VOLUME 72, NUMBER 10

PHYSICAL REVIEW LETTERS

7 MARCH 1994

Chaotic Diffusion and the Statistics of Universal Scattering Fluctuations

Fausto Borgonovi
Dipartimento di Matematica, Universitd Cattolica, sede di Brescia, via Trieste 17, 25121 Brescia, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, 27100 Pavia, Italy

Italo Guarneri
Universita di Milano, sede di Como, via Lucini 8, 22100 Como, Italy and Istituto Nazionale di Fisica Nucleare,
Sezione di Pavia, via Bassi 6, 27100 Pavia, Italy

Laura Rebuzzini
Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, via Bassi 6, 27100, Pavia, Italy
(Received 4 November 1993)

The general properties of quantum transport fluctuations associated with classical chaotic dif-
fusion are analyzed in the framework of chaotic scattering on a simple dynamical model exhibiting
universal transmission fluctuations. Quasiclassical approximations for S-matrix correlations are
found, and a connection between correlation width and average conductance is demonstrated on

numerical data.
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Recent investigations on quantum manifestations of
classical chaos have given birth to a general semiclas-
sical approach to quantum transport fluctuations, based
on classical chaotic scattering [1]. Application of such
ideas to conduction in mesoscopic electronic devices of
size comparable to the elastic mean free path has led to
prediction of Ericson-like transmission fluctuations con-
nected with classical chaotic dynamics [2]. Less studied
is the problem of chaotic scattering when the classical dy-
namics in the interaction region is not only chaotic but
also diffusive [3]. In the particular problem of electronic
conduction, this situation occurs in the metallic Ohmic
regime and gives rise to universal conductance fluctua-
tions [4], which appear to stem from a subtle interplay
between diffusion and weak localization. On the other
hand, chaotic deterministic diffusion is a rather general
aspect of classical chaotic motion, and occurs in a vari-
ety of different situations. A prototype is the celebrated
standard map, also known as kicked rotor (KR), which
has provided highlights for the study of diffusive exci-
tation occurring in many time-dependent problems. The
quantum version of the KR exhibits a dynamical localiza-
tion effect, and it was upon recognizing the affinity of this
effect to Anderson localization that the first link between
quantum chaology and solid state physics was historically
established [5]. It is nowadays known that dynamical lo-
calization appears in many relaxation processes in which
the decay of metastable states is classically determined
by a chaotic diffusion [6].

Does the similarity between Anderson and dynamical
localization extend so far as to entail an equivalent for
universal conductance fluctuations? This is the starting
question of this paper, in which scattering fluctuations
associated with chaotic diffusion are studied in the con-
text of the quantum-classical correspondence. To this
end we use a one-dimensional toy model closely related to
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the KR, which has been presented elsewhere [7]. Though
physically artificial, this model retains the basic ingredi-
ents of classical and quantum transport and, compared
to more physical models, offers the advantage of a much
easier numerical investigation, both in the quantum and
in the classical version. Here we present an analysis of
scattering fluctuations in the diffusive regime. First we
provide evidence for universal transmission fluctuations
in quantitative agreement with theoretical predictions for
quasi-one-dimensional disordered solids [8,9]. This re-
sult confirms the validity of our model for the quantum
diffusive regime and is introductory to the core of this
paper, where correlation functions of S-matrix elements
(CFS) at different (quasi)energies are investigated. Such
correlations play a central role in the theory of chaotic
scattering, because they are quasiclassically related to
the classical law ruling the decay in time of the survival
probability in the interaction region [1,10]. If the latter is
exponential at large times, then a Lorentzian form is ex-
pected for the squared moduli of CFS at small energies,
with a correlation width given by the classical decay rate.
Our results for diffusive transport confirm this expecta-
tion for the CFS of transmission S-matrix elements, but
show instead non-Lorentzian CF'S for reflection elements.
We explain these results by means of quasiclassical ap-
proximations based on the diffusion equation; moreover,
we introduce a “local” definition of correlation width that
can be estimated in classical terms in all cases. A natural
connection between transmission correlation widths and
average conductance in the diffusive regime is demon-
strated by our numerical results.

Our present description of the model will be a rather
compact one; we defer the reader to Ref. [7] for a de-
tailed presentation. We consider a particle moving on a
line with coordinate ¢ and momentum k. The interaction
region (the “sample”) is defined by go < g < go+ L. The
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discrete-time dynamics of our particle is defined by an
area-preserving map, which inside the interaction region
takes the form
g=q-H'(k), k=k+aqr. 1)
Instead, outside the interaction region, i.e., in the
“leads,” k is constant and g changes according to Eq. (1).
Thus free motion is the stroboscopic evolution defined by
the Hamiltonian H(k), that is a uniform motion at a con-
stant speed H'(k). If the free Hamiltonian is taken in the
form H(k) = bcosk , then the dynamics inside the inter-
action region is described by the standard map (SM). As
is well known, in the strongly chaotic regime (br > 1)
k is completely randomized and (1) gives rise to diffu-

sive transport in ¢, according to the Fokker-Planck (FP)
equation:

9f(¢,t) _ D8*f(g,¢) @)
ot 2 Oq?

with the diffusion coefficient D = 3Dg, where 8 depends
in a known way on K = br, and Dy is the quasilinear dif-
fusion coefficient computed from (1) in the random phase
approximation. In our case for numerical convenience we
chose H(k) = b¢~! arctan(£ cos k), which yields the SM
in the limit £ — 0. The physical picture underlying our
model is that of an ensemble of particles which impinge
on the sample with randomly distributed momenta k and
diffuse therein according to (1) until they escape from ei-
ther end. Associated with this picture is a boundary
value problem for the diffusion equation (2), defined by
nonhomogeneous boundary conditions which, in the SM
case, read

26-1
4

Dof'(a0) + 2£(a0) = Bin, (0,
Q
26 -1
4D

TG0+ )+ 2fg0 + L) = Binalt),

where arbitrarily prescribed incoming fluxes from the left
(1) and right (2) boundaries appear on the right-hand
side. The left-hand sides of (3) completely define (in
statistical terms) the coupling of the sample to the leads,
and are dictated by the map (1) [7]. On solving the
boundary value problem one gets outgoing fluxes in terms
of incoming ones (i = 1,2),

2 oo
Pousd) =Y [ Ri()®mst =)o ()
5=1"70

The kernels R;; (o) are explicitly given in Ref. [11]. Their
integrals over the delay o yield a transmission coefficient
if i # j and a reflection one if ¢ = j; normalized to
unit integral they give the conditional probability distri-
butions of first-exit times of particles that exit through
the i boundary, having entered through the j one. The
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transmission coefficient is

n = Qout  mD 7 m(26 — 1) Dy

®, 261+ L) 2b )

At lengths L > [ Ohm’s law [12] is therefore valid [13].
Comparison with well-known results of kinetic theory
shows that lp = wD/2b has the meaning of mean free
path (mfp). We emphasize that while our microscopic
dynamics (1) is artificial on strictly physical grounds,
the statistical description summarized by Egs. (2) and
(3) is instead fully generic and is in fact the canonical de-
scription of one-dimensional diffusive transport. On such
grounds we expect that quantization of the microscopic
dynamics will yield likewise generic indications about the
quantum counterpart of classical 1D diffusive transport.

In the usual quantization of the SM k is an angle, the
conjugate momentum q assumes integer values (we as-
sume A = 1), and the quantized model describes motion
on a 1D discrete lattice. To the one-step classical evo-
lution (1) we associate the quantum unitary propagator
U = TU,, where Uy = ei#(® and T = ¢iF@. The func-
tion F(g) vanishes in the leads and is given by 17¢ inside
the sample [14]. The eigenphases A of U are quasienergies
that play in discrete-time quantum dynamics the same
role as energies in continuous time. Since U is a finite-
rank perturbation of Uy, the free dynamics defined by Uo
and the interacting one defined by U give rise to a well-
posed scattering problem and the scattering operator is
defined even in the strict mathematical sense. At fixed
quasienergy ), this operator is a finite matrix Syg(A) of
rank 2b/7 whose indexes ¢, 3 label scattering channels.
Such channels arise because every quasienergy eigenvalue
) is multiply degenerate: associated with it is a set of free
waves whose momenta, k, satisfy H(kq) = A(mod2r). In
order to compute the S matrix we numerically solved an
equation of the Lippman-Schwinger type,

u—e™ lim (U — €)1 (T — 1)u = u,
e—0+

which for any given free wave ug yields an interacting
eigenfunction u. Having obtained the S matrix in the
standard way from interacting eigenfunctions, we could
compute various quantities related to quantum transport
and fluctuations thereof. Statistical ensembles were gen-
erated by moving the “sample” to different positions on
the g lattice, i.e., by changing go. Under a well-known
assimilation of the quantum kicked rotator to a tight
binding model [5], this is equivalent to taking different
realizations of disorder. The quantum diffusive regime
is roughly defined by lp < L < £ , where £ ~ D is the
localization length associated with the Anderson-like lo-
calization phenomenon occurring in the quantum KR and
related models [5].

In this regime the average quantum transmission co-
efficient depends on L according to the classical law (5)
[7). A dimensionless conductance G can be formally de-
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FIG. 1. Variance of the dimensionless conductance G,
computed over 100 samples, versus sample length L, for
b =45,§ = 1.5,br = 10 (18 scattering channels). The dashed
horizontal line corresponds to the theoretical value 2/15. mfp
and localization length are shown by vertical lines.

fined from the S matrix according to the many-channel
generalization of the Landauer formula, which gives G as
the sum of squared moduli of all transmission elements
in one direction. Universal conductance fluctuations are
demonstrated by a plot of the variance of G versus the
sample length (Fig. 1), which clearly shows a plateau in
the diffusive range (8], around an average value quite close
to the random-matrix theoretical value 2/15 [15-17].

We have studied correlations of S-matrix elements at
different quasienergies:

Cap(A €) = (Sas (A) Sap (A +¢€)), (6)

where the brackets denote disorder averaging. In the
semiclassical domain such functions have a dynamical
interpretation, which can be derived either from semi-
classical arguments [1] or from the observation [7] that a
prescribed incoming flux in channel 8 produces an aver-
age outgoing flux in channel a given by

(Bout,a (2)) = /0 % 625 (0) g (t— 0 —t))do,  (T)

where the inverse Fourier transform (in €) of (6) appears,
and ty is the free-flight time. If an incoherent homo-
geneous distribution of incoming fluxes from the left is
assumed, then (7) shows that the inverse Fourier trans-
form of (6), averaged either over transmission elements
or over reflection ones, plays the same role as the ker-
nels Ry (o), Ri1 (o) (respectively) in Eq. (4), as long
as 0 > ty. We therefore expect correlations (6) to be
quasiclassically reproduced by Fourier transforms of the
classical kernels R;; on (quasi)energy scales smaller than
the one related to fast direct transitions across the sam-
ple. This conclusion was confirmed by our numerical sim-
ulations. In order to filter out nonfluctuating contribu-
tions, correlations were computed not for the original S
matrix but for its fluctuating part S§; = Sap — (Sag)-
The squared moduli of such correlations were averaged
over all transmissions (respectively, all reflections), and
the functions of € thus obtained were normalized to unit
value at € = 0. Classical counterparts for the functions
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FIG. 2. Normalized squared moduli of correlations between
S-matrix elements at quasienergy 0 and ¢; reflection (a) and
transmission (b) for the same parameter values as in Fig. 1
and L = 200. Full lines show classical results from the dif-
fusion equation. The dashed line in (b) is a Lorentzian fit.
Error bars show the dispersion of correlations obtained for
individual matrix elements.

C(e) computed in this way were provided by squared
moduli of Fourier transforms of R;j, normalized to 1 at
€ = 0. Results are shown in Fig. 2. For both transmis-
sion and reflection, classical and quantum curves closely
agree when e is on the order of the Thouless energy
D/L? or less, but are different in the tails. Correla-
tion curves for transmission elements are very close to
Lorentzian curves, but they are quite different for reflec-
tion; in fact reflection, although diffusive, is on the av-
erage a much faster process than transmission, and the
corresponding energy scale is comparable to the “direct”
one. For this reason, we found the “curvature width”
€0 = V2|C"(0)|~1/2 to provide a more convenient mea-
sure of correlation widths than the usual “half-width”
€o.5 defined by C (eo.5) = 0.5. The curvature width is
the half-width of a Lorentzian osculating the given curve
at € = 0, and has a simple dynamical meaning: in fact
the memory kernel in Eq. (7) defines a distribution of
first-exit times, and €g is the width of this distribution
as given by its rms deviation. €y may be a useful quan-
tity in other problems, too, when the “chaotic” and the
“direct” energy scales are not neatly separated. In Fig.
3 we show the dependence of both widths on the sam-
ple length. For transmission €p 5 and €y are close to each
other, reflecting the closeness of the corresponding corre-
lations to Lorentz curves; moreover they are close to the
corresponding classical quantities, analytically computed
from R;;j(c). The latter classical widths are asymptot-
ically given, at large L, by the first eigenvalue of the
diffusive boundary-value problem: ¢y & 72D/2L%. Com-
paring this with (G) ~ D/L [which follows from (5) at
large L on neglecting weak-localization corrections] we
get g = 7 (G) 61 /4 where 6\ = 2t/ L is the average spac-
ing of quasienergy levels in the sample. If the correlation
width is taken as a measure of the “level width,” this
connection between average conductance and correlation
width is just Thouless’ formula (apart from a numerical
coefficient), and its validity is also demonstrated in Fig.
3.
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FIG. 3. Inverse correlation widths versus sample length,
for the same parameter values as in Figs. 1 and 2. Open
symbols are for transmissions, full ones for reflections; circles
are for local widths ¢, triangles for half-widths €o.5. Lines are
theoretical results from the classical diffusion equation. The
arrow on the lower margin shows the value of the localization
length. Crosses were obtained by inserting the numerically
computed conductance into o = 7 (G) 6\/4.

For reflection, ¢y again agrees with the corresponding
classical value, for which the following asymptotic for-
mula at large L was derived from the formulas reported
in Ref. [11]:

€0 ~ 0.2572 DIy /2 L~3/2,

The half-width €g 5 is instead quite different from ¢g. It
cannot be compared to the classical half-width, because
the latter is comparable or even larger than the direct en-
ergy scale. Moreover, the classical reflection curve does
not shrink indefinitely as L — oo but converges instead
to a certain limit curve. Quantum data indicate an anal-
ogous saturation; however, at large L localization effects
come into play which make numerical computations quite
problematic. These very effects are responsible for a
sharp uprising of the ¢y curves observed at large L. The
saturation of the half-widths of reflection curves, along
with the steady decrease of €p, indicate that in the limit
of an infinitely long sample C (€) should have an angle at
€ = 0, as observed in Ref. [7].

We have thus shown that the second order statistics of
S-matrix fluctuations in quantum one-dimensional diffu-
sive transport can be efficiently analyzed in the frame-
work of chaotic scattering. In closing we wish to remark
that the agreement between numerical quantum data and
theoretical results from the FP equation can also be taken
as a striking, if unusual, test of the validity of the diffu-
sive approximation for the dynamics of chaotic classical
maps.
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