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Delocalization border and onset of chaos in a model of quantum computation
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We study the properties of spectra and eigenfunctions for a chain of 1/2 spins~qubits! in an external
time-dependent magnetic field and under the conditions of nonselective excitation~when the amplitude of the
magnetic field is large!. This model is known as a possible candidate for experimental realization of quantum
computation. We present the theory for finding delocalization transitions and show that for the interaction
between nearest qubits, the transition is very different from that in quantum chaos. We explain this phenomena
by showing that in the considered region of parameters our model is close to an integrable one. According to
a general opinion, the threshold for the onset of quantum chaos due to the interqubit interaction decreases with
an increase of the number of qubits. Contrary to this expectation, for a magnetic field with constant gradient we
have found that chaos border does not depend on the number of qubits. We give analytical estimates that
explain this effect, together with numerical data supporting our analysis. Random models with long-range
interactions have been studied as well. In particular, we show that in this case the delocalization and quantum
chaos borders coincide.
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I. INTRODUCTION

In recent years much attention has been paid to the ide
quantum computation@1#. The burst of interest in this subjec
~see, for example,@2–4# and references therein! is caused by
the discovery of fast quantum algorithms for the factoriz
tion of integers@5# and for the effective searching of items
a database@6,7#. These algorithms demonstrate the effectiv
ness of quantum computers in comparison with class
ones. Nowadays, there are different projects for the exp
mental realization of quantum computers, as well as exp
mental results with few-qubit systems~see @8#! and refer-
ences therein.

Main theoretical suggestions for the experimental imp
mentation of the quantum computation are based on inter
ing two-level systems~qubits!. It is clear that one of the mos
important problems from the viewpoint of the stability
quantum operations, is the destructive role of different kin
of errors. As a first step, one should refer to finite tempe
ture effects and the interaction with an environment@9#.
However, even in the case when these effects can be
glected, there are dynamical effects of the interqubit inter
tion, which may influence a quantum computation. On o
hand, the interaction between qubits is necessary for the
alization of quantum computation, on the other hand, it m
result in a kind of destruction of the coherence in the evo
tion of a system.

The latter subject of the dynamical decoherence is dire
related to the so-calledquantum chaos, which is nowadays
widely discussed in application to atoms, nuclei, quant
dots, and other physical systems~see, for example,@10# and
references therein!. One of the latest developments in th
theory of quantum chaos refers to the interaction betw
Fermi particles in isolated systems. The core of this appro
1063-651X/2001/64~5!/056226~14!/$20.00 64 0562
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is the perturbation theory for many-body states, which ta
into account a two-body nature of the interaction. Spec
cally, it was shown@11# that if the two-body random inter
action between particles exceeds some critical value,
transition to chaos occurs in the Hilbert space of ma
particle states~see also@12–15# and reviews@16,17#!.

In dynamical systems such as complex atoms@18#, mul-
ticharged ions@19#, nuclei @20#, and spin systems@21,24#
quantum chaos gives rise to a very complicated structur
highly excited states, and to specific correlations in the
ergy spectra, described by the random matrix theory~RMT!
~see, for example,@16#!. As a result, closed dynamical sys
tems with relatively small number of interacting particles c
be well described by a statistical approach, see discus
and references in@22#.

Recently, the quantum chaos theory has been applied
simple model of a quantum computer@23# chosen in the
form of L interacting qubits. Numerical data have shown th
for a strong enough interaction between qubits the onse
quantum chaos is unavoidable. Although forL514216 the
critical valueJcr for the quantum chaos border was found
be quite large, with an increase ofL the border decreases a
Jcr;1/L @24,23#. From the viewpoint of the standard ap
proach for closed systems of interacting particles, the
crease of chaos border with an increase of qubits looks
neric. This poses the question of the relevance of quan
chaos to quantum computation@25,26#.

In our recent paper@28# we have studied the errors tha
appear in the evolution of one-dimensional~1D! Ising
nuclear spins in rotating magnetic field. This model was s
gested for an experimental realization of a quantum co
puter@29,30#. The main attention in@28# has been paid to the
region of parameters most suitable for the preparation o
initial many-body state, needed for further application
©2001 The American Physical Society26-1
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quantum protocol~sequence of time-dependent magne
pulses in a prescribed algorithm of quantum computation!. It
was shown that even for a very large interqubit interacti
the errors turn out to be very small, thus demonstrating
the influence of quantum chaos can be neglected.

An analysis of the stationary Hamiltonian describing t
system during a single magnetic pulse has been performe
@27#. Specifically, the general approach of quantum ch
theory has been applied in order to understand the condit
for the onset of quantum chaos. The model we conside
assumed that qubits~nuclear spins! are placed in a strong
magnetic field with constant gradient along the direction
the spin chain. The gradient of the magnetic field provide
‘‘labeling’’ of qubits. Namely, each spin has a different La
mor frequency,vk . This allows one to provide a selectiv
addressing to each qubit by applying resonant rf pulses.
main interest was in the influence of the magnetic field
the properties of eigenstates and energy spectra. It was
expectedly found that the constant gradient magnetic fi
gives rise to the independence of the critical valueJcr on the
numberL of interacting qubits. This striking phenomena h
been explained in@27# analytically and confirmed numeri
cally, thus giving a new insight to the problem of quantu
chaos in the models of quantum computers.

In this paper we present the full theory that explains
properties of energy spectra and many-body states of
model of Ref.@28#, together with numerical data obtained
a broad region of the model parameters. The structure of
paper is as follows. In the next section we describe
model, discuss the region of parameters of our interest,
briefly analyze the structure of the Hamiltonian matrix in t
z representation. In Sec. III we study global properties of
energy spectrum, paying main attention to the band struc
of the spectrum and to the level spacing distributionP(s) for
the central energy band.

Section IV is the core of the paper, here both the deloc
ization border and the condition for the onset of quant
chaos are studied. The consideration has been made by
ing use of the mean-field representation, which is very c
venient from the theoretical viewpoint. One of two ma
goals of this section is that these two borders are very
ferent in the model with nearest interaction between qub
Another important result is that the delocalization bord
turns out to be independent of the number of qubits fo
gradient magnetic field. Theoretical estimates obtained
this section serve as a guiding line to treat all numerical d

In Sec. V we investigate numerically the structure
eigenstates in thez representation by relating the data wi
the theoretical predictions. Section VI is devoted to so
modifications of the model, namely, we analyze the influe
of randomness in the interqubit interaction. Our main qu
tion is how statistical properties of the system depend on
range of the interaction between qubits. Specifically,
study random interaction between all qubits (A interaction!
as well as between four nearest qubits by comparing
results with those obtained for the model with the interact
between two nearest qubits (N interaction!.

A general discussion is presented in the last section.
of the problems we discuss here, is the concept of the qu
05622
,
at

in
s
ns
d

f
a

he
n
n-

ld

e
he

he
e
nd

e
re

l-

ak-
-

f-
s.
r
a
in
a.
f

e
e
-
e

e

e
n

ne
si-

integrability of our model for theN interaction. We show
that for the region of parameters of our interest, the mode
close to the integrable one. This explains why the deloc
ization and chaos borders do not coincide for theN interac-
tion. We also analyze the role of the magnetic field. In p
ticular, we give analytical estimates, which show that for t
homogeneous magnetic field the delocalization border
genericL dependence discussed in@23#. On the other hand
for the magnetic field with an increasing gradient, analyti
estimates predict that the delocalization border increa
with an increase of the number of qubits.

II. THE MODEL

The model describes a one-dimensional chain ofL inter-
acting distinguishable 1/2 spins in an external magnetic fie
Schematically, these spins~qubits! can be represented as fo
lows:

⇑Bz: ↑L21↓L22•••↑1↑0 .

HereBz stands for a constant part of magnetic field orien
in the positivez direction, and each qubit occupies one
two single-particle states with the energy 1/2~position
‘‘up’’ ! or 21/2 ~position ‘‘down’’!. One can see that th
total numberN of many-body states, which are generated by
this chain~quantum register!, is N52L.

The dynamics of this model~quantum computer protocol!
is due to a sum ofp51, . . . ,P time-dependent rectangula
pulses of a circular polarized magnetic field rotating in t
(x,y) plane. Each of the pulses has its own amplitudeb'

p ,
frequencynp , phasewp , and lasts during the periodTp
5tp112tp . Therefore, the total magnetic field during on
pulse can be written as follows@28#:

BW ~ t !5~b'
p cos@npt1wp#,2b'

p sin@npt1wp#,Bz!. ~1!

The Hamiltonian of this system has the form

H52 (
k50

L21 S vkI k
z12(

n.k
Jk,nI k

zI n
zD

2
1

2 (
p51

P

Qp~ t !Vp(
k50

L21

~e2 inpt2 iwpI k
21einpt1 iwpI k

1!,

~2!

where the ‘‘pulse function’’Qp(t) equals 1 only during the
pth pulse of the lengthTp . The quantitiesJk,n stand for the
Ising interaction between two qubits,vk are the frequencies
of the spin’s precession in theBz magnetic field,Vp is the
Rabi frequency corresponding to thepth pulse. The opera-
tors I k

6 are defined by the relationsI k
65I k

x6 i I k
y , and I k

x,y,z

5(1/2)sk
x,y,z , the latter being the Pauli matrices.

Below we consider the properties of the system durin
single pth pulse. The corresponding Hamiltonian can
written in the coordinate system, which rotates aroundz axes
with the frequencynp . Thus, for thepth pulse, our model
can be reduced to thestationaryHamiltonian,
6-2
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H (p)52 (
k50

L21 F ~vk2np!I k
z1Vp~coswpI k

x2sinwpI k
y!

12(
n.k

Jk,nI k
zI n

zG , ~3!

which describes the evolution of the model fortp,t<tp11.
The regime of quantum computation corresponds to

following range of parameters:Vp!Jk,n!dvk!vk , where
dvk5uvk112vku @28# ~the so-calledselective excitation!. In
this regime, each pulse acts selectively on a chosen q
exciting a resonant transition. The inequality,Vp!Jk,n , pro-
vides a separation between resonant and nonresonant tr
tions for the same selected qubit. The inequality,Jk,n
!dvk , provides a separation of transitions for a given qu
from the transitions for neighboring qubits. In this paper
consider another important regime ofnonselective excitation,
which is defined by the conditionsVp@dvk@J, see details
in @28#. This inequality provides the simplest way to prepa
a homogeneous superposition of 2L states needed for imple
mentation of both Shor and Grover algorithms.

In what follows we assume, for simplicity,wp5p/2, and
put Vp5V and np5n. Our main interest is in the neares
neighbor interaction~N interaction! between qubits for two
different cases, thedynamical one when all coupling ele
ments are the same,Jk,n5Jdn,k11, and the case when a
valuesJk,k11 are random~random model!. However, we will
also analyze other cases with different kinds of interact
and compare results with those for theN interaction. In con-
trast to the previously discussed model@23# with homoge-
neous magnetic field, below we consider the magnetic fi
that depends on the position of thekth qubit. Therefore, we
assume that the spin frequenciesvk are slightly dependen
on k ~with dvk!vk).

For the dynamicalN interaction, the Hamiltonian~3!
takes the form

H5 (
k50

L21

@2dkI k
z1VI k

y#22J(
k50

L22

I k
zI k11

z , ~4!

where dk5vk2n. In the z representation the Hamiltonia
matrix of sizeN52L is diagonal forV50. For VÞ0 the
off-diagonal matrix elements areHk,n5 iV/2 for n.k, and
Hnk5Hkn* . When calculating the matrix elements of th
Hamiltonian~4! we have used the standard rules in order
find the action of the operatorsI k

z andI k
y on the statesuk& and

un&,

I k
zu•••0k•••&5

1

2
u•••0k•••&,

I k
zu•••1k•••&52

1

2
u•••1k•••&,

I k
yu•••0k•••&5

i

2
u•••1k•••&,
05622
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The matrix turns out to be very sparse, and it has quit
specific structure in the basis, which is reordered accord
to an increase of the numbers written in the binary repre-
sentation,s5 i L21 , . . . ,i 1 ,i 0 ~with i s50 or 1, depending on
whether a single-particle state ofi th qubits is the ground
state or the excited state!. In what follows, we call this rep-
resentation thez representation.

III. GLOBAL PROPERTIES OF THE ENERGY
SPECTRUM

For the further analysis, it is important to understand
global structure of the energy spectrum. In what follows,
concentrate our attention on the case when the magnetic
has a constant gradient along the chain of qubits,wk5w0
1ak with a.0. Other cases will be briefly discussed in Se
VII.

A. Band structure

Without the interaction between qubits,J50, the energy
spectrum of the model~4! consists ofL11 bands of finite
width for aÞ0, separated by big gaps of sizeV@vk . In
Refs. @28,27# it was numerically found that the width
DE(V,J50) of the central band decreases with an incre
of V as AL /V. Our analytical estimates show that forL
even, the bandwidth is given by the relation (DE)1
5L2a2(L21)/8V ~see details in Sec. IV!. This dependence
also occurs for a relatively weak interactionJÞ0. However,
when the interaction exceeds some critical valueJs , the
band widths turn out to be practically independent ofV, see
the data for the central band in Fig. 1.

The bandwidth (DE)2 for the interaction strengthJ larger
than the critical valueJs can be also estimated analytically a
(DE)25(L22)aJ ~see Sec. IV!. The correspondence be
tween the analytical estimate and numerical data was fo

FIG. 1. Dependence of the central bandwidthDE on V for
different values ofJ. The data are shown forL510, vk5v01k,
n5v0, anda51. The full straight line is the theoretical expressio
for J50. The horizontal lines on the right-hand side of the figu
correspond to the analytical expression for (DE)2 for the case of
J.Js ~see text!.
6-3
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to be quite good. If the bandwidthDE is larger than (DE)2,
the first expression (DE)1 for DE(V) dominates. On the
contrary, if the bandwidth (DE)2 defined by the interactionJ
is larger, it determines the actual bandwidthDE, which is
independent ofV.

One should stress that the above consideration is valid
the case when the bands are not overlapped. One can e
that for sufficiently strong interaction between the qubits,
band structure of the energy spectrum disappears. The o
lapping of the central band with two other bands is shown
Fig. 2, where the edges of the central and the nearest b
are plotted against the interactionJ for the fixed valueV
5100. One can see that forJ.Jb'15 the bands are over
lapped, therefore, a change in the properties of the syste
naturally expected. The critical valueJb for the overlapping
of the bands is estimated in Sec. IV as well.

B. Level spacing distribution

Let us now analyze the distributionP(s) of spacingss
between nearest-neighbor energy levels inside the centra
ergy band~note thats should be normalized to the mea
spacing between levels!. This quantity is often used in th
theory of quantum chaos as a detector of chaotic prope
of a system. Specifically, for systems with regular motion
the classical limit, the distributionP(s) is generically close
to the Poisson@apart from one-dimensional systems whe
P(s) is highly nongeneric and can be of any form#. In the
other limit case of a completely chaotic motion, in the co
responding quantum systems the distributionP(s) has the
so-called Wigner-Dyson~WD! form, which is characterized
by the level repulsion for small spacings,s!1 @P(s)
;s,s2,s4, depending on the symmetry of a system, see, e
@16##.

Numerical data forP(s) for different values of the inter-
action strengthJ, summarized in Fig. 3, manifest the trans
tion to the WD distribution. Note that for small values ofJ
@see Figs. 3~a!–3~c!# the distributionP(s) reveals a strong
deviation from the Poisson. Specifically, one can detec
clusteringof energy levels for very smalls that results in a
huge peak in the distribution at the origins50. The presence

FIG. 2. Energy bands as a function ofJ. Only the central band
~full line! and its neighbors~dashed lines! are shown, thus demon
strating the band overlapping for a relatively large interaction. T
parameters areL510, V5100, vk5v01k, n5v0, anda51.
05622
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of this peak indicates that for weak interaction our mode
highly nongeneric and may be compared to integrable
models. With an increase of the interaction, data forP(s)
reveal first a transition to the Poisson distribution and then
the WD distribution. More detailed analysis of the da
shows that the transition from the Poisson to the WD dis
bution occurs when the central energy band starts to ove
with the nearest bands.

IV. THEORY

Let us now discuss our model~4! from the viewpoint of
the standard approach to interacting particles in isolated
tems ~see, for example,@17,22# and references therein!. In
this approach the Hamiltonian is written in the formH
5H01V0, whereH0 stands for noninteracting particles, an
V0 describes a two-body interaction between particles. T
onset of chaos is usually meant to occur when the strengt
the interactionV0 exceeds the mean energy spacingdf be-
tween those many-particle states that aredirectly coupledby
the interaction. It is important to note that this spacing
much larger than the mean level spacingD between many-
particle states. Indeed, while the total densityr5D21 of
states increases exponentially with the total energy, the d
sity r f5df

21 increases only algebraically~for details see,
e.g.,@15#!.

In order to apply this approach to our model~4!, one
needs, first, to present the Hamiltonian as a sum of the ‘‘

e

FIG. 3. Level spacing distributionP(s) as a function of inter-
actionJ50,0.0002,0.1,1,10,100 denoted by~a!, ~b!, ~c!, ~d!, ~e!, ~f!,
respectively. Other parameters areL512, V5100, vk5v01k, k
51, . . . ,L, v05100, n5v0, anda51. The full curve is the Pois-
son distribution, the dashed curve corresponds to the Wigner-Dy
distribution. Eigenvalues are taken from the central energy b
only.
6-4
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perturbed’’ HamiltonianH0, and the partV5JV0, which
stands for the interaction between particles. In our case
Hamiltonian~4! can be rewritten in the form

H5H01JV0 , ~5!

where

H05 (
k50

L21

@2dkI k
z1VI k

y#, V0522(
k50

L22

I k
zI k11

z . ~6!

As one can see, the HamiltonianH0 stands for a kind of
mean field, which absorbs theV-dependent term. In this wa
the mean-fieldH0 describes aregularpart of the total Hamil-
tonian and the termV, describing the interaction between th
particles, is responsible for chaotic properties~if any! of the
system. Such a mean-field approach is typical in the stud
chaotic properties of complex atoms and heavy nu
@18,20#.

A. Delocalization border

Now, one needs to represent the Hamiltonian~5! in the
basis in which it is diagonal in the absence of the interact
(J50). In this representation~corresponding to the rotatin
basis! the HamiltonianH0 can be written as a sum ofL
individual HamiltoniansHk describing noninteractingquasi-
particles @27#,

H05 (
k50

L21

Hk5 (
k50

L21

Adk
21V2 I k

z . ~7!

Correspondingly, in the basis ofH0, the interactionV0 be-
tween quasiparticles has the formV05Vdiag1Vband
1Vo f f , where

Vdiag522(
k

bkbk11I k
zI k11

z ,

Vband522(
k

akak11I k
yI k11

y ,

Vo f f52(
k

~akbk11I k
yI k11

z 1ak11bkI k
zI k11

y !, ~8!

where

bk5
2dk

Adk
21V2

, ak5
V

Adk
21V2

. ~9!

From Eq.~7! one can see that the energiesek of quasipar-
ticles @or, the same, energies of single-particle states de
mined by the Hamiltonian, Eq.~7!# are given by the expres
sion

ek56
1

2
Adk

21V2. ~10!
05622
he
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Note that this relation is valid for any kind of magnetic fie
Bz ~any dependencedk), including the homogeneous mag
netic field (dk5cons).

Let us now consider the constant gradient magnetic fi
(dk5ak) for large values ofV@dk . In this case, one can
write an approximate relation forek ,

ek56
1

2 S V1
a2k2

2V D . ~11!

This expression allows one to find global properties of
unperturbed (J50) energy spectrum, briefly discussed in t
previous section. Indeed, for large values ofV ~more cor-
rectly, for V@ak) one can see that the spectrum has a b
structure, with the bands centered at 0,6V,62V, . . . ,
6LV.

The central band is defined by such locations of quasip
ticles in the single-particle spectra defined byek , for which
an equal numberL/2 of quasiparticles have positive an
negative values ofek ~for an even numberL of qubits!.
Therefore, the total numberNcb of many-body states in the
central band is given by the total number of combinations
N objects having half positive and half negative values,

Ncb5
L!

~L/2!! ~L/2!!
. ~12!

One can also see that fordk5ak and J50, the size of the
central energy band is given by twice the maximum ene
inside the band,

~DE!cb52Ec
(max)52

a2

4V F (
k5L/2

L21

k22 (
k50

L/221

k2G
5

L2~L21!a2

8V
. ~13!

Now, let us discuss the structure of the Hamiltonian m
trix determined by the off-diagonal terms~8!. One can see
that in the unperturbed basis the termVdiag is clearly diago-
nal. The action ofVband is much more complicated. Let u
consider, for simplicity, the central band. Each operatorI k

y

flips thekth spin. Since the interaction is between two bo
ies, we should consider the action ofI k

yI k11
y upon states as

u . . . ,0k11,1k , . . . &, u . . . ,1k11,0k , . . . &, u . . . ,0k11 ,
0k , . . . &, u . . . ,1k11,1k , . . . &. The first two kinds of states
upon the action ofVband, still remain in the same centra
band since the number of 0’s and 1’s is conserved. T
second pair of states increases~or decreases, respectively!
the number of 1’s in two units, that is, such a coupling ref
to a next to nearest energy band~nearest bands differ by a
single value of 1). As a result, one can conclude that
term Vband stands for the interaction bothinside the central
band and between the next-neighbor energy bands.

In the same way it is easy to understand that the termVo f f
gives rise only to the off-band interaction, i.e., to a coupli
betweennearestbands to be more precise. The structure
the Hamiltonian in the mean-field basis is shown in Fig.
6-5
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For a relatively weak interaction, the eigenstates in
mean-field basis defined by the unperturbed HamiltonianH0
are deltalike functions with an admixture of other comp
nents with small amplitudes. In this case one can speak a
the localizationof eigenstates in the unperturbed basis. W
an increase of the interaction strength, the numberNpc of
basis components with large amplitudes~number of principal
components! increases. According to the theory of interac
ing particles, the transition from strongly localized (Npc
'1) to delocalized~or extended! states~with Npc@1) oc-
curs very fast with an increase of the interparticle interacti
For this reason, one speaks about the delocalization tra
tion ~in the finite-size basis!, see, e.g.,@14# and references
therein.

Generically, in the models with two-body random inte
action V between particles@15#, extended eigenstates wit
largeNpc turn out to bechaotic. By this term we mean the
situation when the components of the extended states ca
treated as random and independent quantities. A similar s
ation ~the onset of quantum chaos! occurs in many dynami-
cal systems with complex enough interaction, such as ma
electron atoms and heavy nuclei@18,20#. In these systems
the delocalization transition coincides with the transition
chaos, and is determined by the conditionV>df (V is a
typical interaction strength anddf is the mean energy dis
tance between directly coupled many-body states!.

Let us now discuss the delocalization transition in o
model, keeping in mind that it can be different from th
transition to chaos. As it will be shown, our model with th
N interaction manifests quite an unexpected phenome
namely, the above two transitions turn out to be very diff
ent.

We start with the estimate of the mean level spacingdf in
the central energy band of our model~5! between the many
body states coupled by the interaction~8!. The energy spac
ing df can be estimated as the ratio

df'
~DE! f

M f
, ~14!

FIG. 4. Structure of the Hamiltonian matrix in the mean-fie
basis for theN interaction; black points stand for matrix elemen
whose modulus is larger than 1026. Here is L58, V5100, J
51, vk5v01k.
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where M f is the number of many-body states coupled
Vband inside the energy interval (DE) f . In fact, M f is the
mean number per line of nonzero off-diagonal elements
the total Hamiltonian~5!.

In order to estimateM f , we note that the interaction
Vband in the central band can only couple those many-bo
states having an equal number (L/2) of spins ‘‘up’’ and
‘‘down’’ ~for an even numberL of qubits!. The minimal
value ofM f51 corresponds to the state

u0L21 , . . . ,0,1, . . . ,10&,

and the maximal one,M f5L21, corresponds to the state

u0L21,1L22,0L23,1L24 , . . . ,01,10&.

Indeed, in the first case there is only one possibility
changing 0 to 1 and 1 to 0 for the nearest qubits. And in
second case, there areL21 such changes, each of them co
responding to the nearest-neighbor interaction with
change in the total number of spins up and down. Theref
one can estimate the average valueM f asM f'L/2, which is
in very good agreement with the direct numerical check.

One should stress that the energy range (DE) f within
which the many-body states are coupled, is much less t
the total energy width (DE)cb of the central band determine
by Eq. ~13!. The value of (DE) f can be estimated as th
maximal difference between energiesEc

(2)5(k
(2)ek andEc

(1)

5(k
(1)ek of two many-body statesuc1& anduc2& of H0, hav-

ing the matrix element̂c1uVbanduc2& different from zero. If
we consider only the coupling inside the central band we
find these valuesEc

(2) and Ec
(1) by observing that the maxi

mal energy is obtained by flipping the outermost spins. A
plication of I L21

y I L22
y to the state

uc1&5u1L21,0L22 , . . . &

gives rise to the state

uc2&5u0L21,1L22 , . . . &

(L21 and L22 correspond to the states with the highe
values of single-particle energiesek). Thus, the energy dif-
ferenceEuc1&2Euc2& is given by

~DE! f5
a2

4V
2@~L21!22~L22!2#5

a2

V S L2
3

2D .

Numerical results confirm this prediction very well, se
Fig. 5.

As a result, forL@1 we have

df5
~DE! f

M f
'

2a2

V
. ~15!

The mean spacingdf should be now compared with th
typical value of the perturbation,V5JV0. The latter can be
found fromVband as V'J/2 ~other terms are negligible fo
V@dk). Therefore, we finally obtain
6-6



o

a
th
f

th
he

r

he

ti

en

is

ig.
-
of

-
e-
e
e

f

s,
der
eds

the
lyti-
w

y

ng
te
find

tion

as-
l

er-

d the
as a

DELOCALIZATION BORDER AND ONSET OF CHAOS IN . . . PHYSICAL REVIEW E64 056226
Jcr'
4a2

V
. ~16!

Surprisingly, the delocalization border does not depend
the number of qubits, in contrast to the result of@23# where
Jcr decreases as 1/L. The reason is the specific influence of
constant gradient of the magnetic field that results in
quadratic dependenceek}k2 for the single particle levels o
the mean-field HamiltonianH0 @see Eq.~7!#.

Let us now compare the analytical estimate~16! with nu-
merical data. The commonly used quantity to measure
numberNpc of principal components in eigenstates is t
so-called inverse participation ratio

Npc~E!5F(
n

ucn~E!u4G21

. ~17!

Herecn(E)5^nuc(E)& is thenth component of a particula
eigenfunction corresponding to the eigenvalueE.

From Eq. ~17! one can see that for equal values of t
components of an eigenstate,cn51/AN, the number of prin-
cipal components is equal to the size of the basis,Npc5N. In
another extreme limit of completely extended and chao
eigenstates, the value ofNpc is equal toN/3. The factor 3
arises due to the Gaussian fluctuations ofcn that are generic
in the case of strong quantum chaos~see, e.g.,@16#!. For
localized states the value ofNpc approximately gives the
number of basis states effectively occupied by this eig
state.

Numerical data forNpc computed in the mean-field bas
@whereH0 is diagonal forJ50, see Eq.~5!# for the eigen-
states taken from the central energy band, are given in F
as a function ofJ/Jcr . It is clearly seen that below the de
localization border,J,Jcr , there is a scaling dependence
Npc on L andV in accordance with the estimate~16!. On the
other side, forJ@Jcr , the value ofNpc saturates to its maxi
mal valueNcb/3 in correspondence with random matrix pr
dictions @here Ncb is the total number of states inside th
central energy band, see Eq.~12!#. The latter correspondenc

FIG. 5. Numerical calculation of (DE) f for both N ~open
circles! andA interaction~full circles!, see Sec. VI. Full and dashe
lines are, respectively,L2/2V andL/V as found analytically. Here
a51.
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of the maximal value ofNpc to Ncb/3 is a strong evidence o
quantum chaos in the model for a very large interaction.

B. Chaos border

In this section we study the transition to global chao
which is due to the overlapping of the energy bands. In or
to obtain the condition for the band overlapping, one ne
to find the bandwidth and to compare it with the distanceV
between the bands.

We have shown that in the absence of the interaction,
energy width of the central band can be estimated ana
cally, see Eq.~13!. Numerical data reported in Fig. 1 sho
that with an increase of the interaction, the bandwidthDE
saturates to some value (DE)s , which is independent ofV.
Therefore, we can estimate (DE)s by coming back to thez
representation of Hamiltonian~4!, where theV-depending
term enters in the off-diagonal matrix elements only. B
omitting this term, we can write the diagonal part,

Hd52 (
k50

L21 FakIk
z12J(

k50

L22

I k
zI k11

z G , ~18!

where the relationsvk5v01ak and n5v0 are directly
taken into account.

In the case of our interest,aL@J, the unperturbed (J
50) many-body energy spectrum of Eq.~18! is given by a
sequence of degenerate levels separated by the spacia.
Due to a weak interactionJ, each set of these degenera
levels spreads and creates the energy bands. In order to
the central energy bandwidth, we should consider the ac
of the interaction operator

22J(
k50

L22

I k
zI k11

z

upon the states belonging to the central band. The latter
sumption is an approximation: inz representation, the centra
energy band can also contain few states with slightly diff
ent numbers of 0’s and 1’s.

FIG. 6. The average number of principal components in
rotated basis for the eigenstates from the central energy band,
function of J/Jcr for L58, 10, 12 and different values ofV.
6-7
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The action of each term in the interaction operator lea
the state as it is, multiplying it by a factor6J/2 depending
on the presence of two close 11 and 00 or different 01
10. This results in the shift of the energy from its zero va
in the central band. Two configurations,u2&
5u0,0, . . .,0,1,1, . . . ,1& andu1&5u0,1,0,1, . . . ,0,1&, should
be considered, which correspond to the maximal shift in
‘‘negative’’ and ‘‘positive’’ directions. In this way we can
safely say that such a bandwidth is given by the energy
ferenceEu1&2Eu2& . It is easy to see that one has

Eu1&5
~L21!Ja

2

and

Eu2&5
2~L23!Ja

2
,

thus giving

DE5~L22!Ja for V@J. ~19!

By equating the two expressions~13! and ~19! we find the
transition point

J0'
L2a

8V
~20!

between the two dependencies for the bandwidthDE.
One can see that forJ.J0 bands are overlapped

(L22)Ja>V. That gives the critical valueJb for the over-
lapping

Jb'
V

aL
~21!

subject to the conditionJ.J0. By comparing Eqs.~20! and
~21!, one gets the lower boundJ>AL/8 compatible with the
above two constraints.

On the other side, one can also have the band overlap
wheneverJ,J0 if a2L2(L21)/8V>V. Therefore, in this
case the overlapping of the bands occurs for anyJ, if the
number of qubits is large enough,L>2(V/a)2/3.

One should stress that overlapping of bands is not a
ficient condition in order to have the delocalization of eige
states. Indeed, the estimate Eq.~16! for the delocalization
borderJcr is derived for the central energy band only, the
fore, it is not valid when bands are overlapped. Therefo
one needs to start with the expression~14! and estimate
(DE) f for the case when the energy spectrum is not ba
like.

In order to do this, it is convenient to switch to the mea
field representation with the unperturbed HamiltonianH0
given by Eq.~6!. The total size of the unperturbed ener
spectrum is now defined by the difference between the e
gies corresponding to the following limiting configuration

u↑&5u1L21,1L22 , . . . ,11,10&
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u↓&5u0L21,0L22 , . . . ,01,00&.

But this is not what we need. Indeed, these two many-b
states are not coupled by the two-body interaction~8!. What
we need to find is the maximal energy change due to
action of theJ interaction. To do that, we have to consid
two states corresponding to the flipping of both the two u
permost spins, namely,

u↑&5u1L21,1L22 , . . . &

and

u↓&5u0L21,0L22 , . . . &.

The energy difference between such states is given by

~DE! f'4Aa2L21V2.

Since the number of coupled states remains the same,M f
.L/2, one realizes that in order to have the transition
delocalized states in the case of the overlapped bands
typical value of the interaction has to be larger thandf
5(DE) f /M f ,

J/2>
4Aa2L21V2

L/2

or

J>Jc.
16

L
Aa2L21V2. ~22!

One should notice that the two criteria~band overlapping
and transition to delocalization!, if satisfied, are expected t
result in the onset of chaos. This conclusion is confirm
numerically and is supported by analytical arguments.

Indeed using data from Fig. 3, e.g.,L512, V5100, a
51, one gets a chaos borderJc'130 well confirmed by the
Wigner-Dyson distribution in Fig. 3~f!.

On the other hand, we have already seen that the sim
requirement to be in the delocalized regime (J.Jcr), with-
out the overlapping of bands, does not give rise to chao
our dynamical model with the nearest interaction.

It is also easy to check that the conditions of the ba
overlapping for the caseJ,J05V/8ax andL.8x ~with x
5V2/L2a2) are not compatible with the delocalization bo
der J.Jc516aA11x in the region of nonselective excita
tion, x@1. This means that a relatively weak interaction do
not lead to the delocalization~and, therefore, to the chaos! in
spite of the overlapping of the energy bands.

V. STRUCTURE OF EIGENSTATES IN THE z
REPRESENTATION

The analytical treatment we have performed in the pre
ous section is based on the mean-field representation of
model, namely, when the Hamiltonian matrix is written
the basis of the ‘‘unperturbed’’ partH0, see Eq.~7!. This
6-8
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approach is natural for the theoretical study since the in
action is much less that theV-dependent term (J!V),
therefore, the interaction between qubits can be consid
as a weak perturbation.

However, the dynamical properties of the model are
lated to thez representation, which is adequate to the exp
mental setup. For this reason we discuss below the struc
of eigenstates of Hamiltonian~4! in z representation, in rela
tion with the above analytical estimates obtained in
mean-field approach.

Since the most important question is about the role of
interqubit interaction, main attention is paid to the depe
dence of global properties of eigenstates on the interac
strengthJ. Typical structure of the eigenstates in thez rep-
resentation is shown in Fig. 7 for different values ofJ. First,
one should note that in this basis all components of eig
states in the absence of the interactionJ50 are very close,
on average, toucnu51/AN. If the interaction is very weak
the standard perturbation theory is valid and a kind of fl
tuation of the probabilitieswn5ucnu2 is expected around th
mean valuewn51/N, whereN is the total size of the basi
~the total number of many-particle states!.

The data show that if the interactionJ is relatively strong,
the components of eigenstates are quite different from
unperturbed values. This region may be very important
quantum computation, and the main problem is to kn
whether these errors in the components of the eigenfunct
~the deviationsdwn from the unperturbed value 1/N) can
destroy quantum coherent effects needed for the quan
computation. This problem was addressed in our previ
study@28#, here we are mainly interested in global propert

FIG. 7. Typical structure of eigenfunctions for different intera
tion strengths, J50,0.0002,0.1,1,10,100, denoted by~a!,~b!,
~c!,~d!,~e!,~f!, respectively. Eigenstates are taken from the cen
energy band forL512,V5100, vk5v01k, k51, . . . ,L, v0

5100, n5v0 , a51.
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of eigenstates for a very broad region of the interaction.
The most interesting conclusion that can be drawn fr

the numerical data for a weak enough interaction@see Figs.
7~a! and 7~b!# is that the eigenstates turn out to have a re
lar structure, even if the deviationsdwn are relatively large.
Indeed, one can see regular global dependence ofwn on the
basis numbern, with some fluctuations around the mea
This fact seems to be directly related to the specific struc
of the Hamiltonian matrix.

With an increase of the interaction, the regular struct
of eigenstates disappears and huge fluctuations in com
nents of eigenstates emerge, see Figs. 7~c!–7~e!. The struc-
ture of these eigenstates is very similar to that known in
physics of disordered systems, when eigenstates ‘‘occu
some fraction of the basis, without noticeable correlatio
between different componentscn ~see, for example,@22# and
references therein!. One can say that these eigenstates
sparsein the sense that the numberNpc of principal compo-
nents of the eigenstates is much less than the total sizeN of
the basis. Therefore, there is a strong change in the struc
of eigenstates@compare Figs. 7~a! and 7~b! with Figs. 7~c!–
7~e!#. One can say that the transition from extendedregular
statesto theweakly chaotic statesoccurs forJ'0.1.

When the interaction between qubits increases furth
one can see another transition tostrongly chaotic states, see
Fig. 7~f!. The latter is characterized by anergodicfilling of
the whole basis and by strong fluctuations of the compone
cn , which are found to be practically random and indepe
dent. This situation is well described by RMT~see, e.g.,
@31#!. Therefore, for such strong interactionJ'100, chaotic
properties of our system are very strong and the quan
computation process can be destroyed.

In order to quantitatively characterize the eigenstates,
have computed the numberNpc of principal components de
fined by Eq.~17!. Another measure of the spread of an eige
state in a given basis is its ‘‘width’’s(E) determined as

s~E!5F(
n

ucn~E!u2n22S (
n

nucn~E!u2D 2G1/2

. ~23!

Note that in contrast toNpc , which gives an effective num
ber of large components and is insensitive to the location
these components, the widths(E) does not ‘‘feel’’ the pres-
ence of ‘‘holes’’ in the sparse eigenstates. The latter fact
be used to distinguish chaoticergodicstates from the spars
ones. Namely, for fully extended but very sparse eigensta
the value ofs(E) is of the order ofN, however,Npc is much
less thanN.

The mean values ofNpc and s in dependence on the
interactionJ are given in Fig. 8. The circles represent t
value ofNpc ands, averaged over the eigenstates from t
central energy band. First of all, one should note that
width s turns out to be large and independent of the int
action. This means that all eigenstates areextendedin the z
representation, in spite of a serious difference in their str
ture, see Fig. 7. Contrary, the number of principal comp
nentsNpc demonstrates two principal transitions in the stru
ture of eigenstates.

l
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Numerical data of Figs. 7 and 8 allows one to distingu
between few different regions of the interaction strengthJ.
The first region with a very weak interactionJ<231023 is
characterized by the constant valueNpc'N and corresponds
to completely extended (ucnu2'1/N) eigenstates shown in
Figs. 8~a! and 8~b!. In this region the energy spectrum co
sists of many close quasidegenerate levels, thus leading
strong deviation from the Poisson distribution, see Sec.

In the second region withNpc!N, all eigenstates are
strongly influenced by the inter-qubit interaction. This regi
was termed in Ref.@27# the region of weak chaos since th
structure of eigenstates looks chaotic@see Fig. 7~d!#, how-
ever, the level spacing distributionP(s) is quite close to the
Poisson. From the data, the transition to the weak chaos
curs for J'0.05 and corresponds to the analytical estim
~16! for the delocalization transition in the mean-field bas
The very point is that the critical valueJcr given by Eq.~16!
in the z representation corresponds to the transition fr
completely extended states to the weakly chaotic states.
should stress that from the practical point of view the reg
of weak chaos may be dangerous for quantum computa
because of large deviations of eigenstates from the un
turbed ones, see Figs. 7~c! and 7~d!.

The second transition to strong quantum chaos occurs
J;100. By the latter term we denote the situation when
level spacing distribution has the Wigner-Dyson form a
fluctuations of componentscn are close to Gaussian one
with Npc'N/3, see Fig. 8. As we have already discuss
this transition corresponds to the simultaneous occurrenc
both band overlapping and delocalized states, see Eq.~22!.
One can see that strong quantum chaos forN interaction
emerges for an extremely strong interaction and thus it is
relevant for quantum computation.

More detailed information about the global structure
eigenstates can be drawn from Fig. 9 where the value ofNpc

FIG. 8. Normalized average number of principal compone
Npc ~open circles! and the widths ~full circles! as a function ofJ in
z representation forV5100. The average is taken over the eige
functions from the central band only. The solid horizontal line c
responds toNpc5N, and the dotted line gives the extreme limit
completely chaotic and extended states,Npc5N/3. The parameters
are the same as in Fig. 7.
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is shown for all eigenstatescn(E(m)) reordered in increasing
energyE(m). In this figure one can see how the band stru
ture of the spectrum manifests itself in the value ofNpc . In
particular, it is seen that for nonoverlapped bands ther
quite a strong dependence ofNpc on whether the energyE(m)

of a specific eigenstate is at the center of energy band
close to the band edges.

One should point out a remarkable difference for the
havior of Npc close to the band edges, compare Figs. 9~d!
and 9~e!. Namely, in the region of parameters of Fig. 9~d!,
the highest value ofNpc corresponds to the band edges,
contrast to Fig. 9~e! where at the band edges the eigensta
are extremely localized~with a very small value ofNpc). The
origin of this difference is not clear, however, it should
noted that the data reported in Fig. 9~e! have already been
observed~and explained! in few models of isolated system
with interacting particles~see, for example,@32,33#!. For
those models it was found that for the unperturbed eig
states, which are close to the band edges, the interaction
other basis states is strongly suppressed.

VI. RANDOM MODELS

In the previous sections we have discussed the dynam
model~4! of interacting qubits. We have seen that in spite
the absence of any randomness in this model, for a v
strong interaction, both energy spectra and structure
eigenstates reveal chaotic properties that are generic
quantum chaos. In this sense, it is interesting to compare
obtained results with those for similar models with rando
interaction. This problem is not academic since in rea
there are many effects that can lead to some randomne
the Hamiltonian~3!.

s

-
-

FIG. 9. Number of principal componentsNpc for all eigenstates
reordered in increasing energy (u0& is the ground state,u1& is the
first excited state, etc.!. Data correspond to the parameters of Fig.
6-10
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A. All-to-all interaction

It is instructive to see what happens for a long-range
teraction between qubits. We have studied in details the c
when the interaction couples all qubits in the same man
(A interaction!,

H5 (
k50

L21 F2dkI k
z1VI k

y22(
n.k

Jk,nI k
zI n

zG . ~24!

Here the interaction is assumed to be completely rand
with Jk,n5Jj wherej are random numbers with a flat dis
tribution inside the interval@21,11#.

This model can be treated analytically in the same way
we did it in Sec. IV. Specifically, we are interested in t
delocalization border, which is determined by the compa
son of the ratio~14! with the typical interaction strength.

The modification of the Hamiltonian~5! written in the
mean-field basis is straightforward. Specifically, the struct
of the unperturbed part, see Eq.~7!, remains the same and th
interaction term~8! has the same structure~the only differ-
ence being the summation taken over all qubits!. The most
important point is that the Hamiltonian matrix has a differe
structure from that for theN interaction, see Fig. 10

Despite the block structure shared by the analogous
trix for the N interaction, shown in Fig. 4, and due to two
body interaction, each block is now characterized by ma
elements different from zero. For this reason, one can ex
that chaotic properties of the model with theA interaction are
much stronger that those found in the case ofN interaction.

The estimate forM f can be obtained for theA interaction
as well. Since all qubits are allowed to interact with ea
other, the maximum number of couplings between unp
turbed many-body states inside the central energy band
all the others is

M f5
L2

4
. ~25!

FIG. 10. Structure of the Hamiltonian matrix in the mean-fie
basis for theA interaction; black points stand for matrix elemen
whose modulus is larger that 1026. Here L58, V5100, J51,
vk5v01k.
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As for (DE) f , it can be found by considering the max
mal energy shift obtained by applying the operatorI 0

yI L21
y to

the stateu1L21 , . . . ,00&, and resulting in the new stat
u0L21 , . . . ,10&. The energy difference between these tw
states is given by

~DE! f.
a2

4V
~2L2!,

which perfectly agrees with the direct computations, see F
5. As a result, the critical valueJcr

a for the delocalization
border is obtained from the relation

Jcr
a

2
'

~DE! f

M f
5

2a2

V
;

therefore,

Jcr
a '

4a2

V
. ~26!

This is an unexpected result since it coincides with
estimate~16! for the delocalization border in the case ofN
interaction. The reason is that the energy range (DE) f ,
within which many-body states are connected by the inter
tion and the numberM f of the states within this energy rang
are both proportional toL2. The result shows that the delo
calization border turns out to be independent of the range
the interqubit interaction.

However, chaotic properties of this random model w
the A interaction are much stronger than those found for
N interaction. Namely, the chaos border for theN interaction
turns out to coincide with the delocalization border. T
transition to delocalized states for theA interaction is shown
in Fig. 11.

The closeness of the delocalization and chaos borders
the A interaction can be also checked by studying the le
spacing distribution. The latter is expected to manifest a tr
sition from the Poisson to the Wigner-Dyson at the critic
value of J given by the above estimate~26!. In Fig. 12 we

FIG. 11. The average number of principal components in
mean-field basis for the eigenstates from the central energy b
as a function ofJ/Jcr for L512 andV51000. Open circles are fo
the A interaction, full circles are for theNN interaction; see next
section.
6-11
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show that the transition to chaos is independent from
productJV, in correspondence with the analytical predicti
~26!. These results prove that for theA interaction our model
is similar to generic models for which the delocalization b
der coincides with the chaos border.

B. Next to nearest interaction

Finally, we discuss the intermediate case when the in
action V in the dynamical model~3! couples four next-
nearest qubits,k61,k62 ~the NN interaction!.

A straightforward analysis similar to that shown in th
previous sections leads to the same critical border for d
calized states as those found for theN and A interactions.

FIG. 12. Level spacing distribution for eigenvalues in the ce
tral band forL510 anddk5k. For the average, 30 different matr
ces with the randomA interaction have been used.~a! V510, J
50.1 ~open circles!, J51 ~full circles!; ~b! V5100, J50.01~open
squares!, J50.1 ~full squares!; ~c! V51000, J50.001 ~open dia-
monds!, J50.01 ~full diamonds!. Note that the theory predicts
transition point atJ5Jcr;4/V. For comparison, both the Poisso
~dashed line! and the Wigner-Dyson~full line! distributions are
shown.

FIG. 13. Nearest-neighbor distribution for eigenvalues in
central band forL512. One single matrix with randomNN inter-
action has been used. Open circles are forJ50.001, closed circles
for J51. For comparison, both the Poisson~dashed line! and
Wigner-Dyson~full line! distributions have been shown.
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This has been numerically confirmed, see that data in
11. Moreover, as for theA interaction, the delocalization
border for theNN interaction turns out to coincide with th
chaos border. This has been proved by using the level s
ing distribution, see Fig. 13.

Our numerical study shows that, in contrast to the case
the N interaction ~when only two neighbor qubits ar
coupled!, the quantum chaos emerges for much lower val
of the NN interaction, for 0.1,J,1.0, see Fig. 13. This
region of parametersJ andV is important from the experi-
mental viewpoint, therefore, quantum chaos may have a
influence on quantum computation.

Since some other long-range interactions can be s
within these two extreme cases~the A andNN interactions!,
one can conclude that for a typical interaction~other than
strictly between nearest qubits!, the quantum chaos ca
emerge for quite a weak interaction and may have an in
ence on a quantum computer operability. Therefore, it m
be important to reduce the range of the interqubit interact
in an experimental setup of a quantum computer.

VII. GENERAL DISCUSSION

A. Quasi-integrability

As we have noted, the model~4! with the interaction be-
tween nearest qubits has quite specific properties. Nam
the delocalization border turns out to be very different fro
the border of quantum chaos. Below we explain this p
nomena in terms of quasi-integrability of our model.

Let us come back to the expression for the off-diago
matrix elements of the Hamiltonian~5! in the mean-field
basis determined by the eigenstates ofH0, see Eqs.~8!. For
the case of our interest, largeV(@dk), the termVo f f is small
compared toVband since ak;1 and bk;21/V. Also, the
diagonal termVdiag is much smaller than the two other term
@it is proportional tobk

2;1/V2!1/V!1, see Eq.~9!#. There-
fore, the approximate HamiltonianHa can be written in the
following form

Ha5 (
k50

L21

gkI k
z2 (

k50

L22

JkI k
yI k11

y , ~27!

wheregk5Adk
21V2 andJk52J for our model.

This Hamiltonian has been recently studied in a num
of papers~see, for example,@34# and references therein!. It
was shown@35# that for independent random variablesgk
and jk , the model~27! can be mapped to an Hamiltonia
describingL free fermions. This transformation holds only
the case of nearest-neighbor coupling. Therefore, this mo
is integrable and the level spacing distributionP(s) can be
expected to be Poisson-like forany interaction strength
^Jk

2&1/2. This explains why for nonoverlapping bands o
original Hamiltonian~6! with V@dk reveals the Poisson dis
tribution for P(s) above the delocalization border.

It should be noted that the delocalization borderJcr ~see
Sec. IV! results from the standard perturbation theory, wh
takes into account the two-body nature of the interacti
Namely, when the typical interaction that connects unp
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turbed many-body states is much larger than the mean
tance between energy levels of these states, in the co
sponding basis the interaction creates exact eigenstates
many components. Typically, these compound states are
otic due to a complex structure of the interaction. This
why the delocalization border generically coincides with t
quantum chaos border. However, in specific cases like
quasi-integrable model~for V@dk and not very strong inter
action!, the delocalization border and the onset of chaos m
be very different.

The above analysis is also helpful in the explanation
the strong difference between the model withN interaction
and the model when qubits are coupled by a different kind
interaction (A or NN interaction, see previous sections!. In-
deed, in the latter cases the interactionV has many additiona
terms compared to Eq.~8!, and results in a strong couplin
between all energy bands. This leads to quasi-integrab
breaking and to the onset of chaos at the border of delo
ization.

B. Role of magnetic field

Our approach based on the mean-field representation
Sec. IV, is valid for any kind ofBz magnetic field. Let us
consider the simplest case of a homogeneous magnetic
for which all frequencies of the spin’s precessionvk are the
same,dvk5v02n5 f . For a nonresonant case withf Þ0,
and in absence of the interaction (J50), the energy spec
trum no more has a band structure since each of theL11
levels is degenerate. Indeed, each single-particle energy
two valuesek56 1

2 (V1 f 2/2V) only, wheref !V. Since all
many-body states in the central band have the same num
of pluses and minuses in the expression for the total ene
the latter is zero. Thus, the level spacing (DE) f is also zero,
which means that any small interaction gives rise to delo
ized states.

In recent studies@23# random variation of spin frequen
cies is included in the model, in order to take into acco
effects of finite temperature and environment. For this rea
the energies are not exactly degenerate but swap into fi
width bands. In the same way, let us assume that the en
of many-body states fluctuates, thus resulting in the distri
tion of the parameterf within some interval (2D/2,1D/2)
with D!V. Then, one can estimate

~DE! f5
D2

8V
.

On the other side, the number of coupled state for a fi
state from the central band remains the same,M f'L/2. As a
result the delocalization border can be determined from
relation

J.Jcr.
~DE! f

M f
5

D2

4VL
. ~28!

This parametric dependence has been checked num
cally ~see Fig. 14!, where the average number of princip
05622
is-
re-
ith
a-

s

ur

y

f

f

ty
l-

ee

ld

as

er
y,

l-

t
n

ite
gy
-

d

e

ri-

component is plotted against the rescaled interactionJ/Jcr
for differentL andD). As one can see, the scaling law give
by Eq. ~28! is quite well satisfied. Comparing with Fig. 8
one should note that for a constant magnetic field the on
of a strong chaos (Npc'N/3) happens in a very small regio
of interaction ~see the presence of small peaks on the
right side!. With further increase of the interaction, the sy
tem again becomes nearly integrable, since in the li
J@V only diagonal terms dominate.

In this way we come to the sameL dependence for the
critical interactionJcr , discussed in Refs.@24,23#. In these
papers, the model with the nearest interaction in the pl
was considered~rather than on a 1D line as in our mode!.
For this reason the model of Ref.@23# is free from the effects
of quasi-integrability and, therefore, the delocalization b
der coincides with the border of quantum chaos.

Finally, we would like to point out that in the case o
increasing gradient of theBz magnetic field, the delocaliza
tion borderincreaseswith an increase of the number of qu
bits. This very unexpected prediction can be easily und
stood for the casevk5bk2 ~linear increase of the gradient!.
It can be shown that the width (DE) f grows proportional to
L3, therefore, for the nearest interaction (M f;L) the critical
interaction increases asJcr;L2, and for theA interaction
one getsJcr;L. In the latter case the estimate ofJcr also
gives the transition to the chaos. As one can see, the m
netic field with an increasing gradient may strongly redu
the influence of the delocalization and chaos.
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FIG. 14. Average number of principal components for eige
functions in the central band for homogeneous magnetic field
random frequencies in the interval (n2D/2,n1D/2), versus the
rescaled interactionJ/Jcr , whereJcr is defined by Eq.~28!.
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