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Avoiding quantum chaos in quantum computation
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We study a one-dimensional chain of nuclear 1/2 spins in an external time-dependent magnetic field,
considered as a possible candidate for experimental realization of quantum computation. According to the
general theory of interacting particles, one of the most dangerous effects is quantum chaos that can destroy the
stability of quantum operations. The standard viewpoint is that the threshold for the onset of quantum chaos
due to an interaction between spifwubity strongly decreases with an increase of the number of qubits.
Contrary to this opinion, we show that the presence of a nonhomogeneous magnetic field can strongly reduce
guantum chaos effects. We give analytical estimates that explain this effect, together with numerical data
supporting our analysis.
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Much attention has been paid in recent years to the idea afmple, proton spins in a high magnetic fi¢lD]. The con-
quantum computatiorisee, for example[1-3] and refer- stant magnetic field, which points in the positizelirection
ences therein The burst of interest in this subject is causedis slightly nonuniform:B?=B?*(z). The angled between the
by the discovery of a fast quantum algorithm for the factor-direction of the chain and axis satisfies to the condition:
ization of integers[4] demonstrating the effectiveness of cos#=1A#3. In this case the dipole-dipole interaction is sup-
quantum computers in comparison to the classical onefressed, and the main interaction between nuclear spins is
Nowadays, there are different projects for the experimentalhe Ising interaction mediated by chemical bonds. The gyro-
realization of quantum computers, based on interacting twomagnetic ratio for a proto/27 is approximately 43 MHz/T.
level systemgqubits. One of the most important problems [f the distance between neighboring spins is 0.2 nm and the
widely discussed in the literature, is the problem of decoherfrequency difference between them is 1 kHz, then the corre-
ence that arises in many-qubit systems due to the influencgponding gradient of the constant magnetic fi@Bf/dz is
of an environmenf5]. However, even in the absence of the approximately 2 10° T/m. Such a gradient is experimen-
environment, the interaction between qubits may lead to théally achievable; see, e.g11]. In our model the spin chain is
onset of quantum chads§]. also subjected to the transversal circular polarized magnetic

The latter subject of quantum chaos in closed systems dield. The expression for the total magnetic field has the fol-
interacting particles has been developed recently in applicdowing form [12]:
tion to nuclear, atomic, and solid state physisse, e.9.[7] - _
and references therginVhen the(two-body) interaction be- B(t)=[b? cogvpt+¢p), —bP sin(vpt+ @), B,
tween particles exceeds a critical value, fast transition tq-|ereBZ is a constant magnetic field oriented in the positive

chaos occurs in the Hilbert space of many-particle sfaigs 5 direction. b? ando. are the amolitudes. frequencies
Different aspects of this transition are now well understood, DL Voo @p ) P €s, req '
d phases of a circular polarized magnetic field. The latter

such as a statistical description of eigenstates and the ons&?

of thermalization in finite system&see, e.g.[9] and refer- IS ‘given by the sum Qp:_li -...P rectangular pulse_s pf the
ences therein lengtht, . ;—t,, rotating in the(x,y) plane and providing a

Direct application of quantum chaos theory to a Simplequantum computer protocol. The quantum Hamiltonian of

model of quantum comput¢6] has shown that for a strong this system has the form
enough interaction between qubits, the onset of quantum L-1

chaos is unavoidable. Although fdr=14-16 qubits the H=— D wk|§+22 Junl 212
critical valueJ,, for quantum chaos threshold is quite large, k=0 n>k

with an increase oL it decreases ad,~1/L. From the 1P L-1

viewpoint of the standard approach to closed systems pf in- -5 > 0,(HQ, > (e 1vpt=iep| -4 glvpttivp) F)
teracting particles, the decrease of chaos threshold with an p=1 k=0

increase of qubits looks generic. However, in this paper we 1)

demonstrate that this conclusion is not universal and the

quantum chaos can be avoided, for example, with a propewrhere the “pulse function® ,(t) equals 1 only during the

choice of the external magnetic field. pth pulse, fort,<t<t, ;. The quantities), , stand for the
Our consideration is based on the model of one-Ising interaction between two qubits, are the frequencies

dimensional chain ot identical nuclear 1/2 spins, for ex- of spin precession in thB* magnetic fieldQ, is the Rabi
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frequency of thepth pulse | Y= (3) oY%, the latter being
the Pauli matrices, ant =15=il}.

For thepth pulse, the Hamiltoniafil) can be represented o o
in the coordinate system that rotates with the frequergy 5 5
Thus, for thepth pulse, and <t<t,,, our model can be
reduced to thestationaryHamiltonian,

E2
I i

0
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L-1 In> In> In>
H(P):_ |Z+ aIX_ Iy +2 J |Z|Z , 2 0.01 T 0.01 T T
kzo &lict (ali=BI7) nZk knlidn| (2 @ "
where §,= (w—vp), a={,cosg,, and =1 ,sing,. |- e
A typical quantum protocol can require a regime of both Cal Fal =
selective ()< Jy < dw<w|, andnonselective(),> dwy
>J, excitations, wheréwy=|wy, 1— wy| [10]. In this paper 0 e 4005 o 2048 4006 "o 2048 4006
we mainly concentrate on the latter, however, the theory de- In> > In>

veloped here can be extended to the former one. Nonselec-
tive excitation provides the simplest way to prepare a homo- FIG. 1. Typical structure of eigenfunctions for-=0, 2x10"*,
geneous superpositon of -2 states needed for 0.1, 1, 10, and 100 denoted i, b, ¢, d, e, f) respectively. Eigen-
implementation of both Shor and Grover algorithms. In whatStates are taken from the central energy band.ferl2, (=100,
follows, for simplicity, we consider the case whep= /2 anda=1.
and Q,=Q, v,=v. Our main interest is in the nearest
neighbor interactior{N interactior) between qubits for two
different cases, thelynamicalone when all coupling ele-
ments are the samd, ,=Jd, «+1, and the case when all
valuesJy .+, are random(random mode¢l We also briefly
discuss another case when all qubits interact to each Gdher
interaction with randomJy .

For the dynamicalN interaction andv=wq, w.=wg
+ak (a>0), the Hamiltonian takes the form

Global properties of eigenstates can be characterized by
the numbeiN,, of principal components, determined through
the inverse participation ratio Np(E) =[3 | ¢a(E)[*1 71,
where ¢,(E) is the nth component of a specific eigenfunc-
tion. For zero interactioMN, is equal toN, and it decreases
with an increase of interaction, thus giving the measure of
the destruction of unperturbed<0) eigenstates. Note that
for completely chaotic eigenstates with Gaussian fluctuations
for ¢, one hasN,.=N/3 [7].

-1 L—2 Numerical data for the dependenceNyf; on the interac-
_ tion J reveal different regions, see Fig. 2. The first region
= — 8l QIY]— kst - : . ’
H kzo [=adict Q1] =2l go Helics 1 @ (very weak interactioncorresponds to completely extended

eigenstates witﬂwn|~1/\/ﬁ. Here the energy spectrum is
where §,=ak. In the z representation the Hamiltonian ma- characterized by many close quasidegenerate levels. In the
trix of sizeN=2" is diagonal for) =0. ForQ +#0, we have,
Hy,=H?% =iQ/2 with n>k. The matrix is very sparse, and
it has specific structure in the basis, reordered according tc
an increase of the numbsy written in the binary represen- 4000 o0 .i} T i

tation, S=i| _q,iL_2,...,ig (With igz=0 or 1, depending on
whether a single-particle state ath qubits is the ground
state or the excited one ®

For 2>J the spectrum consists d&f+1 narrow bands 9
with large gaps of size approximately between the bands. 'z 0000 | |
Since the most interesting energy region for the preparatior
of the homogeneous wave function is in the middle of the =~ L —————___ Jer———————— _
energy spectrum, we consider below only the central banc { {%{

and the corresponding eigenstates lfagven. L
In the absence of interactiod= 0, all eigenstates in the

representation are fully extended with the value of compo- or

nents|,| close to 1N. Typical structure of eigenstates in 10° 10° 10° 102 107 10° 10' 108 10°

the central band is shown in Fig. 1 for different valueslof

One can see that with an increaseJdhteraction, the prob- J

abilities w,=|,|? deviate from the unperturbed valwe,

=1/N, thus resulting in quantum computation errors. The F|G. 2. The average number of principal compones as a

data demonstrate the transition froregular states for a  function ofJ for the parameters of Fig. 1; the horizontal line cor-

weak interaction,J<0.1, to strongly chaoticones forJ  responds tdN/3. The average is taken over the eigenfunctions from

~100. the central band only.
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second region witiN,.<N all eigenstates are strongly influ-  Under the conditions,=ak<() we have the following
enced by the interqubit interaction. We call it the region ofexpression for single-particle “quasienergies corre-
weak chaosince a kind of irregularity emerges in the struc- sponding to the HamiltoniaHl,,
ture of eigenstates. However, this region has nothing to do ”
1 1 a‘k
ek=i§\/5i+ﬂzzt§

with quantum chaasindeed, here the level spacing distribu- n
2Q

tion P(s) is quite close to the Poisson, known to be a fin-
gerprint of the integrability of a system. From the practical
point of view theweak chaoghat occurs fordJ=J,~0.05, Note, that each “quasiparticle” can havel 2different

should be avoided in quantum computation because of larg&uasienergies’s, while qubits have two. The above expres-
deviations of eigenstates from the unperturbed ones, sefion allows us to construct many-particle unperturbed

Q . (6)

Figs. 1c) and Xd).
A second transition testrong quantum chaosccurs for
J=JpandJdor With Jpang~20. By this term we denote the

quasienergieuEC:E,';;éek, inside the central band. Indeed,
for ak<(Q all many-particle levels havéor L even L/2
positive andL/2 negative values of, . As a result, the total

Dyson form and fluctuations of componenks are close to
the Gaussian ones witN,~N/3. Analysis shows that this

by Nep=L![(L/2)!(L/2)!]"?, and the size can be estimate as
twice the maximum energy, AE)q,=2Er*=a?l?(L

transition corresponds to the overlapping of the central en-_1y/gn
ergy band with the nearest ones. Quite unexpectedly, the ran- Now we can estimate the mean level spachEgbetween

domization of the interaction strength in the

interval ,oe many-body states that are directly coupledviyg

[ —J,J] does not change the results: the transition to strong-ha  yalue SE can be estimated as the ratigE

guantum chaos occurs only due to the overlapping of the:(AE)f/Mf where M,

~L/2 is the number of many-body

energy bands for a very large interaction. This means that f0§tates coupled by/,,.q One should stress that the energy

both the dynamical and randoNinteraction, our system is
close to an integrable one fdrsJyang-

The abovenumericalanalysis forL=12 shows that the
weak chaogan significantly influence the structure of eigen-
states, but the regime aftrong chaosis not achievable in

guantum computation. However, according to a common be

lief, the thresholds foboth weak and strong chaos are ex-
pected to decrease with an increasd_pthus, leading to a

destruction of unperturbed states even in the presence 01‘(5“5)f

relatively weak interactiod [13].

We show nowanalytically, that contrary to the standard
viewpoint, in this model the weak chaos bordgy.is inde-
pendentof the number of qubits. In order to explain this

unexpected phenomena, it is convenient to represent the

Hamiltonian(3) in the basis in which it is diagonal for non-
interacting J=0) qubits,

Here the “effective field” HamiltoniarH,, is determined by
the sum ofL individual HamiltoniansH,,

L-1 L-1
H0=k20 Hk=k20 Vei+ 02, (5)

range AE); within which these states are coupled, is much
less than the total energy widtAE) ., of the central band,
due to the two-body nature of interaction. This valdeE=();
can be estimated as the maximal difference between the en-
ergies E@=3?¢, and EV=3Me of two many-body
states|1) and [2) of H,, that have the couplingl|Vpand2)
different from zero. From the expressig®) one finds,
=a’L/Q. As a result, forL>1 we have SE
=AE;/M;~2a?/ (.

Now, SE should be compared with the typical perturba-
tion strengthV=JV, [9]. The latter can be found froiiy g
asV~J/2. Therefore, we finally obtain

4a?

- (7)

JCI’

Note that in the “effective field” representatiod,, deter-
mines thedelocalization border Namely, for J<J. the
eigenstates aré-like functions withN,~ 1, and above this
border, forJ=J, the value ofN increases fast with an
increase of the interaction.

Remarkably, the threshold|,, to weak chaoontrary to
[6], does not depend on the numlheof qubits. The origin of
this phenomenon is that the widtAE); and M; both in-
crease linearly irL. This effect is entirely related to the con-
stant gradient of the magnetic field in the original Hamil-
tonian thus leading to a quadratic growth of the energy in Eq.

and the interaction between new “quasiparticles” is given by(6) in dependence ok. One can show that for a homoge-

z

Vo=Vragt Voandt Vorr - Here Vdrag:_zzkbkbk+llﬁlk+1
stands for the diagonal interaction, Vyang
=—-23 @111}, describes the coupling within the
band and with its neighbor bands, andV
=23, (akbis 115, 1 +aw s 1bil i1, 1) refers to the coupling
between next-to-neighbor different bands. The amplitugles
and b, are given by the relationsg,=Q/A, b.=(v

—wy)/A, andA=/52+072.

neous magnetic field we get the saindependence as [6].
Numerical data for the numbeM . of principal compo-
nents of eigenstates in the new bdsidhereH, is diagonal
for J=0, see Eq(4)] are given in Fig. 3 as a function of
J/J.;. One can see that below the bordé« J.,, there is a
scaling dependence df,. on L and Q) that confirms our
estimate(7). On the other side, fod>J,,, the value ofN,
saturates to its maximal valué,,/3 in correspondence with
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10° ; . ; : . Now we have to take into account that with an increase of
O L=8, Q=100 L, the width AE), of the central band can exceed the dis-
+1L=8, 0=1000 LR tance () between the nearest ones, Which_leads to strong
% quantum chaos. The estimate for the critical value,,
-0 L=10, Q=100 g B8 B RENE EXX X3 which corresponds to the band overlapping in absence of the
x L=10, Q=1000 :e 00® 0bb b+t + J interaction reads alsmax~(Q/a)2’3>1. . .
* L=12, Q=1000 ® It can be shown that for the interaction betwedinqubits
210" b ¥ ] (A interaction there is no relevance to the integrability, and
Z the delocalization border(7) corresponds to the onset of
® strong quantum chaosanifested by the Wigner-Dyson dis-
& tribution for P(s). In this case the estimate for the energy
10 ¢ oo E width (AE); is (AE);=L?a?%/2Q, andM=L?/4. Therefore,
we getsE=(AE);/M¢~2a?/Q) which is the same as for the
N interaction. This is an unexpected result since generically,
the chaos border foh interaction is much lower than fax
10 interaction(Jo= 1/L2, see, e.g[13]). Our numerical data for
VAR the A interaction in Eq(3) confirm the above prediction.
In conclusion, we have shown that, in contrast to general
®belief, the chaos border in the model lofinteracting qubits
does not decrease with an increasé.poin the presence of a
magnetic field with constant gradient in tkalirection. The
i . guantum chaos that emerges for a very strong interaction
random matrix prediction$7]. We have to stress that the penyeen qubits is irrelevant to quantum computation as far as
transition to extended states in the “effective field” represen-; ghort range interqubits coupling is concerned. The mecha-
tation, which occurs fod>J,, corresponds to the transition pnism of strong chaos for thdl interaction is due to band
tq weak chaodor the eigenstates in therepresentation, see overlap only, and can be avoided even for a very large num-
Fig. 2. ber of qubits. It is interesting to note that a similar analysis

Data for randomN interaction turn out to be similar to for an inhomogeneous gradient of magnetic ﬁe&q(*k4)
that shown in Fig. 3. This indicates that the model is, indeedgive rise to a chaos border proportionalltoThe region of

cIo_se tq the integ_rable one, indepent_jent of whether the intebarameters for quantum computation withlective excita-
action is dynamical or random. This phenomenon can begn requires additional analysis.

explained analytically. Indeed, on neglecting the interband

interactionV, the Hamiltonian(4) is rigorously integrable, The work of G.P.B. and V.I.T. was supported by the U.S.
seg[14] and references therein. Therefore, the onset of quarBOE under the Contract No. W-7405-ENG-36, by NSA, and
tum chaos forN interaction is only possible when energy ARDA. F.M.l. acknowledges the support by CONACyYT

FIG. 3. The average number of principal components for th
dynamicalN interaction as a function af/J.,, in the central band
in the Hy basis, for different) andL.

bands are overlapped. (Mexico) Grant No. 34668-E.
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