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Physical Backgrounds: Key Words

NANO : How to describe statistically nano-sized ensembles of
few atoms? Is temperature well defined and unique for such
system?

LONG-RANGE : Long-range interacting systems give rise to
a non-additive thermodynamics. Canonical/Microcanonical
ensemble give different results. How small a short range
Interacting system must be in order to be considered a long-
Interacting one?

CHAQOS : Is chaos enough in order to produce a statistical
behavior in small systems thus avoiding the annoying N — oo
limit ?



Outlines

We show, in a well known statistical model (an extension of an X-Y
anisotropic Heisenberg model with a spin constant decreasing with the
spin distance as |i — j|~“) that :

1) finite-sized effects when driven by dynamical chaos can give
predictions different from those of the Statistical Mechanics.

2) a topological transition occurs at o = d.

3) the threshold can be mimicked in the quantized version of the model.



The Classical Model
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The key-ingredients

anisotropy : » # —1 — easy axis of magnetization (in order
to produce disconnection)

long-range « < d where d is the dimensionality of the
embedding space (in order to have a significant ratio in the
thermodynamic limit)



from Broken Ergodicity — Topological
Non-connectivity Threshold

Definitions:

Egis =Min[H| Y S/=0] (2)

_ ‘Edz’s — Emzn‘

r



Results at finite number of particles

1) The phase space is disconnected in two regions
and for &' < Eg4;s. Then, a trajectory with an initial sign of m,,
cannot change it, since it cannot cross the m, = 0 plane.

2) At the TNT spins configuration is half along the positive y-axis, half
along the negative one, plus a domain wall whose size increases with
the long range, but with a constant energy in the N — oo limit. Also,

N?n/2 for n<0
FEugs>~< 0 for n=20 (3)
—Nn/2 for n>0

This is an example of broken ergodicity.
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Results in the thermodynamic limit N — oo

Even if F,;, exists, for any interaction range and anisotropy n # 1, a
significant portion of the disconnected energy region at the

thermodynamic limit, only in presence of long-range. Namely, for N —

Q.

T_‘Edis_Emin‘ \{O for a« > d

|Ein const. 20 for a<d
(4)



Dynamical consequences . Reversal time

Define the magnetization reversal time 7 as the average lifetime in
one region, say m, > 0 before jumping to m, < 0 (also called
demagnetization time). Two major results:

1. Reversal times 7 occurs erratically, like those of a random telegraph
noise, and are distributed according to a Poissonian law.

2. In analogy with phase transitions, demagnetization times diverge at
the critical energy ¢4, as a power law :
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Relation with chaos

1. The system has a positive Lyapunov exponent for all parameters,
even if it decreases approaching the minimal energy.

2. Despite chaoticity even above E,;;; some trajectories do not cross the
m, = 0 plane up to our best simulation time — possible existence of
Invariant curves in the multidimensional space ?

Therefore we can distinguish between a and

regime, the latter characterized by a long law tail in the survival
probability.
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Connection with Statistics

A simplified version of Hamiltonian, in terms of macroscopic variables,

can be introduced for o = 0 and n = 1.

H = BNm, + %NQ (nm3; —m;)

and the entropy, counting the number of microscopic configurations,
calculated, using the Large Deviation Theory. A second order phase
transition, in the limit N' — oo occurs at e = e4,;. Specifically entropy
has a two-peaked shape for ¢ < ¢4, and is single peaked for ¢ > 4.



Analytical Results (Mean Field) o = 0, N large

. €stq¢ CaN be evaluated explicitly and it remains distinct from ¢4, even
in the limit N — oco. (

).

. Reversal times can be evaluated assuming proportionality with
transition probability [Landaul]:

Pmaa:
T~ exp NAs ~ iz (6)
0




3. We predict close to the TNT

1
T ~ (= ca)™ (7)

to be compared with the factor —0.85N obtained numerically.

Define

(M hops = — /O "t my (1), (8)

Tobs

Then the transition occurs at €.
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Non-commutativity

We observe that, at any fixed NV, in absence of invariant structures,

lim €obs — €dis (9)

TObSHOO

while, for any fixed 7,

lim €obs — Estat (10)

N —o0

(the well known non-commutativity of the limits N — oo and t — oc.)



Extension to short-range and d = 2, 3.

1) Is there a transition in
small short range systems?

2) Is there a transition in small
3D systems?

YES, THERE IS.



3D cube 0= 1D chain o=2
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Quantum Effects

We restrict our considerations to the case where all spins are interacting

with all the others (o« = 0), and strongest anisotropy (n = 1). We also
guantize the model according to Bose Statistics.

Open Questions:
1) Is there a TNT in the quantum model?

2) How to describe and compare dynamical times?



Quantization

Hamiltonian:

| 3

N N
Z%:S”f A Z;Sgﬁg, (11)
—1 i=1 j£i

Classical limit is obtained with an appropriate rescaling of the Planck
constant, » — h/|S;| = 1//l(l + 1). With this choice, in the classical
limit, [ — oo (h — 0), the spin modulus remains equal to 1.



Degeneracy

o even
e odd
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Parity

An important property of the Hamiltonian (11) is its invariance under a «
rotation about the z-axis : the Hamiltonian commutes with the operator
exp(im > | Sf), and its eigenstates can be labeled as odd (-) or even (+)
according to whether they change or do not change sign under such
rotation. Also:

(B S SYE-) =0



Quantum threshold

We may give two definitions:
1) considering the energy ¢* such that §(¢*) ~ A(e*)

2) in the classical case, ¢,4;; has been obtained computing the minimum
of —(n/2)>°(5%)? when n > 0, and of (n/2)M?2 — (n/2) > (5¥)? when
n < 0. Thus, the lowest eigenvalue of the same operators could give an
approximate quantum border.

el ~ —g(m)?forn>o

el o~ g(N —1)(Al)? for n < 0. (12)



Quantum Threshold




Quantum Dynamics

Since in the classical case the reversal times have been determined
at a fixed energy (microcanical approach), we adopt here the same
procedure and compute the reversal time of the gquantum average
magnetization starting from an ensemble of initial states, |¢), obtained
choosing randomly energy eigenstates in a narrow energy interval:

) = ?rAE Cg|FE). The coefficients C'r have been randomly chosen
in modulus and phase and such that S>%72" |Cg2 = 1. Since M,,

connects only eigenstates with different parity, we have:

E+AFE
(My(t)) =2Re{ ) Cp,Cy e "F"FI/MEM,|E )}, (13)
Ey,E_=E



Above TNT : Semiclassical regime
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Quantum regime . Macroscopic Tunnelling

In the low energy region of the spectrum, due to the intrinsic quasi-
degeneracy the dynamics can be entirely characterized by the energy
difference |F. — E_| = §. The dynamics is thus oscillatory with a
period given by 277 /4. Indeed under this condition, the magnetization
oscillates coherently between states with opposite sign, a phenomenon
known as Macroscopic Quantum Coherence. This period represents
the time for the first passage to zero of (1/,(¢)). One thus can assume :
T ~ mwh/(20). Itis surprising that P,,,../ Py IS proportional to the tunneling
rates and to the reversal times, even in the region classically forbidden
(below €4;5) (the only mechanism allowing the jumping of the barrier is
through )



Quantum Tunnelling
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Open problems

Experimental detection of TNT (nanomagnets)

Introducing decoherence in the model (spin bath models)



