above we presented the results of our numerical investigation about two interacting kicked 
rotators in the domain of quantum chaos. They clearly demonstrate that on-site interaction 
between two rotators in momentum space leads to a large enhancement of localization 
length if compared with the noninteracting case (figures 1-3). The localization length 
for coherent propagation of two particles 1, = I +  is significantly larger than the distance 
between them 1- lI.  The maximal ratio l+/l-  in our numerical simulations was close 
to 10 (figure 4) which justifies the fact of effective enhancement of localization length for 
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t 
Figure 7. Same as in figure 6 but for L. 

coherent propagation of two particles The direct check of the relation ( I )  shows that the 
coherent localization length I ,  = I+ grows approximately as I +  - 112 but more detailed 
numerical calculations are necessary to have a more accurate check of the power (see also 
the discussion below). 

Another part of our investigations was devoted to the effects of a finite radius of 
interaction R between particles. They definitely show that for R < I1 the enhancement 
is not sensitive to the value of R (figure 9). The physical reason is quite clear. Indeed, 
on-site interaction couples one-particle states in a radius of l1 and therefore interaction with 
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t " ' I  " ' I  " 1  l i '  

Figure 8. Probability distribution as a function of n* = 2-1/2(n~ * n z )  for the case of figure 
6 and R = 9: Pi ( "+ )  (full line), P-(n-) (dashed line). P:(n+) (dotted line) is the theoretical 
distribution for U = 0. 

n 
8 i i  

t 

3 
0 2 4 

Figure 9. Dependence of cy (full circles) and a_- (open circles) on interaction radius R :  
k ~ 5 . 7 ,  K = 5. U = n. 

R < I I  does not give significant changes. For R >> I I  the enhancement factor starts to 
grow with R. One can expect that in the regime R >> 11 the radius R will play the role of 
number of coupled states MZ, = R in an effective thick wire so that /,/l1 - R. Of course, 
this growth can continue only up to R < l I z  where lIz is the one-particle localization 
length in two dimensions and In112 >> 1. While our results definitely show an increase of 
enhancement with R the power of growth is around 0.25 and is significantly less than 1. 
We attribute this difference to the fact that the ratio R / l I  was not big enough (in figure 9 
R/Ll < 2.1) and the asymptotic regime had not yet been reached. Further increase of R is 
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quite difficult since 1, becomes comparable with the size of the basis. 
In general our results confirm the relation (I)  but a more detailed verification of this 

equation is still desirable. 
Let us now discuss in more detail the different consequences of the result (1). First we 

start from different dimensions d.  For d = 2 the length 11 in (1) should be understood as 
the one-particle localization length in 2 dimensions. The number of transverse channels M 
is approximately equal to lI so that finally 1, - For dimension d = 3 an interesting 
situation appears below the Anderson transition for one particle [151. Indeed, it is possible 
to realize a random potential in which all one-particle eigenstates are localized for the 
hopping strength V < V, (a shift of mobility edge by interaction is not a very interesting 
case). As a typical example let us consider the Lloyd model with diagonal disorder 
E,,,,,,,,, = tanq4n,,,,,,, and hopping V on a cubic lattice, where q4n,,,,.,, are random phases 
homogeneously distributed in the interval [0, XI. In this case V, x 0.2 and below this value 
all states are localized. For two interacting particles in such random potential the effective 
strength of hopping for a pair will be strongly enhanced Ve8 - f l u .  Here U is an on- 
site (or nearby site) interaction and N - il3 is the effective number of states coupled by 
interaction. Since 11 can be quite large near to (but below) the one-particle transition point 
V,, then two particles, even if characterized by repulsive interaction, can be delocalized 
when all one-particle eigenstates are exponentially localized [15]. Another way to see this 
effect is to say that the pair feels the disorder averaged over the size of the pair lI which 
gives a strong effective decrease of disorder. Since in 3d delocalization takes place for 
Vcs > V, generally there is no requirement to have lI >> 1 and it is not necessary to take 
V very close to Vc. The condition Ve# > V, gives the boundary of pair delocalization 

The appearance of delocalization for a pair in 3d leads to quite interesting properties of 
the energy spectrum. Indeed, for particles located at a distance r >> 11 from each other the 
effective interaction is exponentially small ( - exp(-2r/ll)) due to the small overlapping 
of one-particle eigenstates. Therefore, such states remain localized while the delocalization 
will take place only for the states with interparticle distance r < 11. Since the localized 
states with r >> I I  form an everywhere dense spectrum this would mean that the continuous 
spectrum, corresponding to a delocalized pair, is embedded into the pure point spectrum of 
almost noninteracting oneparticle states. 

The above construction of the spectrum cannot be considered as the final one. In fact, 
it is only the first approximation since, generally speaking, the mixed spectrum is unstable 
with respect to small coupling between quasi-degenerate levels. In the present case the 
coupling is exponentially small but nevertheless it can change in principle the structure of the 
spectrum. The physical reason for such a possible change can be understood in the following 
way. The delocalized pair propagates in a random potential which acts as some effective 
noise. This can increase the size of the pair even if the matrix elements for transitions with 
r = n- >> lI are exponentially small. Due to this noise the size of the pair will grow 
in time. The rate of growth can be estimated as D- = n-’/t - lI2rexp(-2n-/l l)  with 
r - U2/11’V. This gives a logarithmically slow growth of the pair size n- - (11/2)Int. 
At the moment it is not quite clear what will be the effect of the pair size growth on pair 
propagation in n+. At minimum, the displacement of the pair should become slower than 
diffusive n+’ x (n ,  - n2)’ - t /  Int: However, it.is quite possible that sticking at n- >> 11 
will produce a more significant effect on the growth of n+ since in  the^ region n- >> lI 
the matrix elements for transitions in n+ are also exponentially small. It is interesting to 
note that even in the case of strong attraction between particles the coupled state should be 
destroyed during the propagation in a random potential. Indeed, during the displacement of 

.’ 

~ 1 ~ 3 1 2 / v  > 1. 
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the pair, disorder leads to transitions from the coupled state to the continuum, leading to the 
destruction of the pair. Usually, the destruction rate is proportional to the squared amplitude 
of the disorder and this can make the lifetime of coupled state relatively short. In contrast 
to this case, the effective life time of a pair of repulsive particles discussed above can be 
much larger since n- grows only logarithmically with time. In some sense the interference 
creates exponentially high barriers which effectively push particles to stay together. In the 
quasi-one-dimensional case with ZI >> 1 the effects of slow pair size growth can also lead 
to the appearance of logarithmic corrections in the expression for the enhancement factor in 
(1). For example, we expect Z J Z 1  - Il/(lnZl)” with U - 1 for M - 1. The effects of TIP 
in 3d systems below the Anderson transition when all one-particle eigenstates are localized 
are quite interesting and, at present, we try to study them in numerical simulations with 
effective 3d models [XI.  The conclusion about TIP delocalization below the one-particle 
Anderson transition was also made in [14]. 

Up to now we have discussed the effects of interaction for only two particles. However, 
for solid state systems the natural question is: what will happen for a finite particle density 
p.? As was discussed in [IO], the above picture of TIP can be quite useful in the regime of 
small density ZI << I / p ,  << 1,. In this case the interaction is mainly reduced to interaction 
between two isolated particles. If all the particles are separated from each other by a distance 
L - l / p ,  >> ZI then the interaction is exponentially small, all particles are localized and 
the current through such a sample is exponentially small. However, it is possible to have 
another type of configuration when the particles are distributed by pairs of size I I .  In this 
case pairs can easily propagate at a distance I ,  > L - l/p, >> ZI . Collisions of pairs will go 
in a random way and will destroy interference effects for a pair. These collisions will lead 
to delocalization and appearance of finite conductivity in an infinite system. It is interesting 
to note that it is enough to have only one pair when all other particles are well separated 
by the distance L > ZI. Then the collisions will allow transfer of the charge through 
the whole sample. However, the above consideration, based on (1) and being correct for 
particle energy at the centre of the band (E - V), should be applied more accurately for low 
energies near the ground state. Indeed, as was discussed in [lo], at low energies one should 
consider a transition from a lattice to a continuous system in which the enhancement factor 
should be proportional to ZJZ1 - (kFI1)hf since k,dl determines the number of independent 
components in a localized state (for M >> 1 the factor M should be replaced by kfa, where 
a, is the transverse width of the sample). Near the ground state pc - kF and it seems 
that the condition I 1  << I /p .  - I/kF implies that the enhancement does not work at low 
energies. Due to this, at small densities there is no formal contradiction with the results of 
[SI, according to which repulsive interaction reduces the localization length near the ground 
state. To gain a better understanding of the situation at small pe a more exact analysis 
should be carried out to obtain a more precise expression for Zc in the continuous limit. In 
principle, the average difference of energies for two repelling particles (kp  - l / a  = 1) at 
a distance r >> ZI (E,) and r < ZI (El,) is of the order qf [E, -El,[ - U/Z1 and is not 
very large for large ZI. In fact this difference is even less than the amplitude of disorder W 
(we take the case of the Id Anderson model discussed in [lo] with diagonal disorder in the 
interval f W  where near the centre of the band I 1  25(V/W)2). Finally, even for energies 
near the ground state two excited particles with E - V should propagate at a distance much 
larger than 11 and this effect should be also seen by the renormalization methods used in 
18, 91. It is possible that for investigation of the continuous limit k f a  << 1 at low energy 
the approach used in [17] for two particles with strong attraction can be useful after some 
extension. 

The most interesting case with density pe - 1 formally cannot be analysed on the basis 
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of the result (1) for TIP. In this case as a first approximation one can consider interaction of 
two excited quasi-particles when all others simply form the Fermi sea. Then the interaction 
between these two quasi-particles can he studied in the same way as for TIP. Since the 
density pe is large the quasi-particles have the wavevector kq - kF - l/a = 1 and therefore 
the enhancement factor is large. As a consequence, at small density of qussi-particles p, 
(11 <( I lp ,  << I ,  - I ] * )  the quasi-particle pairs can propagate on a large distance and we 
can expect that the conductivity will not be exponentially small. In 3d for a ‘gas’ of quasi- 
particles the possible slow growth of the pair size should be less important since collisions 
between pairs give rise to destruction of interference and finite conductivity in the regime 
where all quasi-particles are localized. Due to the existence of an exact connection between 
localization in Id and Id disordered spin systems [9] i t  would he interesting to understand 
possible manifestations of the analogue of two-particle interaction for spin systems. 

Finally, let us briefly discuss the possibilities of application of the observed enhancement 
for explanation of large persistent currents observed in experiments with small metallic rings 
[18]. Formally the coherent localization length (1) is strongly enhanced in the presence of 
interaction. Nevertheless, the direct estimates for the model of interacting kicked rotators 
and numerical results (see figure 1 and [lo]) clearly show that the diffusion rate on the time 
scale ll << t << I ,  is not larger than the classical rate at t << 1 1 .  In the optimal case U - I we 
can have the diffusion rate for a TIP pair Dz - DI iz: k 2 / 2 .  It follows that the time t o  cross 
a sample will not be decreased by interaction. However, the magnitude of persistent current 
depends not only on the diffusion rate but also on the density of levels which in principle 
can become very large for multi-particle systems. As was remarked in [IO], one can expect 
that the enhancement of conductance in interacting systems should be proportional to the 
enhancement factor Ic / l l .  The approach developed by Imry [ 141 directly shows that the high 
density spectrum of TIP states leads to such enhancement of conductance on scales smaller 
than 1,. Therefore, the possibility of enhancement of persistent current due to interaction is 
still open and should he studied in more detail. 
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