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We numerically study the quantized version of the Frenkel-Kontorova model, using Feynman quanti-
zation and the Metropolis algorithm. The gross structure of the quantum ground state above the critical
parameter value mirrors the classical equilibrium configuration, provided that # is not too large; never-
theless, its fine structure is significantly different, and can be related to a sawtooth map rather than to
the standard map. The dependence of energy on temperature is also investigated and is explained in
terms of the quantum phonon spectrum for linearized motion.
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Much attention has been devoted in the last years to
the properties of quantum systems which are classically
described by nonintegrable maps. In the majority of
cases, the analysis has been focused on dynamical prob-
lems, in which the maps describe the classical evolution
in time of some physical model. In this connection great
progress has been achieved in understanding the quan-
tum relevance of classical nonintegrability, and some
deep connections with problems of solid-state physics
have been identified.! However, nonintegrable maps have
important applications also in the study of static proper-
ties of condensed matter. The effect of quantization in
such cases has been scarcely studied up to now.

The discrete Frenkel-Kontorova (FK) model is a well-
known example in this class of problems.?> Here the
equilibrium configurations of a nonlinear chain of atoms
are related to invariant curves or to invariant Cantor
sets® which appear above a critical parameter value.
The transition between these two states is called transi-
tion by breaking of analyticity (TBA). This is a deep
change in the structure of the classical ground state
occurring at some critical perturbation strength. This
transition is accompanied by physically important phe-
nomena, such as, e.g., the appearance of a phonon gap.*
On account of the physical relevance of these classical
predictions, it is important to assess what modifications
of the classical picture of the FK model would be im-
posed by quantization.

We have therefore undertaken a numerical investiga-
tion of the quantum FK model. In this Letter we antici-
pate some new results which demonstrate that, above the
critical parameter value, the quantum ground state ex-
hibits significant differences from the classical picture.

The classical FK model is an infinite chain of linearly
coupled harmonic oscillators in an external periodic po-
tential. Its potential energy is given by

V=Z%(x;—xi_|)2—Kcos(xi), (1)

where x; is the distance of the ith oscillator from a fixed

position, and K > 0 is the perturbative parameter. Par-
ticular attention has been given to the equilibrium posi-
tions of this model?> and to the commensurate-incom-
mensurate transition.® This phenomenon can be given a
remarkable dynamical interpretation. Upon writing the
conditions for ¥ to be a minimum, and introducing new
variables p;+;=x;+1 —Xx; one finds that the equilibrium
configurations satisfy

pi+1=pi+Ksin(x;) ,
)

Xi+1=x;i+pi+1,

which means that these configurations are defined by or-
bits of the standard map.’ Since this map exhibits a
chaotic transition when K is increased, some kind of
transition must be expected to occur also in the equilibri-
um configurations of the FK model. In the latter case
one wishes to describe situations with a fixed density of
atoms, which corresponds to selecting orbits of the stan-
dard map which have a given winding number v. For
small K and irrational v these correspond to invariant
tori [Kolmogorov-Arnol’d-Moser (KAM) curves]. These
KAM curves break at some critical value of K. The de-
struction of the last KAM curve, which corresponds to
the most irrational value of v=(/5—1)/2, occurs at
K,.=0.971635.... It can be shown?? that for any irra-
tional winding number there exists a hull function
f which parametrizes the equilibrium positions [u;
=x;(mod2r)]

u; =f((il+a)(mod2x)) , 3)

where a is an initial phase and / is the average unper-
turbed distance between two neighboring oscillators.
This f can be a monotonic analytical function, or a
monotonic function with a countable set of step discon-
tinuities.>* The transition between these two situations
is just the above-mentioned TBA and can be numerically
shown to occur at some critical value of K. Insofar as
the dynamical properties of the standard map are con-
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cerned, the existence of a discontinuous hull function
proves the existence of cantori; instead, in the FK model
it shows that the ground state of that model is never
chaotic.

A number of critical effects accompany the TBA. For
example, the phonon spectrum (i.e., the set of all fre-
quencies of small oscillations around the equilibrium
configuration) starts from 0 for K < K., but for K > K,
there is a finite gap in it.*

In order to investigate the properties of the ground
state in the quantum FK model, we consider a chain of s
quantum oscillators with the potential (1), with a given
length 2zr (r is an integer) and fixed ends, where r,s will
be chosen so that r/s is a rational approximation to the
irrational winding number v=(~/5—1)/2. This is exact-
ly the kind of approximation by means of periodic orbits
which is used in numerical investigations of the destruc-
tion of KAM curves of the standard map. The results
described below were obtained with »/s from 34/55 up to
233/377. The quantum Hamiltonian of our model is
readily obtained from (1) and depends on the variables
xj, 1=j=<s+1, with x0=0, x;4+,=27nr. We used
Feynman quantization in Euclidean time. In this frame-
work quantum thermodynamical quantities are given by
appropriate averages over an ensemble of suitable
weighted classical paths, taken over a Euclidean time 7.
The parameter T=h17 ~! plays the role of temperature.
If T is small enough, the ground-state contribution is
dominant and the ensemble average yields ground-state
quantum expectation values.

In order to numerically compute this ensemble average
we exploited the Metropolis algorithm.®® This is well
known and widely used in may areas of physics, and we
shall not give details here; a full description of our nu-
merical method will be given elsewhere. We shall just
recall that this method performs an “importance sam-
pling” by randomly generating a finite set of paths which
mainly contribute in the Feynman integral. The actual
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FIG. 1. Classical (a) hull function and (b) g function for
winding number v=233/377, K =5; quantum (c) hull function
and (d) g function, for the same v and K, and A =3.

number of paths needed for a satisfactory convergence of
statistical averages depends on the number of time steps,
which in turn must be large enough to isolate the
ground-state contribution in the sum. We used ensem-
bles from 2000 up to 8000 paths.

By this method we were able to compute the ground-
state averages of the positions of the oscillators. The re-
sults thus obtained were compared with the classical
equilibrium configuration in three ways: (1) We plotted
the average positions x; (mod2x) of the quantum oscilla-
tors against their unperturbed positions (mod2z). For
the sake of simplicity, we call this plot a quantum hull
function (QHF) (though this denomination may be
abusive in a strict mathematical sense). (2) We comput-
ed

gi-K_'(x,-+1+x,-_1—2x,~) (4)

and we plotted g; against x;(mod2x) for i=1,...,s. In
the classical case, the points thus obtained would lie in a
Cantor subset of the graph of the function g(x) =sin(x)
[Fig. 1(b)]. Again for the sake of simplicity we call this
plot a g function (GF). (3) We plotted the points
(x;,pi) in the phase space of the standard map. The re-
sults of such quantum computations are presented in Fig.
2. Some global characteristics of the classical case were
found to persist; e.g., steps in QHF still exist [compare
Fig. 2(c) with Fig. 1(a)l. However, the more detailed
information supplied by the GF reveals significant
changes. Quite remarkably, quantum fluctuations do not
completely destroy the functional dependence of the g;
on x;(mod2x), but change instead its shape to a saw-
tooth curve. In other words, the average positions of the
oscillators in the quantum ground state appear to be ap-
proximately described by a sawtooth map rather than by
the standard map. This is the more surprising in that the
fluctuations of the positions of the oscillators are strongly
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FIG. 2. Structure of the quantum ground state for K,v as in
Fig. 1 and A =0.2 (a) g function, (c) hull function, (b)
configuration in the phase space (x,p), (d) rms deviations of
the positions of the quantum oscillators from their ground-state
averages, plotted against the unperturbed position (mod2x).
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correlated with their unperturbed positions [Fig. 2(d)];
these fluctuations are larger near the gap in the QHF.
This is due to quantum tunneling between the edges of
the gap. This tunneling produces double-peaked distri-
butions of probability for the positions of the oscillators
near the gap; such distributions were really observed in
our computations. The appearance of a sawtooth-shaped
GF has an interesting counterpart in the phase of the
standard map. Here the quantum points spread out of
the classical cantorus and tend to reduce the gaps in it;
in doing so, they tend to dispose along straight lines con-
necting points of the cantorus. The resulting structure
(“quantorus”) looks much more like a curve than the
classical ground state for the chosen parameter value; in
any case the gaps in this quantum structure are sig-
nificantly smaller than in the classical cantorus. It would
be interesting to know whether and how this “curve” can
be related to the phase-space structure of the above-
mentioned sawtooth map, but the accuracy of our nu-
merical results did not allow one to go very far in this
direction. Of course the existence of quantum fluctua-
tions makes it very likely that one cannot speak of invari-
ant curves or cantori for the quantum ground state in a
rigorous sense. Nevertheless, we believe that the con-
cepts of QHF and GF provide an extremely convenient
heuristic tool for the description of the quantum ground
state. The above described changes in the properties of
the ground state for finite A2 are not determined by tem-
perature effects. This was checked by reducing the tem-
perature in a few times. With the increase of A, quan-
tum fluctuations smoothen more and more the steps in
the QHF; instead the GF keeps the same shape but with
a lower amplitude [see Figs. 1(c) and 1(d)]. The mono-
tonical decrease of the amplitude of GF continues also
for larger values of #; for example, for K =5, A =7 the
maximum of the GF is =0.2 while for A =0.2 it is
=(.75. In such cases the QHF becomes quite close to
the diagonal. Finally, it is important to remark that the
drastic change of the GF (from classical to quantum)
takes place only above the critical value of K. Below
that value the GF is still sine shaped, and only its ampli-
tude changes, approaching zero for large f.

Another important indication was provided by the
study of the dependence on temperature T of the quan-
tum average energy per oscillator E(7). In computing
the latter by the Metropolis algorithm, we used Feyn-
man’s prescription for kinetic energy.®° A typical result
is shown in Fig. 3. In order to analyze how the classical
phonon spectrum (see, for example, Fig. 3 in Ref. 4)
influences this dependence, we considered a quantum gas
of noninteracting phonons associated with the frequen-
cies of the classical linearized system. Having numeri-
cally computed these frequencies we could find E(T) for
such a gas. The phononic curves E(T) thus found were
compared with the Metropolis the data for the actual,
nonlinear chain. We found a good agreement between
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FIG. 3. Average energy per oscillator E vs temperature T
for winding number v=34/55. The lines give E(T) for the
linearized chain; the symbols are the Metropolis data for the
actual chain. Squares and full line: A =1, K=5. Circles and
dashed-dotted line: A =1, K=2. Triangles and dashed line:
A =3, K=5.

the resulting phononic curves and the Metropolis data
for different values of K and for not too large 4. An in-
teresting feature is the initial plateau of almost constant
energy (zero specific heat). This appears to be a quan-
tum manifestation of the classical phonon gap, which
sets a lower bound to the temperature required for
significant excitation above the ground state. Neverthe-
less, when # is increased the phononic curve no longer
fits the Metropolis points. A precise analysis of the be-
havior of E(T) for such large A requires further investi-
gations, which are now in progress.
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