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The statistical distribution of lifetimes in a simple quantum model with absorption is numerically
investigated. It displays a number of characteristic features that can be related to the classical
diffusive mechanism of absorption, described by a Fokker-Planck equation.

The onset of diffusive dynamics in purely deterministic
dynamical systems is one of the important physical
consequences of classical chaos. Quite often the appear-
ance of chaotic instabilities enforces some sort of relaxa-
tion or decay processes which take the form of a deter-
ministic diffusion and can be described by equations of
the Fokker-Planck type. A typical “diffusive” decay pro-
cess is the following: a classical system which possesses
“bound” states as well as “continuum” ones is subjected
to some external perturbation, which triggers a chaotic
diffusion inside the bound-state part of the phase space
until the continuum is eventually reached. In this case
simple approximate estimates for the decay rates can be
gained from a Fokker-Planck description of the chaotic
diffusion. A well-known example is the widely studied
problem of microwave ionization of hydrogen atoms.!
All these decay problems can also be formulated as
scattering problems with formation of intermediate meta-
stable states and are therefore amenable to the conceptual
framework of irregular scattering;2 nevertheless, the
quantum case in which the decay of the compound inter-
mediate state is classically determined by a chaotic
diffusion appears to have been scarcely studied up to
now. This case is the subject of the present work.

Generally speaking, the classical chaotic diffusion is
quantum-mechanically limited by the quantum localiza-
tion phenomenon.1 Nevertheless, under suitable condi-
tions (localization length comparable to the size of the
system), a mechanism of quantum excitation appears
which looks more or less like the classical chaotic
diffusion, and this leads to the decay of the system into
continuum. Then the problem arises of determining the
quantum and classical decay rates in the presence of
chaotic diffusion.

The model used in order to study this problem is that
of a kicked rotator with absorption at some value of the
action. The classical phase space is {(n,0),—N/2
<n <N /2,020<2m} and the discrete time dynamics is
defined by the map

A=n +k sin e+% , §=6+—§—(n +77) (1)

which is a symmetrized form of the standard map.
When the orbits reach the boundaries of the finite box of
size N in action they are absorbed. In the chaotic regime,
when K =kT >>1, the classical motion can be described
by the diffusion equation

of (n) _ D 3*f(n)
ot 2 dn?

where ¢ is the time measured in the number of iterates of
the map (1). D=BDq is the diffusion coefficient with
Dg. =k?/2 the quasilinear diffusion rate. The coefficient
B depends on the chaos parameter K.* The classical ion-
ization process is described by Eq. (2) supplemented with
boundary conditions at the absorption border. These
conditions easily follow from (1) by requiring that the flux
across the boundary should be equal to the probability of
ionization in one kick:

) (2)
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This boundary value problem is easily solved. It
possesses a complete set of eigenfunctions u,,,
m=1,2, ... with eigenvalues ¥ ,,, monotonically increas-
ing with m. The mth eigenfunction has the parity of
m +1 (under reflection in n ), and decays in time accord-
ing to the exponential law exp(—y,,7). Eigenvalues y,,
are given by

2D ,

Ym= —A;;Vm , 4)
where v,, is a root of the equation
kN Vm ™D
tan(v,, ) 2Vm1TD[ (—=1)™] KN [1+(=1)"]
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Therefore, in the classical case we have just a discrete
spectrum of decays rates.

The corresponding quantum problem is described by a
quantum map:

b= ﬁ¢=ﬁe~imz/4e—ik cos@e—iTﬁ2/4 (5)
where P is the projector over states |n| <N /2. Here
#i=1; the classical limit corresponds to k— oo,

K =kT =const, k /N =const. The operators to the right
of P give the evolution of the quantum kicked rotator,’
from one half-period before a kick to one half-period
after the kick. Thanks to this formulation of the rotator
dynamics, the matrix U is symmetric. Due to the absorp-
tion the probability is not conserved by 0, which has
therefore complex eigenvalues A=e ~¥/2"¢ lying within
the unit circle (y > —0).

For a “big” box, the absorption should not
significantly affect the evolution of states lying near the
center. Indeed, according to well-known results on the
quantum kicked rotator,” these states are exponentially
localized with a localization length /=D, and if D <<N,
most eigenstates will have exponentially small . In this
paper we are mainly interested in the opposite case
D >>N, in which localization is not expected to play a
significant role. In that case the classical diffusive picture
may be expected to emerge under an additional condition
D << N?, ensuring that many kicks are required to reach
the border.

We numerically computed the spectrum of the matrix
0. First, we investigated the statistical distribution of the
“level widths” y. Figure 1 shows the distribution P(y) of
v’s for three different matrix sizes: N =800, 1600, 2000
with fixed ratio N/k=10 and fixed chaos parameter
K =kT =7. For this calue, no islands of stability survive
in the classical case and the diffusive picture should be

2 0175 | 1 ,
o SN QA A
D-—- [ -1
0.15 c M 10 bed ]
0.125 £ o -2
r . & 10
r o
01 L & "o
E ° e ©
0.075 }.* o 10
C 30
0.05 [ e x
r o
- *¢x
0.025 [*° &8
rx 52.80
_-00 *8%
O @Rl Lol 1l L]
0 2 4 6 8 10 12 14

oY

FIG. 1. Probability distribution of level widths for fixed ratio
N/k=10 and K =17, on the x axis; ¥y =N?y/k2. Solid circles,
N =2800; open circles, N=1600; stars, N=2000. The arrows
show the positions of the three lowest classical eigenvalues. In-
set: decay of the distribution for large ¥ in log-log scale, the line
is the theoretical 7 73/? law.
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valid. The position of the maximum of the distribution,
as well as the shape of the distribution to the right of the
maximum, appear to be substantially stable and can
therefore be assumed to describe the actual semiclassical
behavior. The position of the maximum coincides fairly
well with the first classical eigenvalue y; (4), for a value
of B=2. This is at variance with analytical results* and
numerical simulations,’ indicating that the value of 8 for
K =7 should be approximately 2.8. This discrepancy
may be due to the fact that in our case we have a limited
diffusion time; the value [=2.8 is instead related to
diffusion observed over an infinite time. Computations
with different values of K also yielded a maximum of
P(y) in the position of the corresponding classical y .

To the right of the maximum, the distribution P(y)
follows a power law with an exponent which in this case
is close to 1.5. In other cases, in which the diffusive con-
dition N2?>>D was not so well satisfied, the exponent was
found to range between 1.5 and 2. Notice that in all cases
a number ~ 2k of eigenfunctions would yield anomalous-
ly large y. These functions correspond to states lying
close to the border, which classically would be ionized in
just one kick. Such states were not taken into account.

The following argument provides some understanding
of this power-law decay. The typical time needed to
reach the absorption border leaving from a distance n;
from the border is t=~D ~'n% For such trajectories the
typical ionization rate is ¥ =1/t =D /n?. Therefore, the
density of states having ionization rate <y is
P(y)=dn;/dy ~D'?y =32,

One would naturally expect some higher classical ei-
genvalues y,,, m =2,... to appear in the quantum
P(y). In no computation of ours could this be observed.
On the other hand, the quantum problem has some non-
trivial features—e.g., the eigenstates of U are not mutual-
ly orthogonal—and it may be the case that in order to
reproduce the classical spectrum some appropriate
weighting of the eigenvalues A is needed.

The part of the distribution P(y) to the left of the max-
imum seems determined by purely quantum effects.
Indeed, in the classical case, the probability of survival
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FIG. 2. Log-log plot of the integrated distribution of levels
widths for N/k =10, K=7. Triangles, N =200; stars, N =400;
solid circles, N =_800; squares, N =1600. The straight lines indi-
cate power laws with the exponents 1.25, 2, 3, 5.
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inside the box for times much higher than 1/y, is ex-
ponentially small, which would suggest that P(y) should
vanish exponentially fast for y —0. Instead, we observed
a power-law decay of P(y) for small . This is shown in
Fig. 2. The exponent in this power law increases with the
increase of k, i.e., going towards the classical limit (we
remember that the ratio k /N and the classical chaos pa-
rameter K =kT were kept constant); this increase is con-
sistent with the classical exponential behavior. Accord-
ing to the numerical results in Fig. 3, the dependence of
the exponent a (for the integrated distribution) on the pa-
rameters should be of the form

172

12i+A(u) ) (6)

N

where u=kN/mD. From the three cases in Fig. 3,
¢=0.91%0.04. The dependence of A(u) could not be ex-
actly determined from the data; anyway, since for D ~N
one enters the localized regime, in which P(y) does not
vanish as y —0, then A(u) cannot be far from 2—pu/2
(which would be consistent with numerical data).

The reason of this quantum behavior near ¥ =0 could
be clarified by analyzing the structure of the eigenfunc-
tions corresponding to the lowest values of y. The
Wigner functions corresponding to these eigenfunctions®
display scars which appear to be responsible for the slow
decay. One particularly impressive such example is given
by Fig. 4 which shows the Wigner representation of the
eigenfunction with the lowest y, for k=80, K =kT
=7, N=1600. The pattern of the maxima appears to
follow the unstable periodic orbits (periods 1,2,3,...), in
agreement with current views,’ though most of them do
not exactly coincide.

An interesting remark on the structure of Fig. 4 is
about its symmetries. The form of the classical map was
chosen so as to have time-reversal invariance (in the ab-
sence of absorption). With the absorption, one can iden-
tify three sets of classical orbits that may influence the
structure of the quantum eigenstates: (a) the set of never-
ionizing orbits (neither in the future, nor in the past), (b)

a=c
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FIG. 3. The exponent of the power laws illustrated in Fig. 2,
as a function of kN !'/2. Open circles, N/k=10; stars,

N/k=6.67; triangles, N/k=4.4. The lines give the least-
square linear fitting.
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FIG. 4. Contour plot of the Wigner function corresponding
to the eigenfunction with the smallest level width for
N=1600, k=80, K=7. Points are some classical orbits of
period 1 (stars), 2 (open circles), 3 (closed circles), 4 (squares), 5
(triangles). The symmetry lines of the symmetric standard map
(Ref. 3) are also shown.

the set of orbits which will never ionize in the future, but
would have ionized in the past, (c) the set obtained by the
previous one by exchanging past and future. (a) contains,
e.g., all periodic orbits contained in the box; (b) contains
the stable manifolds of orbits belonging to (a), and so on.
The set (a) is obviously invariant under time reversal, i.e.,
under the change n — —n. The quantum state of Fig. 4
mainly reflects the classical structure (a), but its slight de-
fects of symmetry suggest that it is also affected by (b).
Finally, we investigated the statistics of spacings for
the complex eigenvalues A. Previous results® have shown
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FIG. 5. Integrated distribution of nearest-neighbor spacings
in the complex plane for N=1600, k =160, K =7. Dashed line
and solid line are the regular distribution and the chaotic one
(both from Ref. 8).
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that the statistics of nearest-neighbor spacings for quan-
tum dissipative maps describing the evolution of density
matrices display a universal cubic repulsion in the pres-
ence of classical chaos. Our case is somewhat different
because (i) our quantum map describes the evolution of ¢
functions and (ii) instead of dissipation here we have ab-
sorption (as a model for the physical ionization process).
Nevertheless, we could observe the same universal spac-
ing statistics (Fig. 5). In order to extract the fluctuation
properties of the spectrum the eigenvalues were renor-
malized so as to have a homogeneous distribution, follow-
ing the same procedure as in Ref. 8.

The repulsion of complex eigenvalues would be expect-
ed to become a two-dimensional Poissonian (i.e., linear) in
a regime of integrable motion. However, our model is
not a convenient one for investigating this regime, be-
cause in the integrable case the distribution becomes very
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inhomogeneous: part of the eigenvalues falls close to the
center and the rest are very close to the unit circle
|[A|=1. The same situation occurs in the localized case.
It is very difficult in such cases to properly analyze the
spectrum.

The above-described results show that the classical
diffusive nature of the motion allows for an understand-
ing of the quantum statistics of lifetimes without any sta-
tistical assumptions. This statistics is very different from
the Porter-Thomas distribution which is a common refer-
ence in this type of problem.’
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