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Delocalization border and onset of chaos in a model of quantum computation
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We study the properties of spectra and eigenfunctions for a chain of 1/2 &pib#g in an external
time-dependent magnetic field and under the conditions of nonselective excitatien the amplitude of the
magnetic field is large This model is known as a possible candidate for experimental realization of quantum
computation. We present the theory for finding delocalization transitions and show that for the interaction
between nearest qubits, the transition is very different from that in quantum chaos. We explain this phenomena
by showing that in the considered region of parameters our model is close to an integrable one. According to
a general opinion, the threshold for the onset of quantum chaos due to the interqubit interaction decreases with
an increase of the number of qubits. Contrary to this expectation, for a magnetic field with constant gradient we
have found that chaos border does not depend on the number of qubits. We give analytical estimates that
explain this effect, together with numerical data supporting our analysis. Random models with long-range
interactions have been studied as well. In particular, we show that in this case the delocalization and quantum
chaos borders coincide.
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I. INTRODUCTION is the perturbation theory for many-body states, which takes
into account a two-body nature of the interaction. Specifi-

In recent years much attention has been paid to the idea a@flly, it was showr{11] that if the two-body random inter-
qguantum computatiofiL]. The burst of interest in this subject action between particles exceeds some critical value, fast
(see, for exampld2—4] and references thergiis caused by transition to chaos occurs in the Hilbert space of many-
the discovery of fast quantum algorithms for the factoriza-particle stategsee alsd12—15 and reviewq16,17).
tion of integerd 5] and for the effective searching of itemsin  In dynamical systems such as complex atdd®], mul-

a databasgg,7]. These algorithms demonstrate the effective-ticharged iong[19], nuclei [20], and spin system§21,24
ness of quantum computers in comparison with classicafjuantum chaos gives rise to a very complicated structure of
ones. Nowadays, there are different projects for the experirighly excited states, and to specific correlations in the en-
mental realization of quantum computers, as well as experiergy spectra, described by the random matrix théByIT)
mental results with few-qubit systenisee[8]) and refer- (see, for exampld,16]). As a result, closed dynamical sys-
ences therein. tems with relatively small number of interacting particles can

Main theoretical suggestions for the experimental imple-be well described by a statistical approach, see discussion
mentation of the quantum computation are based on interacénd references if22].
ing two-level systemgqubit9. It is clear that one of the most Recently, the quantum chaos theory has been applied to a
important problems from the viewpoint of the stability of simple model of a quantum computg23] chosen in the
guantum operations, is the destructive role of different kinddorm of L interacting qubits. Numerical data have shown that
of errors. As a first step, one should refer to finite temperafor a strong enough interaction between qubits the onset of
ture effects and the interaction with an environm&ag quantum chaos is unavoidable. Although for 14— 16 the
However, even in the case when these effects can be neritical valueJ,, for the quantum chaos border was found to
glected, there are dynamical effects of the interqubit interacbe quite large, with an increase bfthe border decreases as
tion, which may influence a quantum computation. On onel.,~1/L [24,23. From the viewpoint of the standard ap-
hand, the interaction between qubits is necessary for the rggroach for closed systems of interacting particles, the de-
alization of quantum computation, on the other hand, it maycrease of chaos border with an increase of qubits looks ge-
result in a kind of destruction of the coherence in the evoluneric. This poses the question of the relevance of quantum
tion of a system. chaos to quantum computati¢ds,26.

The latter subject of the dynamical decoherence is directly In our recent papef28] we have studied the errors that
related to the so-callequantum chaqgswhich is nowadays appear in the evolution of one-dimensionélD) Ising
widely discussed in application to atoms, nuclei, quanturmuclear spins in rotating magnetic field. This model was sug-
dots, and other physical systerfsee, for examplg,10] and  gested for an experimental realization of a quantum com-
references therein One of the latest developments in the puter[29,30. The main attention ih28] has been paid to the
theory of quantum chaos refers to the interaction betweenegion of parameters most suitable for the preparation of an
Fermi particles in isolated systems. The core of this approachitial many-body state, needed for further application of
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quantum protocol(sequence of time-dependent magneticintegrability of our model for theN interaction. We show
pulses in a prescribed algorithm of quantum computatitn  that for the region of parameters of our interest, the model is
was shown that even for a very large interqubit interactionclose to the integrable one. This explains why the delocal-
the errors turn out to be very small, thus demonstrating thagzation and chaos borders do not coincide for khenterac-
the influence of quantum chaos can be neglected. tion. We also analyze the role of the magnetic field. In par-
An analysis of the stationary Hamiltonian describing theticular, we give analytical estimates, which show that for the
system during a single magnetic pulse has been performed r,lpmogeneous magnetic field thg delocalization border has
[27]. Specifically, the general approach of quantum chao§enericL dependence discussed[@3]. On the other hand,
theory has been applied in order to understand the conditiorf8" the magnetic field with an increasing gradient, analytical
for the onset of quantum chaos. The model we considere@Stimates predict that the delocallzapon border increases
assumed that qubitéuclear spinsare placed in a strong With an increase of the number of qubits.
magnetic field with constant gradient along the direction of
the spin chain. The gradient of the magnetic field provides a Il. THE MODEL
“labeling” of qubits. Namely, each spin has a different Lar-
mor frequencywy. This allows one to provide a selective
addressing to each qubit by applying resonant rf pulses. Th X ; :
main inter%st was ir? the irﬁluggcye (Q)Jf the magne{':i)c field o chematically, these spirigubits can be represented as fol-
the properties of eigenstates and energy spectra. It was u WS
expectedly found that the constant gradient magnetic field
gives rise to the independence of the critical valyeon the
numberL of interacting qubits. This striking phenomena has
been explained in27] analytically and confirmed numeri-

cally, thus giving a new insight to the problem of quantum,[WO single-particle states with the energy 1(gosition

chaos in the models of quantum computers. I NS Y
. . up” ) or —1/2 (position “down”). One can see that the
In this paper we present the full theory that explains the .
. total numbemN of many-body statesvhich are generated by
properties of energy spectra and many-body states of tht is chain(quantum register is N— 2-
model of Ref[28], together with numerical data obtained in q gistor )

a broad region of the model parameters. The structure of the The dynamics of this modeéqgantum computer protocol
S due to a sum op=1, ... P time-dependent rectangular

paper is as follows. In the next section we describe the X . o e
model, discuss the region of parameters of our interest, an ulses of a circular polarized magnetic field rotating in the
' " (X,y) plane. Each of the pulses has its own amplitide

briefly analyze the structure of the Hamiltonian matrix in the : .
zrepresentation. In Sec. |1l we study global properties of thd"€duency v, phaseg,, and lasts during the period,
energy spectrum, paying main attention to the band structurg tp+1~tp- Therefore, the total magnetic field during one
of the spectrum and to the level spacing distribufigs) for ~ PUlS€ can be written as follow28]:
the central energy band. - ]

Section IV is the core of the paper, here both the delocal- ~ B(t)=(bYcog vyt+epl, —bPsinvyt+¢,1,B%). (1)
ization border and the condition for the onset of quantum o ]
chaos are studied. The consideration has been made by makde Hamiltonian of this system has the form
ing use of the mean-field representation, which is very con- L1
venient from the theoretical viewpoint. One of two main _ 7 717
goals of this section is that these two borders are very dif- = _kz_:O “’klk+2,§k Jionlidh

The model describes a one-dimensional chaih afiter-
cting distinguishable 1/2 spins in an external magnetic field.

mB%  Ti—gli—2---T1lo-

Here B? stands for a constant part of magnetic field oriented
in the positivez direction, and each qubit occupies one of

ferent in the model with nearest interaction between qubits.
Another important result is that the delocalization border
turns out to be independent of the number of qubits for a
gradient magnetic field. Theoretical estimates obtained in
this section serve as a guiding line to treat all numerical data. ()

In Sec. V we investigate numerically the structure of ) )
eigenstates in the representation by relating the data with Where the “pulse function”® (t) equals 1 only during the
the theoretical predictions. Section VI is devoted to somePth pulse of the lengt,. The quantities), , stand for the
modifications of the model, namely, we analyze the influencdsing interaction between two qubite, are the frequencies
of randomness in the interqubit interaction. Our main quesOf the spin’s precession in thg* magnetic field (2, is the
tion is how statistical properties of the system depend on th&abi frequency corresponding to tiph pulse. The opera-
range of the interaction between qubits. Specifically, wetors | are defined by the relationlg = I *il}, andl}¥?
study random interaction between all qubifs interaction = (1/2)ay”'?, the latter being the Pauli matrices.
as well as between four nearest qubits by comparing the Below we consider the properties of the system during a
results with those obtained for the model with the interactiorsingle pth pulse. The corresponding Hamiltonian can be
between two nearest qubithl (interaction. written in the coordinate system, which rotates aronases

A general discussion is presented in the last section. Oneith the frequencyv,. Thus, for thepth pulse, our model
of the problems we discuss here, is the concept of the quastan be reduced to thetationaryHamiltonian,

P L-1
2 @p(t)sz (e_ivpt_i(Ppl|<_+eivpt+i(pp|:),
p=1 k=0

N| -
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L-1 10
HP= =3 | (o= vp)lg+ Qp(coseyli—singplY)
1 Ko e X X=X XX X X X
+22 JalflE, (3) wl o7
n>k AE o -a J=0.001
, [ e0I=001
which describes the evolution of the model fgrt<t, ;. 0 ++71=0.1
The regime of quantum computation corresponds to the L osexael
following range of parameter§) ,<Jy < dw,<wy, Where T e
Swi=|wy+1— oy [28] (the so-calledselective excitation In '
this regime, each pulse acts selectively on a chosen qubit 107 1w 70 I T 74 7
exciting a resonant transition. The inequal,<J, ,, pro- Q

vides a separation between resonant and nonresonant transi-

tions  for th'e same selepted quit'_ 'The inequgliwm _different values of). The data are shown fdr=10, &= wg+Kk,
<y, prov'd?_s a Separat_lon of _tranSIthnS for agiven qL'b'tv= wq, anda=1. The full straight line is the theoretical expression
from the transitions for neighboring qubits. In this paper wegor 3=0. The horizontal lines on the right-hand side of the figure
consider another important regimer@nselective excitation  correspond to the analytical expression far), for the case of
which is defined by the conditio® ;> dw>J, see details 3> J_ (see text
in [28]. This inequality provides the simplest way to prepare
a homogeneous superposition df &ates needed for imple-
mentation of both Shor and Grover algorithms. Ly )=— 5|+ Ok -).

In what follows we assume, for simplicity,= 7/2, and
put Q,= and v,=». Our main interest is in the nearest-
neighbor interactioN interactior) between qubits for two
different cases, thelynamicalone when all coupling ele-
ments are the sam&, ,=J&, «+1, and the case when all ST o e :
valuesJy . 1 are randonirandom model However, we will sentations=1_ 4, ... l1.lo (with 1s=0 or 1, depending on
also aneilyze other cases with different kinds of inter::xctionWhether a smgl'e-partlcle state oh qubits is the ground
and compare results with those for tNenteraction. In con- State or _the excited stgteln yvhat follows, we call this rep-
trast to the previously discussed mod28] with homoge- resentation the representation.
neous magnetic field, below we consider the magnetic field
that depends on the position of tkéh qubit. Therefore, we lll. GLOBAL PROPERTIES OF THE ENERGY
assume that the spin frequencieg are slightly dependent SPECTRUM
onk (Wlth Ow<< wk).

For the dynamicalN interaction, the Hamiltonian(3)
takes the form

FIG. 1. Dependence of the central bandwidtfE on  for

The matrix turns out to be very sparse, and it has quite a
specific structure in the basis, which is reordered according
to an increase of the numbsrwritten in the binary repre-

For the further analysis, it is important to understand the
global structure of the energy spectrum. In what follows, we
concentrate our attention on the case when the magnetic field

L_1 L_2 has a constant gradient along the chain of qubitsswg
+ak with a>0. Other cases will be briefly discussed in Sec.
H=3, [-adi+ail-203 13k, @ o y
where 6= w,—v. In the z representation the Hamiltonian A. Band structure

matrix of sizeN=2" is diagonal forQ=0. For Q+#0 the

oﬁ-dlagi)nal matrix elements a"dkm:'f?’z for n>k, and spectrum of the modeW) consists ofL +1 bands of finite
H.=Hg,.- When calculating the matrix elements of the width for a#0, separated by big gaps of SifE>w,. In
Hamiltonian(4) we have used the standard rules in order tORefs. [28,27] i’t was numerically found that the width
find the action of the operatotg andly on the statetk) and AE(Q,J=0) of the central band decreases with an increase
In), of Q as A /Q. Our analytical estimates show that for
even, the bandwidth is given by the relatiol\E),
=L2%a?(L—1)/8Q (see details in Sec. IV This dependence
also occurs for a relatively weak interactids# 0. However,
when the interaction exceeds some critical valye the
1 band widths turn out to be practically independenthfsee
- Lo y=—=| 1), the data for the central band in Fig. 1.
The bandwidth AE), for the interaction strengthlarger
) than the critical valudg can be also estimated analytically as
Y] -0 - ) I L) (AE),=(L—2)aJ (see Sec. IY. The correspondence be-
' tween the analytical estimate and numerical data was found

Without the interaction between qubits=0, the energy

k k 2 k )
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FIG. 2. Energy bands as a function &fOnly the central band
(full line) and its neighborgdashed lingsare shown, thus demon- N e) f)
strating the band overlapping for a relatively large interaction. The N y
parameters are=10, =100, w = wg+k, v=wg, anda=1. ! \

to be quite good. If the bandwidthE is larger than AE),, ! N ‘

the first expressionXE),; for AE({}) dominates. On the 0 Lo~ 2 '

contrary, if the bandwidthAE), defined by the interactiod 0 2 4 2 4

is larger, it determines the actual bandwidiik, which is

independent of). FIG. 3. Level spacing distributioR(s) as a function of inter-
One should stress that the above consideration is valid fagctiond=0,0.0002,0.1,1,10,100 denoted @@, (b), (c), (d), (&), (f),

the case when the bands are not overlapped. One can expegépectively. Other parameters dre 12, O =100, w,= wy+k, k

that for sufficiently strong interaction between the qubits, the=1, ... L, wy=100, v=w,, anda=1. The full curve is the Pois-

band structure of the energy spectrum disappears. The ovesen distribution, the dashed curve corresponds to the Wigner-Dyson

lapping of the central band with two other bands is shown irdistribution. Eigenvalues are taken from the central energy band

Fig. 2, where the edges of the central and the nearest bandsly.

are plotted against the interactiaghfor the fixed valueQ)

=100. One can see that fdr>J,~15 the bands are over- of this peak indicates that for weak interaction our model is

lapped, therefore, a change in the properties of the system fgghly nongeneric and may be compared to integrable 1D

naturally expected. The critical valug for the overlapping  models. With an increase of the interaction, data Fgs)

of the bands is estimated in Sec. IV as well. reveal first a transition to the Poisson distribution and then to
the WD distribution. More detailed analysis of the data
B. Level spacing distribution shows that the transition from the Poisson to the WD distri-

Let us now analyze the distributioR(s) of spacingss bution occurs when the central energy band starts to overlap

between nearest-neighbor energy levels inside the central eith the nearest bands.

ergy band(note thats should be normalized to the mean

spacing between levelsThis quantity is often used in the IV. THEORY

theory of quantum chaos as a detector of chaotic properties

of a system. Specifically, for systems with regular motion in ~ Let us now discuss our modé) from the viewpoint of

the classical limit, the distributioR(s) is generically close the standard approach to interacting particles in isolated sys-

to the Poissorjapart from one-dimensional systems wheretems (see, for example[17,22 and references therginin

P(s) is highly nongeneric and can be of any fdiin the  this approach the Hamiltonian is written in the forkh

other limit case of a completely chaotic motion, in the cor-=Hg+ V,, WhereH, stands for noninteracting particles, and

responding quantum systems the distribut®(s) has the V, describes a two-body interaction between particles. The

so-called Wigner-DysowWD) form, which is characterized onset of chaos is usually meant to occur when the strength of

by the level repulsion for small spacings<1 [P(s) the interactionV, exceeds the mean energy spacthgbe-

~s,s%,s% depending on the symmetry of a system, see, e.gfween those many-particle states thatdirectly coupledoy

[16]]. the interaction. It is important to note that this spacing is
Numerical data foP(s) for different values of the inter- much larger than the mean level spaciDgetween many-

action strengthl, summarized in Fig. 3, manifest the transi- particle states. Indeed, while the total density:D~* of

tion to the WD distribution. Note that for small values bf States increases exponentially with the total energy, the den-

[see Figs. G)—3(c)] the distributionP(s) reveals a strong Sity pr=d; ! increases only algebraicallffor details see,

deviation from the Poisson. Specifically, one can detect &.9.,[15]).

clusteringof energy levels for very sma# that results in a In order to apply this approach to our modd), one

huge peak in the distribution at the origis= 0. The presence needs, first, to present the Hamiltonian as a sum of the “un-
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perturbed” HamiltonianH,, and the partv=JV,, which
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Note that this relation is valid for any kind of magnetic field

stands for the interaction between particles. In our case thB* (any dependencé,), including the homogeneous mag-

Hamiltonian(4) can be rewritten in the form
H = H0+JVO, (5)

where

L-1 L-2
Ho= 2 [-adit QI Vo=—22 1{l. (©

As one can see, the Hamiltoni&ty stands for a kind of

mean fieldwhich absorbs th€ -dependent term. In this way

the mean-fieldH describes aegular part of the total Hamil-

netic field (6,=cons).

Let us now consider the constant gradient magnetic field
(6k=ak) for large values of)> 6. In this case, one can
write an approximate relation fag, ,

a%k?
20

1

+_
*5 Q

6= . (1)

This expression allows one to find global properties of the
unperturbed J=0) energy spectrum, briefly discussed in the
previous section. Indeed, for large values(df(more cor-
rectly, for >ak) one can see that the spectrum has a band

tonian and the terr, describing the interaction between the structure, with the bands centered at:-@),+2(), ...,

particles, is responsible for chaotic propertigsany) of the

*LQ.

system. Such a mean-field approach is typical in the study of The central band is defined by such locations of quasipar-
chaotic properties of complex atoms and heavy nucleticles in the single-particle spectra defined &y, for which

[18,20.

A. Delocalization border

Now, one needs to represent the Hamilton{&hin the

an equal numbet./2 of quasiparticles have positive and
negative values ofy (for an even numbeL of qubits.
Therefore, the total numbé.,, of many-body states in the
central band is given by the total number of combinations of
N objects having half positive and half negative values,

basis in which it is diagonal in the absence of the interaction

(J=0). In this representatiofcorresponding to the rotating

basig the HamiltonianH, can be written as a sum df
individual HamiltoniandH, describing noninteractinguasi-
particles[27],

L-1 L-1
Ho= kzo Hy= go Vai+02 12 (7)

Correspondingly, in the basis &f,, the interactionV, be-
tween quasiparticles has the fornVo=Vgjag+Vpand
+Vyit, Where

— Z\Z
Vdiag__zz bibyr 1liclic+ 1
Vband:_ZZk CI:I LI

voff=2§ (abis 111y 1+ a1 bl f1Y 1), (8)

where

~ 5 Q

by=rm—, a=———=. 9
Varer Mg @

From Eq.(7) one can see that the energigsof quasipar-

L!

Neo= Ty 1(L72)1

(12

One can also see that féx=ak andJ=0, the size of the
central energy band is given by twice the maximum energy
inside the band,

a2 L-1 L/2—1
AE) ,=2EMN=p___ K2— K2
(AE)ey=2Ec 4QLL/2 kgo }
L3(L—1)a?
=" 8a (13

Now, let us discuss the structure of the Hamiltonian ma-
trix determined by the off-diagonal ternig). One can see
that in the unperturbed basis the tevf .4 is clearly diago-
nal. The action oy .4 iS much more complicated. Let us
consider, for simplicity, the central band. Each operafor
flips thekth spin. Since the interaction is between two bod-
ies, we should consider the action Ii{_ ; upon states as
RO T PR N IR SV PR N IR N
Oks -0y |-+ ki1,L, ... ). The first two kinds of states,
upon the action oV, .4, Still remain in the same central
band since the number of 0’s and 1's is conserved. The
second pair of states increas@s decreases, respectively
the number of 1’s in two units, that is, such a coupling refers
to a next to nearest energy bafrearest bands differ by a
single value of 1). As a result, one can conclude that the

ticles [or, the same, energies of single-particle states deteferm v, ,, 4 stands for the interaction bothsidethe central
mined by the Hamiltonian, Eq7)] are given by the expres- hand and between the next-neighbor energy bands.

sion

(10

1
€= tz\/5§+92.

In the same way it is easy to understand that the ¥gm
gives rise only to the off-band interaction, i.e., to a coupling
betweennearestbands to be more precise. The structure of
the Hamiltonian in the mean-field basis is shown in Fig. 4.
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256 where M; is the number of many-body states coupled by

Vpang iNside the energy intervalNE); . In fact, M; is the
mean number per line of nonzero off-diagonal elements in
the total Hamiltonian5).

In order to estimateM;, we note that the interaction
Vpang iN the central band can only couple those many-body
states having an equal numbedt/2) of spins “up” and
“down” (for an even numbeL of qubitg. The minimal
value ofM;=1 corresponds to the state

001, ....01. ... %),

/E\IZS-.

and the maximal onéyl;=L— 1, corresponds to the state

|0L7111L7210L7311L74! e !O_I.1]'0>'

in the first case there is only one possibility of
changing 0 to 1 and 1 to O for the nearest qubits. And in the
second case, there dre- 1 such changes, each of them cor-
_ _ . . . responding to the nearest-neighbor interaction with no
For a relatively weak interaction, the eigenstates in thechange in the total number of spins up and down. Therefore,
mean-field basis defined by the unperturbed Hamiltoklgn ;e can estimate the average valipasM ;~L/2, which is
are deltalike functions with an admixture of other compo-j, very good agreement with the direct numerical check.
nents with small amplitudes. In this case one can speak about ne should stress that the energy rangeE); within
thelocalizationof eigenstates in the unperturbed basis. With hich the many-body states are coupled, is much less than
an increase of the interaction strength, the numgs of 6 (otal energy width4E).,, of the central band determined
basis components with large amplitudesmber of principal by Eq. (13). The value of AE); can be estimated as the
componentsincreases. According to the theory of interact- maximal difference between energiE§)=E(k2)ek and E(Cl)

ing particles, the transition from strongly localize® . :E(kl)ek of two many-body statelsy;) and| i) of Ho, hav-

~1) to delocalizedor extended states(with N,.>1) oc- . . .
curs very fast with an increase of the interparticle interactionY the matrix elementyu|Viand ) different from zero. If

For this reason, one speaks about the delocalization trans\r/l\Ze consider only t(hz? coupli(r;)g inside the. central band e can
tion (in the finite-size bas)s see, e.g.[14] and references [INd these value&™ andE¢ * by observing that the maxi-

therein. mal energy is obtained by flipping the outermost spins. Ap-

Generically, in the models with two-body random inter- Plication of I 417, to the state
action V between particle$15], extended eigenstates with _
large N, turn out to bechaotic By this term we mean the [YD=I1-1.02, )
situation when the components of the extended states can
treated as random and independent quantities. A similar sit
ation (the onset of quantum chaosccurs in many dynami- ) =0 1 )
cal systems with complex enough interaction, such as many- 2L b2y e
electron atoms and heavy nucléig,2q. In these systems, (| _1 andL—2 correspond to the states with the highest
the delocalization transition coincides with the transition Oy alues of single-particle energieg). Thus, the energy dif-
chaos, and is determined by the conditige=d; (V is a ferenceE,, ,—E,,,, is given by
typical interaction strength and; is the mean energy dis- ! 2
tance between directly coupled many-body states a2 a2 3

Let us now discuss the delocalization transition in our (AE)f:—Z[(L—1)2—(L—2)2]=—(L——).
model, keeping in mind that it can be different from the 4Q Q 2
transition to chaos. As it will be shown, our model with the . ) . -
N interaction manifests quite an unexpected phenomené\‘,umer'cal results confirm this prediction very well, see

namely, the above two transitions turn out to be very differ-"19: 5

ent. As a result, forlL>1 we have
We start with the estimate of the mean level spadpm (AE), 2a2

the central energy band of our modg) between the many- (= LSl

body states coupled by the interacti@). The energy spac- M Q

ing d; can be estimated as the ratio

FIG. 4. Structure of the Hamiltonian matrix in the mean-field
basis for theN interaction; black points stand for matrix elements Indeed
whose modulus is larger than 19 Here isL=8, Q=100, J ’
=1, o= wotk.

Lkéleves rise to the state

(19

The mean spacind; should be now compared with the
typical value of the perturbation/=JV,. The latter can be
o~ (AE)f, (14) found fromVy,,q asV~J/2 (other terms are negligible for

M Q> 6,). Therefore, we finally obtain
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1 . 10
O L=8, Q=100
+ L=8, Q=1000 Lk FKF KKK X
*
10 > L=10, Q=100
_ r Do Do Pe D6 X X X
10" xL=10,0=1000  , , *>7
AE, *L=12,Q=1000 > o.go eeo o++ +
2 b
-4
10} %
10°
®
®
) 10 | oo P
10 ‘ ‘ ‘ ‘ . .
L 10?10 10’ 10 73 16 10’ 10°

J/JCI‘
FIG. 5. Numerical calculation of XE); for both N (open
circles andA interaction(full circles), see Sec. VI. Full and dashed FIG. 6. The average number of principal components in the

lines are, respectively,?/2Q andL/€Q as found analytically. Here rotated basis for the eigenstates from the central energy band, as a

a=1. function of J/J., for L=8, 10, 12 and different values &f.
432 of the maximal value oN to N/3 is a strong evidence of
Jo=~ - (16 quantum chaos in the model for a very large interaction.

Surprisingly, the delocalization border does not depend on B. Chaos border
the number of qubits, in contrast to the resul{®8] where In this section we study the transition to global chaos,
J.; decreases asll/ The reason is the specific influence of a which is due to the overlapping of the energy bands. In order
constant gradient of the magnetic field that results in thdo obtain the condition for the band overlapping, one needs
quadratic dependenagk? for the single particle levels of to find the bandwidth and to compare it with the distafice
the mean-field Hamiltoniahl, [see Eq(7)]. between the bands.

Let us now compare the analytical estiméié) with nu- We have shown that in the absence of the interaction, the
merical data. The commonly used quantity to measure thenergy width of the central band can be estimated analyti-
number N, of principal components in eigenstates is thecally, see Eq(13). Numerical data reported in Fig. 1 show
so-called inverse participation ratio that with an increase of the interaction, the bandwidth

saturates to some valuAE), which is independent of}.
4 -1 Therefore, we can estimatd E)s by coming back to the
E (B } . 17 representation of Hamiltoniat4), where the()-depending
A term enters in the off-diagonal matrix elements only. By
omitting this term, we can write the diagonal part,

Npc(E) =

Here ,(E) =(n|#(E)) is thenth component of a particular

eigenfunction corresponding to the eigenvaltie L-1 L-2
From Eq.(17) one can see that for equal values of the Hy=— > akli+ 232, i ], (19
components of an eigenstate,= 1/1/N, the number of prin- k=0 k=0

cipal components is equal to the size of the bdsjg~=N. In
another extreme limit of completely extended and chaoti
eigenstates, the value of,. is equal toN/3. The factor 3
arises due to the Gaussian fluctuationg/gfthat are generic
in the case of strong quantum cha@ee, e.g.[16]). For
localized states the value ®,. approximately gives the
number of basis states effectively occupied by this eigen
state.

Numerical data foN,. computed in the mean-field basis
[whereH, is diagonal forJ=0, see Eq(5)] for the eigen-

(yvhere the relationsw,=wgo+ak and v=wy are directly
taken into account.

In the case of our interesglL>J, the unperturbed X
=0) many-body energy spectrum of E{.8) is given by a
sequence of degenerate levels separated by the spacing
Due to a weak interactiod, each set of these degenerate
levels spreads and creates the energy bands. In order to find
the central energy bandwidth, we should consider the action
of the interaction operator

states taken from the central energy band, are given in Fig. 6 L2
as a function ofl/J.,. It is clearly seen that below the de- —232 1212
localization borderJ<J.,, there is a scaling dependence of o ke

Npc onL and() in accordance with the estimat&s). On the

other side, fod>J,, the value ofN,. saturates to its maxi- upon the states belonging to the central band. The latter as-
mal valueN.,/3 in correspondence with random matrix pre- sumption is an approximation: mrepresentation, the central
dictions [here N, is the total number of states inside the energy band can also contain few states with slightly differ-
central energy band, see E@2)]. The latter correspondence ent numbers of 0's and 1’s.
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The action of each term in the interaction operator leavesnd
the state as it is, multiplying it by a factar J/2 depending
on the presence of two close 11 and 00 or different 01 and [1)=10L-1.00—2, ... ,01,00).
10. This results in the shift of the energy from its zero value,

in the central band. Two configurations,—) But this is not what we need. Indeed, these two many-body

- _ states are not coupled by the two-body interacti®n What
=100, - o0LL ) and|+)=[0,101.. "Q’1>‘ Sh?“'.d we need to find is the maximal energy change due to the
be considered, which correspond to the maximal shift in theaction of theJ interaction. To do that, we have to consider

“negative” and “positive” directions. In this way we can : o .
safely say that such a bandwidth is given by the energy dif:[WO states corresponding to the flipping of both the two up

ferenceE|,y—E|_. Itis easy to see that one has permost spins, namely,
|T>:|1L—1’1L—21 cn)

E :(L— 1)Ja
[+) 2 and
and [1)=10-1,00 2, .. .).
—(L—-3)Ja The energy difference between such states is given by
T (AE) ~ 4O
thus giving Since the number of coupled states remains the sampe,
AE=(L-2)Ja for 0. (19 =L/2, one realizes that in order to have the transition to

delocalized states in the case of the overlapped bands, the

By equating the two expressioiis3) and (19) we find the typical value of the interaction has to be larger thdn

transition point =(AB)¢/My,
L2a J/2= M

Jo~ 80 (20 L/2

between the two dependencies for the bandwiklh or
One can see that fod>J, bands are overlapped if 16
(L—2)Ja=. That gives the critical valud, for the over- J=Jc= r\/aszJer. (22)
lapping
One should notice that the two critefildand overlapping
I~ ﬁ 21) and transition to delocalizatipnif satisfied, are expected to
b aL result in the onset of chaos. This conclusion is confirmed
numerically and is supported by analytical arguments.

subject to the conditiod>J,. By comparing Eqs(20) and Indeed using data from Fig. 3, e.d.=12, Q2=100, a
(21), one gets the lower bount: \/L/8 compatible with the =1, one gets a chaos bordgr~130 well confirmed by the
above two constraints. Wigner-Dyson distribution in Fig. (8).

On the other side, one can also have the band overlapping On the other hand, we have already seen that the simple
wheneverJ<J, if a’L?(L—1)/80=Q. Therefore, in this requirement to be in the delocalized regimie>(J,,), with-
case the overlapping of the bands occurs for dnjf the  out the overlapping of bands, does not give rise to chaos in
number of qubits is large enoughz2(Q/a)?3, our dynamical model with the nearest interaction.

One should stress that overlapping of bands is not a suf- It is also easy to check that the conditions of the band
ficient condition in order to have the delocalization of eigen-overlapping for the cas@<Jy=/8ax andL>8x (with x
states. Indeed, the estimate E@6) for the delocalization =?/L2a%) are not compatible with the delocalization bor-
borderJ,, is derived for the central energy band only, there-der J>J.=16a1+x in the region of nonselective excita-
fore, it is not valid when bands are overlapped. Thereforetion, x> 1. This means that a relatively weak interaction does
one needs to start with the expressiti¥) and estimate not lead to the delocalizatiofand, therefore, to the chads
I(_ﬁE)f for the case when the energy spectrum is not bandspite of the overlapping of the energy bands.
ike.

In order to do this, it is convenient to switch to the mean- V. STRUCTURE OFE EIGENSTATES IN THE z
field representation with the unperturbed Hamiltonidg REPRESENTATION
given by Eq.(6). The total size of the unperturbed energy
spectrum is now defined by the difference between the ener- The analytical treatment we have performed in the previ-
gies corresponding to the following limiting configurations: ous section is based on the mean-field representation of our

model, namely, when the Hamiltonian matrix is written in
=11 01 0, - .. 1,1p) the basis of the “unperturbed” patt,, see Eq.(7). This
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0.001 of eigenstates for a very broad region of the interaction.
a) b) The most interesting conclusion that can be drawn from
the numerical data for a weak enough interacfisee Figs.
7(a) and 1b)] is that the eigenstates turn out to have a regu-
lar structure, even if the deviatioriw,, are relatively large.
Indeed, one can see regular global dependenee,afn the

0 basis numbem, with some fluctuations around the mean.
0.01 This fact seems to be directly related to the specific structure
c) d) of the Hamiltonian matrix.
o With an increase of the interaction, the regular structure
3 of eigenstates disappears and huge fluctuations in compo-

nents of eigenstates emerge, see Figs)—7(e). The struc-
ture of these eigenstates is very similar to that known in the
0.01 physics of disordered systems, when eigenstates “occupy”
e) f) some fraction of the basis, without noticeable correlations
between different componenys, (see, for examplg22] and
references thereinOne can say that these eigenstates are

sparsein the sense that the numbidy,. of principal compo-
nents of the eigenstates is much less than the totalNsiae
0 the basis. Therefore, there is a strong change in the structure

0 fgis 4096 710118 4096 of eigenstategcompare Figs. (&) and 7b) with Figs. 7c)—
7(e)]. One can say that the transition from extendegular

FIG. 7. Typical structure of eigenfunctions for different interac- statesto theweakly chaotic statesccurs forJ~0.1.
tion strengths, J=0,0.0002,0.1,1,10,100, denoted bia),(b), When the interaction between qubits increases further,
(c),(d),(e),(f), respectively. Eigenstates are taken from the centrabne can see another transitionstongly chaotic statesee
energy band forL=1200=100, wy=wotk, k=1,... L, wo  Fig. 7(f). The latter is characterized by @ngodicfilling of
=100, v=wo, a=1. the whole basis and by strong fluctuations of the components

¥, which are found to be practically random and indepen-
approach is natural for the theoretical study since the interdent. This situation is well described by RMEee, e.g.,
action is much less that th@-dependent term J<Q), [31]). Therefore, for such strong interactidr= 100, chaotic
therefore, the interaction between qubits can be considergeroperties of our system are very strong and the quantum
as a weak perturbation. computation process can be destroyed.

However, the dynamical properties of the model are re- In order to quantitatively characterize the eigenstates, we
lated to thez representation, which is adequate to the experihave computed the numbbi, . of principal components de-
mental setup. For this reason we discuss below the structufined by Eq.(17). Another measure of the spread of an eigen-
of eigenstates of Hamiltoniaf#) in z representation, in rela- state in a given basis is its “width's:(E) determined as
tion with the above analytical estimates obtained in the
mean-field approach. 2112

Since the most important question is about the role of the U(E)z[E | n(E)|? 2—(2 n|z/;n(E)|2) } . (23
interqubit interaction, main attention is paid to the depen- n .
dence of global properties of eigenstates on the interaction
strengthJ. Typical structure of the eigenstates in theep-  Note that in contrast tdl,., which gives an effective num-
resentation is shown in Fig. 7 for different valueslJofirst,  ber of large components and is insensitive to the location of
one should note that in this basis all components of eigenthese components, the widét{E) does not “feel” the pres-
states in the absence of the interactlbnO are very close, ence of “holes” in the sparse eigenstates. The latter fact can
on average, tdy,|=1/JN. If the interaction is very weak, be used to distinguish chaotizgodicstates from the sparse
the standard perturbation theory is valid and a kind of fluc-ones. Namely, for fully extended but very sparse eigenstates,
tuation of the probabilitiesv,=|#,|? is expected around the the value ofo(E) is of the order oN, however N, is much
mean valuew,= 1/N, whereN is the total size of the basis less than\.

(the total number of many-particle states The mean values oN,. and o in dependence on the

The data show that if the interactidris relatively strong, interactionJ are given in Fig. 8. The circles represent the
the components of eigenstates are quite different from thealue of N, and o, averaged over the eigenstates from the
unperturbed values. This region may be very important foicentral energy band. First of all, one should note that the
guantum computation, and the main problem is to knowwidth o turns out to be large and independent of the inter-
whether these errors in the components of the eigenfunctioraction. This means that all eigenstates exeendedn the z
(the deviationséw,, from the unperturbed value Nj can  representation, in spite of a serious difference in their struc-
destroy quantum coherent effects needed for the quantutare, see Fig. 7. Contrary, the number of principal compo-
computation. This problem was addressed in our previousentsN,. demonstrates two principal transitions in the struc-
study[28], here we are mainly interested in global propertiesture of eigenstates.
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10 [ 5000

FIG. 8. Normalized average number of principal components
Npc (open circlesand the widtho (full circles) as a function of in
z representation fof)=100. The average is taken over the eigen-
functions from the central band only. The solid horizontal line cor- i i .
responds td\N,.=N, and the dotted line gives the extreme limit of 2048 4096 2048
completely chaotic and extended statdg,=N/3. The parameters In> In>
are the same as in Fig. 7.

4096

FIG. 9. Number of principal componenh,. for all eigenstates
reordered in increasing energj0yf is the ground statdl) is the

Numerical data of Figs. 7 and 8 allows one to distinguishfirst excited state, etc.Data correspond to the parameters of Fig. 7.
between few different regions of the interaction strength
The first region with a very weak interactidi=2x 1072 is is shown for all eigenstateg,(E™) reordered in increasing
characterized by the constant vaNg.~N and corresponds energyE(™. In this figure one can see how the band struc-
to completely extended|§,|?>~1/N) eigenstates shown in ture of the spectrum manifests itself in the valueNgf.. In
Figs. 8a) and 8b). In this region the energy spectrum con- particular, it is seen that for nonoverlapped bands there is
sists of many close quasidegenerate levels, thus leading tocuite a strong dependenceldf. on whether the energy(™
strong deviation from the Poisson distribution, see Sec. lll. of a specific eigenstate is at the center of energy bands or

In the second region witiN,.<N, all eigenstates are close to the band edges.
strongly influenced by the inter-qubit interaction. This region  One should point out a remarkable difference for the be-
was termed in Refl27] the region of weak chaos since the havior of N, close to the band edges, compare Figsl) 9
structure of eigenstates looks chadtsee Fig. 7d)], how- and 9e). Namely, in the region of parameters of Figdp
ever, the level spacing distributid?(s) is quite close to the the highest value oN,. corresponds to the band edges, in
Poisson. From the data, the transition to the weak chaos ocontrast to Fig. &) where at the band edges the eigenstates
curs forJ~0.05 and corresponds to the analytical estimateare extremely localizeWwith a very small value oN,.). The
(16) for the delocalization transition in the mean-field basis.origin of this difference is not clear, however, it should be
The very point is that the critical valuk,, given by Eq.(16)  noted that the data reported in FigePhave already been
in the z representation corresponds to the transition fromobservedand explaineflin few models of isolated systems
completely extended states to the weakly chaotic states. Oneith interacting particles(see, for example[32,33). For
should stress that from the practical point of view the regiorthose models it was found that for the unperturbed eigen-
of weak chaos may be dangerous for quantum computatiostates, which are close to the band edges, the interaction with
because of large deviations of eigenstates from the unpeother basis states is strongly suppressed.
turbed ones, see Figs(cy and 7d).

The second transition to strong quantum chaos occurs for
J~100. By the latter term we denote the situation when the
level spacing distribution has the Wigner-Dyson form and In the previous sections we have discussed the dynamical
fluctuations of components,, are close to Gaussian ones model(4) of interacting qubits. We have seen that in spite of
with No.~N/3, see Fig. 8. As we have already discussedthe absence of any randomness in this model, for a very
this transition corresponds to the simultaneous occurrence strong interaction, both energy spectra and structure of
both band overlapping and delocalized states, see Y.  eigenstates reveal chaotic properties that are generic for
One can see that strong quantum chaos Nointeraction  quantum chaos. In this sense, it is interesting to compare the
emerges for an extremely strong interaction and thus it is nodbtained results with those for similar models with random
relevant for quantum computation. interaction. This problem is not academic since in reality

More detailed information about the global structure ofthere are many effects that can lead to some randomness in
eigenstates can be drawn from Fig. 9 where the valléef  the Hamiltonian(3).

VI. RANDOM MODELS
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FIG. 11. The average number of principal components in the
mean-field basis for the eigenstates from the central energy band,
as a function ofl/J., for L=12 and()=1000. Open circles are for
the A interaction, full circles are for th&N interaction; see next
section.

FIG. 10. Structure of the Hamiltonian matrix in the mean-field
basis for theA interaction; black points stand for matrix elements
whose modulus is larger that 10 HereL=8, 0=100, J=1,
wi= wytk.

A. All-to-all interaction As for (AE)s, it can be found by considering the maxi-

It is instructive to see what happens for a long-range in/Ma! energy shift obtained by applying the operaig _, to
teraction between qubits. We have studied in details the cadB€ state|1 i, ...,0), and resulting in the new state
when the interaction couples all qubits in the same mannePL-1: - - -, Jo). The energy difference between these two
(A interaction, states is given by

L-1 a?
H= > | = 8di+ Q-2 JalilZ). (24) (AB)s= 55 (2L2),
k=0 n>k

which perfectly agrees with the direct computations, see Fig.

Here the interaction is assumed to be completely randonp- AS @ result, the critical valudg, for the delocalization
with J, ,=J& where ¢ are random numbers with a flat dis- border is obtained from the relation
tribution inside the interval —1,+ 1]. a )

This model can be treated analytically in the same way as h% (AE)s :21.
we did it in Sec. IV. Specifically, we are interested in the 2 M Q'
delocalization border, which is determined by the compari-
son of the ratio(14) with the typical interaction strength. ~ therefore,

The modification of the Hamiltoniait5) written in the

2
mean-field basis is straightforward. Specifically, the structure 78~ 4i (26)
of the unperturbed part, see E@), remains the same and the O
interaction term(8) has the same structutéhe only differ- This is an unexpected result since it coincides with the

ence being the summation taken over all qubil$he most  estimate(16) for the delocalization border in the case Mf
important point is that the Hamiltonian matrix has a differentinteraction. The reason is that the energy rangé&);,
structure from that for th&\ interaction, see Fig. 10 within which many-body states are connected by the interac-
Despite the block structure shared by the analogous maion and the numbe¥ ; of the states within this energy range
trix for the N interaction, shown in Fig. 4, and due to two- are both proportional th.2. The result shows that the delo-
body interaction, each block is now characterized by manyalization border turns out to be independent of the range of
elements different from zero. For this reason, one can expeghe interqubit interaction.
that chaotic properties of the model with tAénteraction are However, chaotic properties of this random model with
much stronger that those found in the caseéNdhteraction.  the A interaction are much stronger than those found for the
The estimate foM can be obtained for th& interaction N interaction. Namely, the chaos border for tiénteraction
as well. Since all qubits are allowed to interact with eachturns out to coincide with the delocalization border. The
other, the maximum number of couplings between unpertransition to delocalized states for tAdnteraction is shown
turbed many-body states inside the central energy band wity Fig. 11.
all the others is The closeness of the delocalization and chaos borders for
the A interaction can be also checked by studying the level
spacing distribution. The latter is expected to manifest a tran-
M=—. (25) sition from the Poisson to the Wigner-Dyson at the critical
value ofJ given by the above estimat@6). In Fig. 12 we
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~ This has been numerically confirmed, see that data in Fig.
%, 11. Moreover, as for thé\ interaction, the delocalization
s 0 ] border for theNN interaction turns out to coincide with the
TR chaos border. This has been proved by using the level spac-
0K ing distribution, see Fig. 13.
_ Moy Our numerical study shows that, in contrast to the case of
= % DDF‘.QDEQE N ] the N interaction (when only two neighbor qubits are
R e coupled, the quantum chaos emerges for much lower values
o> of the NN interaction, for 0.5xJ<1.0, see Fig. 13. This
O3 region of parameterd and () is important from the experi-
05| 50&?0009 ] mental viewpoint, therefore, quantum chaos may have a real
TR IT0, influence on quantum computation.
0 - - 4 Since some other long-range interactions can be seen
s within these two extreme caséhe A andNN interaction$,

one can conclude that for a typical interacti@sther than
strictly between nearest qubitsthe quantum chaos can
emerge for quite a weak interaction and may have an influ-
ence on a quantum computer operability. Therefore, it may
be important to reduce the range of the interqubit interaction
in an experimental setup of a quantum computer.

FIG. 12. Level spacing distribution for eigenvalues in the cen-
tral band forL=10 andé,=k. For the average, 30 different matri-
ces with the randonA interaction have been use@) (=10, J
=0.1(open circley J=1 (full circles); (b) Q=100,J=0.01(open
squares J=0.1 (full square$; (c) (2 =1000, J=0.001 (open dia-
mondsg, J=0.01 (full diamonds. Note that the theory predicts a
transition point atJ=J.,~4/Q). For comparison, both the Poisson
(dashed ling and the Wigner-Dysorifull line) distributions are VIl. GENERAL DISCUSSION
shown. A. Quasi-integrability
As we have noted, the modeét) with the interaction be-

show that the transition to chaos is independent from théween nearest qubits has quite specific properties. Namely,
productJ(), in correspondence with the analytical prediction the delocalization border turns out to be very different from
(26). These results prove that for tAeinteraction our model the border of quantum chaos. Below we explain this phe-

is similar to generic models for which the delocalization bor-Nomena in terms of quasi-integrability of our model.
der coincides with the chaos border. Let us come back to the expression for the off-diagonal

matrix elements of the Hamiltoniafb) in the mean-field
basis determined by the eigenstatedHgf see Eqs(8). For
the case of our interest, large(> 6,), the termV ¢ is small
Finally, we discuss the intermediate case when the intereompared toVy,,q Since a,~1 andb,~—1/Q. Also, the
action V in the dynamical model3) couples four next- diagonal termV;,q is much smaller than the two other terms
nearest qubitd+1k=+2 (the NN interaction. [it is proportional tobﬁfvl/QZ« 1/Q<1, see Eq(9)]. There-
A straightforward analysis similar to that shown in the fore, the approximate Hamiltoniad, can be written in the
previous sections leads to the same critical border for delofollowing form
calized states as those found for tNeand A interactions.

L-1 L-2
12 ‘ ‘ H,= kgo Yl E_ IZO ‘Jkl)lél%:ﬁ—lv (27)

B. Next to nearest interaction

09 ’Q\Oo : where y,= \/62+ Q2 andJ,=2J for our model.
N %o This Hamiltonian has been recently studied in a number
N ° of papers(see, for examplg,34] and references therginit
06 N ° 1 was shown[35] that for independent random variableg
QQ\ *° and &, the model(27) can be mapped to an Hamiltonian
O~ describingL free fermions. This transformation holds only in
031 & ¢ 1 the case of nearest-neighbor coupling. Therefore, this model
o ‘% o o iesxintegrable and the_ level _spacing di_stributisns) can be

S pected to be Poisson-like fany interaction strength
0 1 2 (35)*2. This explains why for nonoverlapping bands our

§ original Hamiltonian(6) with 2> §, reveals the Poisson dis-
FIG. 13. Nearest-neighbor distribution for eigenvalues in thetribution for P(s) above the delocalization border.

central band folL=12. One single matrix with randomN inter- It should be noted that the delocalization bordgr (see
action has been used. Open circles areJfe10.001, closed circles  Sec. IV) results from the standard perturbation theory, which
for J=1. For comparison, both the Poissd¢dashed ling and takes into account the two-body nature of the interaction.
Wigner-Dyson(full line) distributions have been shown. Namely, when the typical interaction that connects unper-

P(s)

0
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turbed many-body states is much larger than the mean dis-

tance between energy levels of these states, in the corre- sl ©A=0.1,L=8 |

sponding basis the interaction creates exact eigenstates with )% *+4=1,1=8

many components. Typically, these compound states are cha- x A=10, L=8

otic due to a complex structure of the interaction. This is —_ ® ¢ 4=10, L~12

why the delocalization border generically coincides with the % ir s i

guantum chaos border. However, in specific cases like our S4

quasi-integrable modéfor > &, and not very strong inter- z @

action, the delocalization border and the onset of chaos may 1y ¢ x 4+

be very different. o% 4 202 888 860 900 GO0
The above analysis is also helpful in the explanation of i RS St #

the strong difference between the model withnteraction 0 ‘ . s e

10~ 10° 1’ 10 10’ 10°

and the model when qubits are coupled by a different kind of
interaction @ or NN interaction, see previous sectionk-
deed, in the latter cases the interactibhas many additional
Leg{:vse:r?rgﬁaéﬁgrg i(g?asn'lthiisllggstjlsntg Zﬁggﬁir‘:’;ﬁgﬁﬁit FIG. 14. Average number of principal components for eigen-

. ' i in th | for h ic fiel
breaking and to the onset of chaos at the border of deloca)[ym“cmS in the central band for homogeneous magnetic field and
ization.

2]

cr

andom frequencies in the intervab{ A/2,v+A/2), versus the
rescaled interactiod/J.,, whereJ,, is defined by Eq(28).

B. Role of magnetic field

Our approach based on the mean-field representation, seemponent is plotted against the rescaled interaclidh,
Sec. 1V, is valid for any kind oB* magnetic field. Let us for differentL andA). As one can see, the scaling law given
consider the simplest case of a homogeneous magnetic fielty Eq. (28) is quite well satisfied. Comparing with Fig. 8,
for which all frequencies of the spin’s precessiopare the one should note that for a constant magnetic field the onset
same,dw,= wg— v="f. For a nonresonant case wifk0, of a strong chaosN,,.~N/3) happens in a very small region
and in absence of the interactiod=0), the energy spec- Of interaction(see the presence of small peaks on the far
trum no more has a band structure since each ofLthé right side. With further increase of the interaction, the sys-
levels is degenerate. Indeed, each single-particle energy h&&m again becomes nearly integrable, since in the limit
two valuese,= = 3 (Q + f2/2Q) only, wheref <Q. Since all  J> only diagonal terms dominate.
many-body states in the central band have the same number In this way we come to the same dependence for the
of pluses and minuses in the expression for the total energgritical interactionJ.,, discussed in Ref§24,23. In these
the latter is zero. Thus, the level spacingH); is also zero, papers, the model with the nearest interaction in the plane
which means that any small interaction gives rise to delocalwas consideredrather than on a 1D line as in our mogel
ized states. For this reason the model of R¢23] is free from the effects

In recent studie$23] random variation of spin frequen- of quasi-integrability and, therefore, the delocalization bor-
cies is included in the model, in order to take into accounder coincides with the border of quantum chaos.
effects of finite temperature and environment. For this reason Finally, we would like to point out that in the case of
the energies are not exactly degenerate but swap into finité@creasing gradient of thB* magnetic field, the delocaliza-
width bands. In the same way, let us assume that the enerdipn borderincreaseswith an increase of the number of qu-
of many-body states fluctuates, thus resulting in the distribubits. This very unexpected prediction can be easily under-
tion of the parametef within some interval ¢ A/2,+A/2)  stood for the case=bk? (linear increase of the gradignt
with A< Q. Then, one can estimate It can be shown that the widthAE); grows proportional to
L3, therefore, for the nearest interactiov (~L) the critical
interaction increases ak,~L2, and for theA interaction
one getsJ.,~L. In the latter case the estimate &f, also
80" gives the transition to the chaos. As one can see, the mag-

netic field with an increasing gradient may strongly reduce
On the other side, the number of coupled state for a fixedhe influence of the delocalization and chaos.
state from the central band remains the sakhg=L/2. As a
result the delocalization border can be determined from the

2
(AB)¢=
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